Solution of equations according to the algorithm. Examples of systems of linear equations: solution method Algorithm for solving equations give examples

Addition

Addition

Term + term = sum

1) To find the unknown term, subtract the known term from the sum.

Subtraction

Subtraction

minuend - subtrahend = difference

1) To find the unknown subtrahend, it is necessary to subtract the difference from the reduced.

2) To find the unknown minuend, you need to add the subtrahend to the difference.

Multiplication

Multiplication

Multiplier ∙ multiplier = product

1) To find the unknown factor, you need to divide the product by the known factor

Division

Dividend: divisor = quotient

Division

Dividend: divisor = quotient

1) To find the unknown dividend, you need to multiply the quotient by the divisor.

2) To find an unknown divisor, it is necessary to divide the dividend by the quotient.

Algorithm for solving a compound equation:

1. Find the last action on the left side, circle it.

2. Label the action components at the top.

3.Choose a rule.

4. Leave the component with the unknown on the left.

5. Calculate the result of the right side.

6. Did you get a simple equation?

Not - means return to the point 1.

In this video, we'll take a look at the whole set. linear equations, which are solved by the same algorithm - that's why they are called the simplest.

To begin with, let's define: what is a linear equation and which of them should be called the simplest?

A linear equation is one in which there is only one variable, and only in the first degree.

The simplest equation means the construction:

All other linear equations are reduced to the simplest ones using the algorithm:

  1. Open brackets, if any;
  2. Move terms containing a variable to one side of the equal sign, and terms without a variable to the other;
  3. Bring like terms to the left and right of the equal sign;
  4. Divide the resulting equation by the coefficient of the variable $x$ .

Of course, this algorithm does not always help. The fact is that sometimes, after all these machinations, the coefficient of the variable $x$ turns out to be equal to zero. In this case, two options are possible:

  1. The equation has no solutions at all. For example, when you get something like $0\cdot x=8$, i.e. on the left is zero, and on the right is a non-zero number. In the video below, we will look at several reasons why this situation is possible.
  2. The solution is all numbers. The only case when this is possible is when the equation has been reduced to the construction $0\cdot x=0$. It is quite logical that no matter what $x$ we substitute, it will still turn out “zero is equal to zero”, i.e. correct numerical equality.

And now let's see how it all works on the example of real problems.

Examples of solving equations

Today we deal with linear equations, and only the simplest ones. In general, a linear equation means any equality that contains exactly one variable, and it goes only to the first degree.

Such constructions are solved in approximately the same way:

  1. First of all, you need to open the parentheses, if any (as in our last example);
  2. Then bring similar
  3. Finally, isolate the variable, i.e. everything that is connected with the variable - the terms in which it is contained - is transferred to one side, and everything that remains without it is transferred to the other side.

Then, as a rule, you need to bring similar on each side of the resulting equality, and after that it remains only to divide by the coefficient at "x", and we will get the final answer.

In theory, this looks nice and simple, but in practice, even experienced high school students can make offensive mistakes in fairly simple linear equations. Usually, mistakes are made either when opening brackets, or when counting "pluses" and "minuses".

In addition, it happens that a linear equation has no solutions at all, or so that the solution is the entire number line, i.e. any number. We will analyze these subtleties in today's lesson. But we will start, as you already understood, with the most simple tasks.

Scheme for solving simple linear equations

To begin with, let me once again write the entire scheme for solving the simplest linear equations:

  1. Expand the parentheses, if any.
  2. Seclude variables, i.e. everything that contains "x" is transferred to one side, and without "x" - to the other.
  3. We present similar terms.
  4. We divide everything by the coefficient at "x".

Of course, this scheme does not always work, it has certain subtleties and tricks, and now we will get to know them.

Solving real examples of simple linear equations

Task #1

In the first step, we are required to open the brackets. But they are not in this example, so we skip this step. In the second step, we need to isolate the variables. Note: we are talking only about individual terms. Let's write:

We give similar terms on the left and on the right, but this has already been done here. Therefore, we proceed to the fourth step: divide by a factor:

\[\frac(6x)(6)=-\frac(72)(6)\]

Here we got the answer.

Task #2

In this task, we can observe the brackets, so let's expand them:

Both on the left and on the right, we see approximately the same construction, but let's act according to the algorithm, i.e. sequester variables:

Here are some like:

At what roots does this work? Answer: for any. Therefore, we can write that $x$ is any number.

Task #3

The third linear equation is already more interesting:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

There are several brackets here, but they are not multiplied by anything, they just have different signs in front of them. Let's break them down:

We perform the second step already known to us:

\[-x+x+2x=15-6-12+3\]

Let's calculate:

We perform the last step - we divide everything by the coefficient at "x":

\[\frac(2x)(x)=\frac(0)(2)\]

Things to Remember When Solving Linear Equations

If we ignore too simple tasks, then I would like to say the following:

  • As I said above, not every linear equation has a solution - sometimes there are simply no roots;
  • Even if there are roots, zero can get in among them - there is nothing wrong with that.

Zero is the same number as the rest, you should not somehow discriminate it or assume that if you get zero, then you did something wrong.

Another feature is related to the expansion of parentheses. Please note: when there is a “minus” in front of them, we remove it, but in brackets we change the signs to opposite. And then we can open it according to standard algorithms: we will get what we saw in the calculations above.

Understanding this simple fact will help you avoid making stupid and hurtful mistakes in high school, when doing such actions is taken for granted.

Solving complex linear equations

Let's move on to more complex equations. Now the constructions will become more complicated and a quadratic function will appear when performing various transformations. However, you should not be afraid of this, because if, according to the author's intention, we solve a linear equation, then in the process of transformation all monomials containing a quadratic function will necessarily be reduced.

Example #1

Obviously, the first step is to open the brackets. Let's do this very carefully:

Now let's take privacy:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Here are some like:

It is obvious that given equation There are no solutions, so in the answer we write:

\[\variety \]

or no roots.

Example #2

We perform the same steps. First step:

Let's move everything with a variable to the left, and without it - to the right:

Here are some like:

Obviously, this linear equation has no solution, so we write it like this:

\[\varnothing\],

or no roots.

Nuances of the solution

Both equations are completely solved. On the example of these two expressions, we once again made sure that even in the simplest linear equations, everything can be not so simple: there can be either one, or none, or infinitely many. In our case, we considered two equations, in both there are simply no roots.

But I would like to draw your attention to another fact: how to work with brackets and how to expand them if there is a minus sign in front of them. Consider this expression:

Before opening, you need to multiply everything by "x". Please note: multiply each individual term. Inside there are two terms - respectively, two terms and is multiplied.

And only after these seemingly elementary, but very important and dangerous transformations have been completed, can the bracket be opened from the point of view that there is a minus sign after it. Yes, yes: only now, when the transformations are done, we remember that there is a minus sign in front of the brackets, which means that everything down just changes signs. At the same time, the brackets themselves disappear and, most importantly, the front “minus” also disappears.

We do the same with the second equation:

It is no coincidence that I pay attention to these small, seemingly insignificant facts. Because solving equations is always a sequence of elementary transformations, where the inability to clearly and competently perform simple actions leads to the fact that high school students come to me and learn to solve such simple equations again.

Of course, the day will come when you will hone these skills to automatism. You no longer have to perform so many transformations each time, you will write everything in one line. But while you are just learning, you need to write each action separately.

Solving even more complex linear equations

What we are going to solve now can hardly be called the simplest task, but the meaning remains the same.

Task #1

\[\left(7x+1 \right)\left(3x-1 \right)-21((x)^(2))=3\]

Let's multiply all the elements in the first part:

Let's do a retreat:

Here are some like:

Let's do the last step:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Here is our final answer. And, despite the fact that in the process of solving we had coefficients with a quadratic function, however, they mutually annihilated, which makes the equation exactly linear, not square.

Task #2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Let's do the first step carefully: multiply every element in the first bracket by every element in the second. In total, four new terms should be obtained after transformations:

And now carefully perform the multiplication in each term:

Let's move the terms with "x" to the left, and without - to the right:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Here are similar terms:

We have received a definitive answer.

Nuances of the solution

The most important remark about these two equations is this: as soon as we start multiplying brackets in which there is more than a term, then this is done according to the following rule: we take the first term from the first and multiply with each element from the second; then we take the second element from the first and similarly multiply with each element from the second. As a result, we get four terms.

On the algebraic sum

In the last example, I would like to remind students what is algebraic sum. In classical mathematics, by $1-7$ we mean a simple construction: we subtract seven from one. In algebra, we mean by this the following: to the number "one" we add another number, namely "minus seven." This algebraic sum differs from the usual arithmetic sum.

As soon as when performing all the transformations, each addition and multiplication, you begin to see constructions similar to those described above, you simply will not have any problems in algebra when working with polynomials and equations.

In conclusion, let's look at a couple more examples that will be even more complex than the ones we just looked at, and in order to solve them, we will have to slightly expand our standard algorithm.

Solving equations with a fraction

To solve such tasks, one more step will have to be added to our algorithm. But first, I will remind our algorithm:

  1. Open brackets.
  2. Separate variables.
  3. Bring similar.
  4. Divide by a factor.

Alas, this wonderful algorithm, for all its efficiency, is not entirely appropriate when we have fractions in front of us. And in what we will see below, we have a fraction on the left and on the right in both equations.

How to work in this case? Yes, it's very simple! To do this, you need to add one more step to the algorithm, which can be performed both before the first action and after it, namely, to get rid of fractions. Thus, the algorithm will be as follows:

  1. Get rid of fractions.
  2. Open brackets.
  3. Separate variables.
  4. Bring similar.
  5. Divide by a factor.

What does it mean to "get rid of fractions"? And why is it possible to do this both after and before the first standard step? In fact, in our case, all fractions are numeric in terms of the denominator, i.e. everywhere the denominator is just a number. Therefore, if we multiply both parts of the equation by this number, then we will get rid of fractions.

Example #1

\[\frac(\left(2x+1 \right)\left(2x-3 \right))(4)=((x)^(2))-1\]

Let's get rid of the fractions in this equation:

\[\frac(\left(2x+1 \right)\left(2x-3 \right)\cdot 4)(4)=\left(((x)^(2))-1 \right)\cdot 4\]

Please note: everything is multiplied by “four” once, i.e. just because you have two brackets doesn't mean you have to multiply each of them by "four". Let's write:

\[\left(2x+1 \right)\left(2x-3 \right)=\left(((x)^(2))-1 \right)\cdot 4\]

Now let's open it:

We perform seclusion of a variable:

We carry out the reduction of similar terms:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

We have received the final solution, we pass to the second equation.

Example #2

\[\frac(\left(1-x \right)\left(1+5x \right))(5)+((x)^(2))=1\]

Here we perform all the same actions:

\[\frac(\left(1-x \right)\left(1+5x \right)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Problem solved.

That, in fact, is all that I wanted to tell today.

Key points

The key findings are as follows:

  • Know the algorithm for solving linear equations.
  • Ability to open brackets.
  • Do not worry if somewhere you have quadratic functions, most likely, in the process of further transformations, they will be reduced.
  • The roots in linear equations, even the simplest ones, are of three types: one single root, the entire number line is a root, there are no roots at all.

I hope this lesson will help you master a simple, but very important topic for further understanding of all mathematics. If something is not clear, go to the site, solve the examples presented there. Stay tuned, there are many more interesting things waiting for you!

I ask for help in solving an equation with an unknown in the denominator: (y + 5) / (y ^ 2-5 * y) - (y-5) / (2 * y ^ 2-10 * y) \u003d (y + 25) / (2y^2-50) is

the equation is given in the Algrebe textbook for the 7th grade. I tried to solve, but constantly came to some completely confusing states. For reference: the topic with similar equations goes long before the solutions of quadratic equations, so in theory the equation should be solved without reducing to quadratic equation. In general, I will be grateful for the shown solution algorithm.

At the end of the tutorial is the following answer: 15

1) Is a pair of numbers (-3; 2) a solution to the equation 2x-3y=0.

2) Among the solutions of the equation 3y-9x=18, find a solution in which the values ​​of the variables are equal.
3) Point A is taken on the graph of the equation 4x-5y \u003d 10. Find the abscissa of point A if its coordinate is 2.
4) The graph of the function ax + by \u003d 1 passes through the points A (1; -2) and B (-2; 7). What are the coefficients a and b? 1).a=3, b=1 2).a=1,b=3 3).a=-1,b=5 4).a=3,b=9.
5) Is a pair of numbers (-1; 7) a solution to the equation 23x+4y=5.
6) Among the solutions of the equation x-7y=12, find a solution in which the values ​​of the variables are equal.
7) Point C is taken on the graph of equation 12x-5y=23. Find the coordinate of point C if its abscissa is -1.

Help for the last time today №1 Which of the pairs of numbers (-1: 1), (a fraction of one second, a fraction of two fifths), (-4: 1) are the solution to the equation 2x + 5y-3 = 0

№2 Find the values ​​of the coefficient b in the equation +5x+by+18=0 if it is known that the pair of numbers (6:-4) is the solution to the equation. #3 transform the linear equation with two variables 6x-3y=3 to the form linear function y=rx+m

QUESTIONS ON ALGEBRA FOR CREDIT IN GRADE 8?

1. What is an ordinary fraction? Write a common fraction. Basic property of a fraction. Give examples.
2. Addition and division ordinary fractions with different denominators. Give examples.
3. Multiplication and subtraction of ordinary fractions with different denominators. Give examples.
4. What is a decimal? Decimal notation. Give examples.
5. Addition and division decimal fractions. Give examples.
6. Multiplication and subtraction of decimal fractions. Give examples.
7. What is an algebraic fraction. Give examples.
8. Domain of definition of an algebraic fraction. Give examples.
9. The main property of an algebraic fraction. Give examples.
10. Addition and division of algebraic fractions. Give examples.
11. Subtraction and multiplication of algebraic fractions. Give examples.
12. What is a degree with a natural indicator? The degree of a positive number with any exponent. Degree negative number with an even number. The power of a negative number with an odd exponent. Give examples.
13. Properties of a degree with an integer exponent. Give examples.
14. What is an equation? Equation roots? What does it mean to solve an equation? Give examples.
15. Algorithm for solving equations. Give examples.
16. Solution algorithm fractional equation. Give examples.
17. Square root. Arithmetic square root. Give examples.
18. Properties of arithmetic square root. Give examples.
19. The equation x2 = a and its roots. Give examples.
20. Properties of square roots. Give an example.

Systems of equations received wide application in the economic sector mathematical modeling various processes. For example, when solving problems of production management and planning, logistics routes (transport problem) or equipment placement.

Equation systems are used not only in the field of mathematics, but also in physics, chemistry and biology, when solving problems of finding the population size.

A system of linear equations is a term for two or more equations with several variables for which it is necessary to find a common solution. Such a sequence of numbers for which all equations become true equalities or prove that the sequence does not exist.

Linear Equation

Equations of the form ax+by=c are called linear. The designations x, y are the unknowns, the value of which must be found, b, a are the coefficients of the variables, c is the free term of the equation.
Solving the equation by plotting its graph will look like a straight line, all points of which are the solution of the polynomial.

Types of systems of linear equations

The simplest are examples of systems of linear equations with two variables X and Y.

F1(x, y) = 0 and F2(x, y) = 0, where F1,2 are functions and (x, y) are function variables.

Solve a system of equations - it means to find such values ​​(x, y) for which the system becomes a true equality, or to establish that there are no suitable values ​​of x and y.

A pair of values ​​(x, y), written as point coordinates, is called a solution to a system of linear equations.

If the systems have one common solution or there is no solution, they are called equivalent.

Homogeneous systems of linear equations are systems whose right side is equal to zero. If the right part after the "equal" sign has a value or is expressed by a function, such a system is not homogeneous.

The number of variables can be much more than two, then we should talk about an example of a system of linear equations with three variables or more.

Faced with systems, schoolchildren assume that the number of equations must necessarily coincide with the number of unknowns, but this is not so. The number of equations in the system does not depend on the variables, there can be an arbitrarily large number of them.

Simple and complex methods for solving systems of equations

There is no general analytical way to solve such systems, all methods are based on numerical solutions. AT school course Mathematics describes in detail such methods as permutation, algebraic addition, substitution, as well as the graphical and matrix method, the solution by the Gauss method.

The main task in teaching methods of solving is to teach how to correctly analyze the system and find the optimal solution algorithm for each example. The main thing is not to memorize a system of rules and actions for each method, but to understand the principles of applying a particular method.

Solving examples of systems of linear equations of the 7th class of the program secondary school quite simple and explained in great detail. In any textbook on mathematics, this section is given enough attention. The solution of examples of systems of linear equations by the method of Gauss and Cramer is studied in more detail in the first courses of higher educational institutions.

Solution of systems by the substitution method

The actions of the substitution method are aimed at expressing the value of one variable through the second. The expression is substituted into the remaining equation, then it is reduced to a single variable form. The action is repeated depending on the number of unknowns in the system

Let's give an example of a system of linear equations of the 7th class by the substitution method:

As can be seen from the example, the variable x was expressed through F(X) = 7 + Y. The resulting expression, substituted into the 2nd equation of the system in place of X, helped to obtain one variable Y in the 2nd equation. The solution of this example does not cause difficulties and allows you to get the Y value. The last step is to check the obtained values.

It is not always possible to solve an example of a system of linear equations by substitution. The equations can be complex and the expression of the variable in terms of the second unknown will be too cumbersome for further calculations. When there are more than 3 unknowns in the system, the substitution solution is also impractical.

Solution of an example of a system of linear inhomogeneous equations:

Solution using algebraic addition

When searching for a solution to systems by the addition method, term-by-term addition and multiplication of equations by various numbers are performed. The ultimate goal of mathematical operations is an equation with one variable.

Applications of this method require practice and observation. It is not easy to solve a system of linear equations using the addition method with the number of variables 3 or more. Algebraic addition is useful when the equations contain fractions and decimal numbers.

Solution action algorithm:

  1. Multiply both sides of the equation by some number. As a result of the arithmetic operation, one of the coefficients of the variable must become equal to 1.
  2. Add the resulting expression term by term and find one of the unknowns.
  3. Substitute the resulting value into the 2nd equation of the system to find the remaining variable.

Solution method by introducing a new variable

A new variable can be introduced if the system needs to find a solution for no more than two equations, the number of unknowns should also be no more than two.

The method is used to simplify one of the equations by introducing a new variable. The new equation is solved with respect to the entered unknown, and the resulting value is used to determine the original variable.

The example shows that by introducing a new variable t, it was possible to reduce the 1st equation of the system to the standard square trinomial. You can solve a polynomial by finding the discriminant.

It is necessary to find the value of the discriminant using the well-known formula: D = b2 - 4*a*c, where D is the desired discriminant, b, a, c are the multipliers of the polynomial. In the given example, a=1, b=16, c=39, hence D=100. If the discriminant is greater than zero, then there are two solutions: t = -b±√D / 2*a, if the discriminant is less than zero, then there is only one solution: x= -b / 2*a.

The solution for the resulting systems is found by the addition method.

A visual method for solving systems

Suitable for systems with 3 equations. The method consists in plotting graphs of each equation included in the system on the coordinate axis. The coordinates of the points of intersection of the curves and will be common solution systems.

The graphic method has a number of nuances. Consider several examples of solving systems of linear equations in a visual way.

As can be seen from the example, two points were constructed for each line, the values ​​of the variable x were chosen arbitrarily: 0 and 3. Based on the values ​​of x, the values ​​for y were found: 3 and 0. Points with coordinates (0, 3) and (3, 0) were marked on the graph and connected by a line.

The steps must be repeated for the second equation. The point of intersection of the lines is the solution of the system.

The following example needs to find graphic solution systems of linear equations: 0.5x-y+2=0 and 0.5x-y-1=0.

As can be seen from the example, the system has no solution, because the graphs are parallel and do not intersect along their entire length.

The systems from Examples 2 and 3 are similar, but when constructed, it becomes obvious that their solutions are different. It should be remembered that it is not always possible to say whether the system has a solution or not, it is always necessary to build a graph.

Matrix and its varieties

Matrices are used to briefly write down a system of linear equations. A table is called a matrix. special kind filled with numbers. n*m has n - rows and m - columns.

A matrix is ​​square when the number of columns and rows is equal. A matrix-vector is a single-column matrix with an infinitely possible number of rows. A matrix with units along one of the diagonals and other zero elements is called identity.

An inverse matrix is ​​such a matrix, when multiplied by which the original one turns into a unit one, such a matrix exists only for the original square one.

Rules for transforming a system of equations into a matrix

With regard to systems of equations, the coefficients and free members of the equations are written as numbers of the matrix, one equation is one row of the matrix.

A matrix row is called non-zero if at least one element of the row is not equal to zero. Therefore, if in any of the equations the number of variables differs, then it is necessary to enter zero in place of the missing unknown.

The columns of the matrix must strictly correspond to the variables. This means that the coefficients of the variable x can only be written in one column, for example the first, the coefficient of the unknown y - only in the second.

When multiplying a matrix, all matrix elements are successively multiplied by a number.

Options for finding the inverse matrix

The formula for finding the inverse matrix is ​​quite simple: K -1 = 1 / |K|, where K -1 is the inverse matrix and |K| - matrix determinant. |K| must not be equal to zero, then the system has a solution.

The determinant is easily calculated for a two-by-two matrix, it is only necessary to multiply the elements diagonally by each other. For the "three by three" option, there is a formula |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . You can use the formula, or you can remember that you need to take one element from each row and each column so that the column and row numbers of the elements do not repeat in the product.

Solution of examples of systems of linear equations by the matrix method

The matrix method of finding a solution makes it possible to reduce cumbersome entries when solving systems with a large number of variables and equations.

In the example, a nm are the coefficients of the equations, the matrix is ​​a vector x n are the variables, and b n are the free terms.

Solution of systems by the Gauss method

In higher mathematics, the Gauss method is studied together with the Cramer method, and the process of finding a solution to systems is called the Gauss-Cramer method of solving. These methods are used to find the variables of systems with a large number of linear equations.

The Gauss method is very similar to solutions using substitutions and algebraic addition but more systematic. In the school course, the Gaussian solution is used for systems of 3 and 4 equations. The purpose of the method is to bring the system to the form of an inverted trapezoid. By algebraic transformations and substitutions, the value of one variable is found in one of the equations of the system. The second equation is an expression with 2 unknowns, and 3 and 4 - with 3 and 4 variables, respectively.

After bringing the system to the described form, the further solution is reduced to the sequential substitution of known variables into the equations of the system.

In school textbooks for grade 7, an example of a Gaussian solution is described as follows:

As can be seen from the example, at step (3) two equations were obtained 3x 3 -2x 4 =11 and 3x 3 +2x 4 =7. The solution of any of the equations will allow you to find out one of the variables x n.

Theorem 5, which is mentioned in the text, states that if one of the equations of the system is replaced by an equivalent one, then the resulting system will also be equivalent to the original one.

The Gauss method is difficult for students to understand high school, but is one of the most interesting ways to develop the ingenuity of children enrolled in an advanced study program in math and physics classes.

For ease of recording calculations, it is customary to do the following:

Equation coefficients and free terms are written in the form of a matrix, where each row of the matrix corresponds to one of the equations of the system. separates the left side of the equation from the right side. Roman numerals denote the numbers of equations in the system.

First, they write down the matrix with which to work, then all the actions carried out with one of the rows. The resulting matrix is ​​written after the "arrow" sign and continue to perform the necessary algebraic actions until the result is achieved.

As a result, a matrix should be obtained in which one of the diagonals is 1, and all other coefficients are equal to zero, that is, the matrix is ​​reduced to a single form. We must not forget to make calculations with the numbers of both sides of the equation.

This notation is less cumbersome and allows you not to be distracted by listing numerous unknowns.

The free application of any method of solution will require care and a certain amount of experience. Not all methods are applied. Some ways of finding solutions are more preferable in a particular area of ​​human activity, while others exist for the purpose of learning.

Algorithm for solving equations: 1. If possible, simplify the expression (open brackets, give like terms). 2. Transfer the terms containing the unknown to one side of the equation (usually to the left), and the remaining terms to the other side of the equation, while changing the signs to the opposite. 3. Give like terms. 4. Find the root of the equation.

Slide 27 from the presentation "Equations Grade 6". The size of the archive with the presentation is 2882 KB.

Mathematics Grade 6

summary other presentations

"The emergence of natural numbers" - Numbers. Maya Indians. Ancient shepherds. How natural numbers appeared. Numbers of the first ten. Mathematics of the Stone Age. live calculating machine. Ten icons for writing numbers. Numbers are starting to get names. Integers. How people learned to write numbers. Negative and fractional numbers.

"Fractions" Grade 6 "- These fractions led to same denominator. Test. Try to do it yourself. Guys let's be friends. Travel. Difficult action. Warm up. Egyptians. Find a friend. Action plan. Need for fractions. Ah, those fractions. Man is like a fraction. Friendship. Fractions in Russia.

"Properties of a square" - Tasks of the abstract. Amazing properties square. Problems for cutting a square. What is a square. Square within a square. The area of ​​a square is greater than the area of ​​any rectangle. Basic properties of a square. The battle order of the infantry in the form of a square. Abstract goals. What is the secret of origami. Square. Table of contents. Origami. Tangram. Square in mathematics.

“Mental Counting, Grade 6 Mathematics” - Mathematical Maze. Check. GCD. Find the arithmetic mean. Are the fractions equal? Find NOD. Simplify. Divisors of 45. Independent work. Among the numbers, find those that are divisible by 2 and 5. Verification work. Verbal counting. Oral account (in a chain). Calculate.

"Crossword in mathematics" - Mathematics. A tool for drawing circles. Crossword. The world of mathematical crosswords. math action. Crossword rules. Types of crosswords. A line segment that connects two points. Story. Section of mathematics.

"Math games for grade 6" - Decipher the inscription. Small spool but precious. famous mathematicians. What two digits end the work. How much is the book. Egyptian mathematicians. Union "and". A measure of length. Continue the row with three numbers. Funny questions. Rules of the game. Archimedes. How many times the path to the 16th floor of the house is longer than the path to the 4th floor. How many apples were there. The log was cut into half-meter logs. Professor's brother. The ladder goes up.

Read also: