Why ice from boiling water freezes faster. Which water freezes faster - hot or cold. Explanation of a physical phenomenon

Mpemba effect or why does hot water freeze faster than cold water? The Mpemba Effect (Mpemba Paradox) is a paradox that states that hot water under certain conditions freezes faster than cold water, although it must pass the temperature of cold water in the process of freezing. This paradox is an experimental fact that contradicts the usual ideas, according to which, under the same conditions, a hotter body needs more time to cool down to a certain temperature than a cooler body to cool down to the same temperature. This phenomenon was noticed at the time by Aristotle, Francis Bacon and Rene Descartes, but only in 1963, the Tanzanian schoolboy Erasto Mpemba found that a hot ice cream mixture freezes faster than a cold one. As a student of the Magamba high school in Tanzania, Erasto Mpemba did practical work in the culinary arts. He had to make homemade ice cream - boil milk, dissolve sugar in it, cool it to room temperature, and then put it in the refrigerator to freeze. Apparently, Mpemba was not a particularly diligent student and procrastinated on the first part of the assignment. Fearing that he would not be in time by the end of the lesson, he put the still hot milk in the refrigerator. To his surprise, it froze even earlier than the milk of his comrades, prepared according to a given technology. After that, Mpemba experimented not only with milk, but also with ordinary water. In any case, already being a student at Mkwawa High School, he asked Professor Dennis Osborne from the University College in Dar es Salaam (invited by the director of the school to give a lecture on physics to students) about water: "If you take two identical containers with equal volumes of water so that in one of them the water has a temperature of 35 ° C, and in the other - 100 ° C, and put them in the freezer, then in the second the water will freeze faster. Why? Osborne became interested in this issue and soon in 1969, together with Mpemba, they published the results of their experiments in the journal "Physics Education". Since then, the effect they discovered is called the Mpemba effect. Until now, no one knows exactly how to explain this strange effect. Scientists do not have a single version, although there are many. It's all about the difference in the properties of hot and cold water, but it is not yet clear which properties play a role in this case: the difference in supercooling, evaporation, ice formation, convection, or the effect of liquefied gases on water at different temperatures. The paradox of the Mpemba effect is that the time during which the body cools down to temperature environment, should be proportional to the temperature difference between this body and the environment. This law was established by Newton and since then has been confirmed many times in practice. In the same effect, water at 100°C cools down to 0°C faster than the same amount of water at 35°C. However, this does not yet imply a paradox, since the Mpemba effect can also be explained within known physics. Here are a few explanations for the Mpemba effect: Evaporation Hot water evaporates faster from a container, thereby reducing its volume, and a smaller volume of water at the same temperature freezes faster. Water heated to 100 C loses 16% of its mass when cooled to 0 C. The effect of evaporation is a double effect. First, the mass of water required for cooling is reduced. And secondly, the temperature decreases due to the fact that the heat of evaporation of the transition from the water phase to the vapor phase decreases. Temperature difference Due to the fact that the temperature difference between hot water and more cold air - hence the heat exchange in this case is more intense and hot water cools faster. Subcooling When water is cooled below 0 C, it does not always freeze. Under certain conditions, it can undergo supercooling while continuing to remain liquid at temperatures below the freezing point. In some cases, water can remain liquid even at a temperature of -20 C. The reason for this effect is that in order for the first ice crystals to begin to form, centers of crystal formation are needed. If they are not in liquid water, then supercooling will continue until the temperature drops enough that crystals begin to form spontaneously. When they start to form in the supercooled liquid, they will start to grow faster, forming an ice slush that will freeze to form ice. Hot water is most susceptible to hypothermia because heating it eliminates dissolved gases and bubbles, which in turn can serve as centers for the formation of ice crystals. Why does hypothermia cause hot water to freeze faster? In the case of cold water, which is not supercooled, the following occurs. In this case, a thin layer of ice will form on the surface of the vessel. This layer of ice will act as an insulator between the water and cold air and will prevent further evaporation. The rate of formation of ice crystals in this case will be less. In the case of hot water undergoing subcooling, the subcooled water does not have a protective surface layer of ice. Therefore, it loses heat much faster through the open top. When the supercooling process ends and the water freezes, much more heat is lost and therefore more ice is formed. Many researchers of this effect consider hypothermia to be the main factor in the case of the Mpemba effect. Convection Cold water begins to freeze from above, thereby worsening the processes of heat radiation and convection, and hence the loss of heat, while hot water begins to freeze from below. This effect is explained by an anomaly in the density of water. Water has a maximum density at 4 C. If you cool water to 4 C and put it at a lower temperature, the surface layer of water will freeze faster. Because this water is less dense than water at 4°C, it will stay on the surface, forming a thin cold layer. Under these conditions, a thin layer of ice will form on the surface of the water for a short time, but this layer of ice will serve as an insulator, protecting the lower layers of water, which will remain at a temperature of 4 C. Therefore, the further cooling process will be slower. In the case of hot water, the situation is completely different. The surface layer of water will cool more quickly due to evaporation and a greater temperature difference. Also, cold water layers are denser than hot water layers, so the cold water layer will sink down, lifting the warm water layer to the surface. This circulation of water ensures a rapid drop in temperature. But why does this process not reach the equilibrium point? To explain the Mpemba effect from this point of view of convection, it would be assumed that the cold and hot layers of water are separated and the convection process itself continues after the average water temperature drops below 4 C. However, there are no experimental data that would confirm this hypothesis, that cold and hot water layers are separated by convection. Gases dissolved in water Water always contains gases dissolved in it - oxygen and carbon dioxide. These gases have the ability to lower the freezing point of water. When the water is heated, these gases are released from the water because their solubility in water at high temperature is lower. Therefore, when hot water is cooled, there are always fewer dissolved gases in it than in unheated water. cold water. Therefore, the freezing point of heated water is higher and it freezes faster. This factor is sometimes considered as the main one in explaining the Mpemba effect, although there are no experimental data confirming this fact. Thermal Conductivity This mechanism can play a significant role when water is placed in a refrigerator freezer in small containers. Under these conditions, it has been observed that the container with hot water melts the ice of the freezer underneath, thereby improving thermal contact with the wall of the freezer and thermal conductivity. As a result, heat is removed from the hot water container faster than from the cold one. In turn, the container with cold water does not melt snow under it. All these (as well as other) conditions have been studied in many experiments, but an unequivocal answer to the question - which of them provide a 100% reproduction of the Mpemba effect - has not been obtained. So, for example, in 1995, the German physicist David Auerbach studied the influence of supercooling of water on this effect. He discovered that hot water, reaching a supercooled state, freezes at a higher temperature than cold water, and therefore faster than the latter. But cold water reaches the supercooled state faster than hot water, thereby compensating for the previous lag. In addition, Auerbach's results contradicted earlier data that hot water is able to achieve greater supercooling due to fewer crystallization centers. When water is heated, the gases dissolved in it are removed from it, and when it is boiled, some salts dissolved in it precipitate. So far, only one thing can be asserted - the reproduction of this effect essentially depends on the conditions under which the experiment is carried out. Precisely because it is not always reproduced. O. V. Mosin

In this article, we will look at why hot water freezes faster than cold water.

Heated water freezes much faster than cold water! This is amazing property water, the exact explanation for which scientists still cannot find, has been known since ancient times. For example, even in Aristotle there is a description of winter fishing: the fishermen inserted fishing rods into holes in the ice, and in order for them to freeze faster, they poured warm water on the ice. The name of this phenomenon was named after Erasto Mpemba in the 60s of the XX century. Mnemba noticed the strange effect while making ice cream and turned to his physics teacher, Dr. Denis Osborn, for an explanation. Mpemba and Dr. Osborne experimented with water at different temperatures and concluded that almost boiling water begins to freeze much faster than water at room temperature. Other scientists have carried out their own experiments and each time they have obtained similar results.

Explanation of a physical phenomenon

There is no generally accepted explanation as to why this is happening. Many researchers suggest that it's all about the supercooling of a liquid, which occurs when its temperature drops below freezing. In other words, if water freezes at a temperature below 0°C, then supercooled water can have a temperature of, for example, -2°C and still remain liquid without turning into ice. When we try to freeze cold water, there is a chance that it will become supercooled at first, and will only harden after some time. In heated water, other processes take place. Its faster transformation into ice is associated with convection.

Convection- This is a physical phenomenon in which the warm lower layers of the liquid rise, and the upper, cooled ones, fall.


The short answer is why hot water freezes faster

It turns out that the liquid itself seems to mix and cool. Due to the fact that the process of convection is active in heated water, ice crystals from the surface will sink faster and cool the warm water at the bottom.

Hello dear lovers interesting facts. Today we will talk about. But I think that the question in the title may seem simply absurd - but is it always necessary to completely trust the notorious " common sense”, rather than a strictly set verification experiment. Let's try to figure out why hot water freezes faster than cold water?

History reference

That in the issue of freezing cold and hot water “not everything is pure” was mentioned in the works of Aristotle, then similar notes were made by F. Bacon, R. Descartes and J. Black. AT recent history This effect was given the name "Mpemba paradox" - after the name of a schoolboy from Tanganyika, Erasto Mpemba, who asked the same question to a visiting professor of physics.

The boy's question arose not from scratch, but from purely personal observations of the process of cooling ice cream mixtures in the kitchen. Of course, the classmates who were present there, together with the school teacher, laughed at Mpemba - however, after an experimental check by Professor D. Osborne personally, the desire to make fun of Erasto "evaporated" from them. Moreover, Mpemba, together with a professor, published in 1969 in Physics Education detailed description this effect - and since then the aforementioned name has stuck in the scientific literature.

What is the essence of the phenomenon?

The setup of the experiment is quite simple: other things being equal, identical thin-walled vessels are tested, in which there are strictly equal amounts of water, differing only in temperature. The vessels are loaded into the refrigerator, after which the time is recorded before the formation of ice in each of them. The paradox is that in a vessel with an initially hotter liquid, this happens faster.


How does modern physics explain this?

The paradox has no universal explanation, since several parallel processes proceed together, the contribution of which may differ from specific initial conditions - but with a uniform result:

  • the ability of a liquid to supercool - initially cold water is more prone to hypothermia, i.e. remains liquid when its temperature is already below the freezing point
  • accelerated cooling - steam from hot water is transformed into ice microcrystals, which, when falling back, accelerate the process, working as an additional "external heat exchanger"
  • insulation effect - unlike hot water, cold water freezes from above, which leads to a decrease in heat transfer by convection and radiation

There are a number of other explanations last time the British Royal Society of Chemistry held a competition for the best hypothesis recently, in 2012) - but there is still no unambiguous theory for all cases of combinations of input conditions ...

Mpemba effect(Mpemba paradox) - a paradox that states that hot water under certain conditions freezes faster than cold water, although it must pass the temperature of cold water in the process of freezing. This paradox is an experimental fact that contradicts the usual ideas, according to which, under the same conditions, a hotter body needs more time to cool down to a certain temperature than a cooler body to cool down to the same temperature.

This phenomenon was noticed at the time by Aristotle, Francis Bacon and Rene Descartes, but only in 1963, the Tanzanian schoolboy Erasto Mpemba found that a hot ice cream mixture freezes faster than a cold one.

Erasto Mpemba was a student at Magambin High School in Tanzania doing practical cooking work. He had to make homemade ice cream - boil milk, dissolve sugar in it, cool it to room temperature, and then put it in the refrigerator to freeze. Apparently, Mpemba was not a particularly diligent student and procrastinated on the first part of the assignment. Fearing that he would not be in time by the end of the lesson, he put the still hot milk in the refrigerator. To his surprise, it froze even earlier than the milk of his comrades, prepared according to a given technology.

After that, Mpemba experimented not only with milk, but also with ordinary water. In any case, already being a student at Mkwawa High School, he asked Professor Dennis Osborne from the University College in Dar es Salaam (invited by the director of the school to give a lecture on physics to students) about water: "If you take two identical containers with equal volumes of water so that in one of them the water has a temperature of 35 ° C, and in the other - 100 ° C, and put them in the freezer, then in the second the water will freeze faster. Why? Osborne became interested in this issue and soon in 1969, together with Mpemba, they published the results of their experiments in the journal "Physics Education". Since then, the effect they discovered is called Mpemba effect.

Until now, no one knows exactly how to explain this strange effect. Scientists do not have a single version, although there are many. It's all about the difference in the properties of hot and cold water, but it is not yet clear which properties play a role in this case: the difference in supercooling, evaporation, ice formation, convection, or the effect of liquefied gases on water at different temperatures.

The paradox of the Mpemba effect is that the time during which the body cools down to the ambient temperature must be proportional to the temperature difference between this body and the environment. This law was established by Newton and since then has been confirmed many times in practice. In the same effect, water at 100°C cools down to 0°C faster than the same amount of water at 35°C.

However, this does not yet imply a paradox, since the Mpemba effect can also be explained within known physics. Here are some explanations for the Mpemba effect:

Evaporation

Hot water evaporates faster from the container, thereby reducing its volume, and a smaller volume of water with the same temperature freezes faster. Water heated to 100 C loses 16% of its mass when cooled to 0 C.

The evaporation effect is a double effect. First, the mass of water required for cooling is reduced. And secondly, the temperature decreases due to the fact that the heat of evaporation of the transition from the water phase to the vapor phase decreases.

temperature difference

Due to the fact that the temperature difference between hot water and cold air is greater - hence the heat exchange in this case is more intense and hot water cools faster.

hypothermia

When water is cooled below 0 C, it does not always freeze. Under certain conditions, it can undergo supercooling while continuing to remain liquid at temperatures below the freezing point. In some cases, water can remain liquid even at -20 C.

The reason for this effect is that in order for the first ice crystals to begin to form, centers of crystal formation are needed. If they are not in liquid water, then supercooling will continue until the temperature drops enough that crystals begin to form spontaneously. When they start to form in the supercooled liquid, they will start to grow faster, forming an ice slush that will freeze to form ice.

Hot water is most susceptible to hypothermia because heating it eliminates dissolved gases and bubbles, which in turn can serve as centers for the formation of ice crystals.

Why does hypothermia cause hot water to freeze faster? In the case of cold water, which is not supercooled, the following occurs. In this case, a thin layer of ice will form on the surface of the vessel. This layer of ice will act as an insulator between the water and cold air and will prevent further evaporation. The rate of formation of ice crystals in this case will be less. In the case of hot water undergoing subcooling, the subcooled water does not have a protective surface layer of ice. Therefore, it loses heat much faster through the open top.

When the supercooling process ends and the water freezes, much more heat is lost and therefore more ice is formed.

Many researchers of this effect consider hypothermia to be the main factor in the case of the Mpemba effect.

Convection

Cold water begins to freeze from above, thereby worsening the processes of heat radiation and convection, and hence the loss of heat, while hot water begins to freeze from below.

This effect is explained by an anomaly in the density of water. Water has a maximum density at 4 C. If you cool water to 4 C and put it at a lower temperature, the surface layer of water will freeze faster. Because this water is less dense than water at 4°C, it will stay on the surface, forming a thin cold layer. Under these conditions, a thin layer of ice will form on the surface of the water for a short time, but this layer of ice will serve as an insulator protecting the lower layers of water, which will remain at a temperature of 4 C. Therefore, further cooling will be slower.

In the case of hot water, the situation is completely different. The surface layer of water will cool more quickly due to evaporation and a greater temperature difference. Also, cold water layers are denser than hot water layers, so the cold water layer will sink down, lifting the warm water layer to the surface. This circulation of water ensures a rapid drop in temperature.

But why does this process not reach the equilibrium point? To explain the Mpemba effect from this point of view of convection, it would be necessary to assume that the cold and hot layers of water are separated and the convection process itself continues after the average water temperature drops below 4 C.

However, there is no experimental evidence to support this hypothesis that cold and hot water layers are separated by convection.

gases dissolved in water

Water always contains gases dissolved in it - oxygen and carbon dioxide. These gases have the ability to lower the freezing point of water. When the water is heated, these gases are released from the water because their solubility in water at high temperature is lower. Therefore, when hot water is cooled, there are always fewer dissolved gases in it than in unheated cold water. Therefore, the freezing point of heated water is higher and it freezes faster. This factor is sometimes considered as the main one in explaining the Mpemba effect, although there are no experimental data confirming this fact.

Thermal conductivity

This mechanism can play a significant role when water is placed in a refrigerator freezer in small containers. Under these conditions, it has been observed that the container with hot water melts the ice of the freezer underneath, thereby improving thermal contact with the wall of the freezer and thermal conductivity. As a result, heat is removed from the hot water container faster than from the cold one. In turn, the container with cold water does not melt snow under it.

All these (as well as other) conditions have been studied in many experiments, but an unequivocal answer to the question - which of them provide a 100% reproduction of the Mpemba effect - has not been obtained.

So, for example, in 1995, the German physicist David Auerbach studied the influence of supercooling of water on this effect. He discovered that hot water, reaching a supercooled state, freezes at a higher temperature than cold water, and therefore faster than the latter. But cold water reaches the supercooled state faster than hot water, thereby compensating for the previous lag.

In addition, Auerbach's results contradicted earlier data that hot water is able to achieve greater supercooling due to fewer crystallization centers. When water is heated, the gases dissolved in it are removed from it, and when it is boiled, some salts dissolved in it precipitate.

So far, only one thing can be asserted - the reproduction of this effect essentially depends on the conditions under which the experiment is carried out. Precisely because it is not always reproduced.

O. V. Mosin

Literarysources:

"Hot water freezes faster than cold water. Why does it do so?", Jearl Walker in The Amateur Scientist, Scientific American, Vol. 237, no. 3, pp. 246-257; September, 1977.

"The Freezing of Hot and Cold Water", G.S. Kell in American Journal of Physics, Vol. 37, no. 5, pp. 564-565; May 1969.

"Supercooling and the Mpemba effect", David Auerbach, in American Journal of Physics, Vol. 63, no. 10, pp. 882-885; Oct, 1995.

"The Mpemba effect: The freezing times of hot and cold water", Charles A. Knight, in American Journal of Physics, Vol. 64, no. 5, p 524; May, 1996.

Have you ever thought about the question why water heated to 82 degrees C freezes faster than cold water? Most likely not, I’m even more than sure that the question never occurred to you - which water freezes faster hot or cold?

However, this amazing discovery made by an ordinary African schoolboy Erasto Mpemba back in 1963. It was the usual experience of a curious boy, of course, he could not correctly interpret the meaning of his own, and moreover, scientists from all over the world until 1966 could not give a clear and reasonable the answer to the question - why hot water freezes faster than cold.

Why does hot water freeze at 4 degrees Celsius and cold water at 0.

Cold water contains a lot of dissolved oxygen, it is he who maintains the freezing point of water at 0 degrees. If oxygen is removed from the water, and this is exactly what happens when the water is heated, the air bubbles dissolved in the water, as it is fashionable to say now, collapse, the water does not turn into ice at zero degrees, as usual, and already at 4 °C. It is oxygen dissolved in water that breaks the bonds between water molecules, preventing water from moving from a liquid state to a solid state, simply turning into

Read also: