Boiled water freezes faster. Which water freezes faster - hot or cold. At what temperature does water freeze

Internet marketer, editor of the site "In an accessible language"
Publication date: 11/21/2017


« Which water freezes faster cold or hot?”- try asking your friends a question, most likely most of them will answer that cold water freezes faster - and make a mistake.

In fact, if you simultaneously put two vessels of the same shape and volume in the freezer, one of which will have cold water and the other hot, then it will freeze faster. hot water.

Such a statement may seem absurd and unreasonable. Logically, hot water must first cool down to cold temperature, and cold water should already turn into ice at this time.

So why does hot water overtake cold water on its way to freezing? Let's try to figure it out.

History of observations and research

People have observed the paradoxical effect since ancient times, but no one attached much importance to it. So inconsistencies in the rate of freezing of cold and hot water were noted in their notes by Arestotel, as well as by Rene Descartes and Francis Bacon. An unusual phenomenon often manifested itself in everyday life.

For a long time, the phenomenon was not studied in any way and did not arouse much interest among scientists.

The study of the unusual effect began in 1963, when an inquisitive student from Tanzania, Erasto Mpemba, noticed that hot milk for ice cream freezes faster than cold milk. Hoping to get an explanation of the reasons for the unusual effect, the young man asked his physics teacher at school. However, the teacher only laughed at him.

Later, Mpemba repeated the experiment, but in his experiment he no longer used milk, but water, and the paradoxical effect was repeated again.

Six years later, in 1969, Mpemba asked this question to physics professor Dennis Osborne, who came to his school. The professor was interested in the observation of the young man, as a result, an experiment was conducted that confirmed the presence of the effect, but the reasons for this phenomenon were not established.

Since then, the phenomenon has been called Mpemba effect.

Throughout the history of scientific observations, many hypotheses have been put forward about the causes of the phenomenon.

So in 2012, the British Royal Society of Chemistry would announce a competition of hypotheses to explain the Mpemba effect. Scientists from all over the world participated in the competition, in total 22,000 were registered scientific works. Despite such an impressive number of articles, none of them clarified the Mpemba paradox.

The most common was the version according to which, hot water freezes faster, since it simply evaporates faster, its volume becomes smaller, and as the volume decreases, its cooling rate increases. The most common version was eventually refuted, since an experiment was conducted in which evaporation was excluded, but the effect was nevertheless confirmed.

Other scientists believed that the reason for the Mpemba effect is the evaporation of gases dissolved in water. In their opinion, during the heating process, gases dissolved in water evaporate, due to which it acquires a higher density than cold water. As is known, an increase in density leads to a change physical properties water (increase in thermal conductivity), and hence increase the cooling rate.

In addition, a number of hypotheses have been put forward that describe the rate of water circulation as a function of temperature. In many studies, an attempt was made to establish the relationship between the material of the containers in which the liquid was located. Many theories seemed very plausible, but they could not be scientifically confirmed due to a lack of initial data, contradictions in other experiments, or due to the fact that the identified factors were simply not comparable with the rate of water cooling. Some scientists in their works questioned the existence of the effect.

In 2013, researchers from University of Technology Nanyang in Singapore claimed to have solved the mystery of the Mpemba effect. According to their study, the reason for the phenomenon lies in the fact that the amount of energy stored in hydrogen bonds between the molecules of cold and hot water is significantly different.

Computer simulation methods have shown the following results: the higher the temperature of the water, the greater the distance between the molecules due to the fact that the repulsive forces increase. Consequently, the hydrogen bonds of molecules are stretched, storing more energy. When cooled, the molecules begin to approach each other, releasing energy from hydrogen bonds. In this case, the release of energy is accompanied by a decrease in temperature.

In October 2017, Spanish physicists, in the course of another study, found out that it is the removal of matter from equilibrium (strong heating before strong cooling) that plays a large role in the formation of the effect. They determined the conditions under which the likelihood of the effect is maximum. In addition, scientists from Spain have confirmed the existence of the reverse Mpemba effect. They found that when heated, a colder sample can reach a high temperature faster than a warm one.

Despite exhaustive information and numerous experiments, scientists intend to continue studying the effect.

Mpemba effect in real life

Have you ever wondered why the ice rink is flooded in winter hot water and not cold? As you already understood, they do this because a skating rink filled with hot water will freeze faster than if it were filled with cold water. For the same reason, slides in winter ice towns are poured with hot water.

Thus, knowledge about the existence of the phenomenon allows people to save time when preparing sites for winter sports.

In addition, the Mpemba effect is sometimes used in industry - to reduce the freezing time of products, substances and materials containing water.

Mpemba effect(Mpemba's paradox) is a paradox that states that hot water under certain conditions freezes faster than cold water, although it must pass the temperature of cold water in the process of freezing. This paradox is an experimental fact that contradicts the usual ideas, according to which, under the same conditions, a hotter body needs more time to cool down to a certain temperature than a cooler body to cool down to the same temperature.

This phenomenon was noticed at the time by Aristotle, Francis Bacon and Rene Descartes, but only in 1963, the Tanzanian schoolboy Erasto Mpemba found that a hot ice cream mixture freezes faster than a cold one.

As a student of the Magamba high school in Tanzania, Erasto Mpemba did practical work in the culinary arts. He had to make homemade ice cream - boil milk, dissolve sugar in it, cool it to room temperature, and then put it in the refrigerator to freeze. Apparently, Mpemba was not a particularly diligent student and procrastinated on the first part of the assignment. Fearing that he would not be in time by the end of the lesson, he put the still hot milk in the refrigerator. To his surprise, it froze even earlier than the milk of his comrades, prepared according to a given technology.

After that, Mpemba experimented not only with milk, but also with plain water. In any case, already being a student at Mkwawa High School, he asked Professor Dennis Osborne from the University College in Dar es Salaam (invited by the director of the school to give a lecture on physics to students) about water: "If you take two identical containers with equal volumes of water so that in one of them the water has a temperature of 35 ° C, and in the other - 100 ° C, and put them in the freezer, then in the second the water will freeze faster. Why? Osborne became interested in this issue and soon in 1969, together with Mpemba, they published the results of their experiments in the journal "Physics Education". Since then, the effect they discovered is called Mpemba effect.

Until now, no one knows exactly how to explain this strange effect. Scientists do not have a single version, although there are many. It's all about the difference in the properties of hot and cold water, but it is not yet clear which properties play a role in this case: the difference in supercooling, evaporation, ice formation, convection, or the effect of liquefied gases on water at different temperatures.

The paradox of the Mpemba effect is that the time during which the body cools down to the ambient temperature must be proportional to the temperature difference between this body and the environment. This law was established by Newton and since then has been confirmed many times in practice. In the same effect, water at 100°C cools down to 0°C faster than the same amount of water at 35°C.

However, this does not yet imply a paradox, since the Mpemba effect can also be explained within known physics. Here are some explanations for the Mpemba effect:

Evaporation

Hot water evaporates faster from the container, thereby reducing its volume, and a smaller volume of water with the same temperature freezes faster. Water heated to 100 C loses 16% of its mass when cooled to 0 C.

The evaporation effect is a double effect. First, the mass of water required for cooling is reduced. And secondly, the temperature decreases due to the fact that the heat of evaporation of the transition from the water phase to the vapor phase decreases.

temperature difference

Due to the fact that the temperature difference between hot water and cold air is greater - hence the heat exchange in this case is more intense and hot water cools faster.

hypothermia

When water is cooled below 0 C, it does not always freeze. Under certain conditions, it can undergo supercooling while continuing to remain liquid at temperatures below the freezing point. In some cases, water can remain liquid even at -20 C.

The reason for this effect is that in order for the first ice crystals to begin to form, centers of crystal formation are needed. If they are not in liquid water, then supercooling will continue until the temperature drops enough that crystals begin to form spontaneously. When they start to form in the supercooled liquid, they will start to grow faster, forming an ice slush that will freeze to form ice.

Hot water is most susceptible to hypothermia because heating it eliminates dissolved gases and bubbles, which in turn can serve as centers for the formation of ice crystals.

Why does hypothermia cause hot water to freeze faster? In the case of cold water, which is not supercooled, the following occurs. In this case, a thin layer of ice will form on the surface of the vessel. This layer of ice will act as an insulator between the water and cold air and will prevent further evaporation. The rate of formation of ice crystals in this case will be less. In the case of hot water undergoing subcooling, the subcooled water does not have a protective surface layer of ice. Therefore, it loses heat much faster through the open top.

When the supercooling process ends and the water freezes, much more heat is lost and therefore more ice is formed.

Many researchers of this effect consider hypothermia to be the main factor in the case of the Mpemba effect.

Convection

Cold water begins to freeze from above, thereby worsening the processes of heat radiation and convection, and hence the loss of heat, while hot water begins to freeze from below.

This effect is explained by an anomaly in the density of water. Water has a maximum density at 4 C. If you cool water to 4 C and put it at a lower temperature, the surface layer of water will freeze faster. Because this water is less dense than water at 4°C, it will stay on the surface, forming a thin cold layer. Under these conditions, a thin layer of ice will form on the surface of the water for a short time, but this layer of ice will serve as an insulator protecting the lower layers of water, which will remain at a temperature of 4 C. Therefore, further cooling will be slower.

In the case of hot water, the situation is completely different. The surface layer of water will cool more quickly due to evaporation and a greater temperature difference. Also, cold water layers are denser than hot water layers, so the cold water layer will sink down, lifting the warm water layer to the surface. This circulation of water ensures a rapid drop in temperature.

But why does this process not reach the equilibrium point? To explain the Mpemba effect from this point of view of convection, it would be necessary to assume that the cold and hot layers of water are separated and the convection process itself continues after the average water temperature drops below 4 C.

However, there is no experimental evidence to support this hypothesis that cold and hot layers of water are separated by convection.

gases dissolved in water

Water always contains gases dissolved in it - oxygen and carbon dioxide. These gases have the ability to lower the freezing point of water. When the water is heated, these gases are released from the water because their solubility in water at high temperature is lower. Therefore, when hot water is cooled, there are always fewer dissolved gases in it than in unheated cold water. Therefore, the freezing point of heated water is higher and it freezes faster. This factor is sometimes considered as the main one in explaining the Mpemba effect, although there are no experimental data confirming this fact.

Thermal conductivity

This mechanism can play a significant role when water is placed in a refrigerator freezer in small containers. Under these conditions, it has been observed that the container with hot water melts the ice of the freezer underneath, thereby improving thermal contact with the wall of the freezer and thermal conductivity. As a result, heat is removed from the hot water container faster than from the cold one. In turn, a container with cold water does not melt snow under it.

All these (as well as other) conditions have been studied in many experiments, but an unequivocal answer to the question - which of them provide a 100% reproduction of the Mpemba effect - has not been obtained.

So, for example, in 1995, the German physicist David Auerbach studied the influence of water supercooling on this effect. He discovered that hot water, reaching a supercooled state, freezes at a higher temperature than cold water, and therefore faster than the latter. But cold water reaches the supercooled state faster than hot water, thereby compensating for the previous lag.

In addition, Auerbach's results contradicted earlier data that hot water is able to achieve more supercooling due to fewer crystallization centers. When water is heated, the gases dissolved in it are removed from it, and when it is boiled, some salts dissolved in it precipitate.

So far, only one thing can be asserted - the reproduction of this effect essentially depends on the conditions under which the experiment is carried out. Precisely because it is not always reproduced.

Water is one of the most amazing liquids in the world, which has unusual properties. For example, ice - a solid state of liquid, has a specific gravity lower than water itself, which made the emergence and development of life on Earth in many ways possible. In addition, in the near-scientific, and scientific world there are discussions about which water freezes faster - hot or cold. Whoever proves faster freezing of a hot liquid under certain conditions and scientifically substantiates his decision will receive an award of £1,000 from the British Royal Society of Chemists.

Background

The fact that, under a number of conditions, hot water is ahead of cold water in terms of freezing rate, was noticed back in the Middle Ages. Francis Bacon and René Descartes have put a lot of effort into explaining this phenomenon. However, from the point of view of classical heat engineering, this paradox cannot be explained, and they tried to bashfully hush it up. The impetus for the continuation of the dispute was a somewhat curious story that happened to the Tanzanian schoolboy Erasto Mpemba (Erasto Mpemba) in 1963. Once, during a dessert-making lesson at a cooking school, a boy, distracted by other things, did not have time to cool the ice cream mixture in time and put a solution of sugar in hot milk into the freezer. To his surprise, the product cooled somewhat faster than his fellow practitioners who observed the temperature regime for making ice cream.

Trying to understand the essence of the phenomenon, the boy turned to a physics teacher, who, without going into details, ridiculed his culinary experiments. However, Erasto was distinguished by enviable perseverance and continued his experiments no longer on milk, but on water. He made sure that in some cases hot water freezes faster than cold water.

Entering the University of Dar es Salaam, Erasto Mpembe attended a lecture by Professor Dennis G. Osborne. After graduation, the student puzzled the scientist with the problem of the rate of freezing of water depending on its temperature. D.G. Osborne ridiculed the very posing of the question, stating with aplomb that any loser knows that cold water will freeze faster. However, the natural tenacity of the young man made itself felt. He made a bet with the professor, offering to conduct an experimental test here, in the laboratory. Erasto placed two containers of water in the freezer, one at 95°F (35°C) and the other at 212°F (100°C). What was the surprise of the professor and the surrounding "fans" when the water in the second container froze faster. Since then, this phenomenon has been called the "Mpemba Paradox".

However, to date there is no coherent theoretical hypothesis explaining the "Mpemba Paradox". It is not clear what external factors chemical composition water, the presence of dissolved gases in it and minerals affect the rate of freezing of liquids at different temperatures. The paradox of the "Mpemba Effect" is that it contradicts one of the laws discovered by I. Newton, which states that the cooling time of water is directly proportional to the temperature difference between the liquid and the environment. And if all other liquids are completely subject to this law, then water in some cases is an exception.

Why does hot water freeze faster?t

There are several versions of why hot water freezes faster than cold water. The main ones are:

  • hot water evaporates faster, while its volume decreases, and a smaller volume of liquid cools faster - when water is cooled from + 100 ° C to 0 ° C, volume losses at atmospheric pressure reach 15%;
  • the rate of heat exchange between the liquid and environment the higher, the greater the temperature difference, so the heat loss of boiling water passes faster;
  • when hot water cools, an ice crust forms on its surface, which prevents the liquid from completely freezing and evaporating;
  • at a high temperature of water, its convection mixing occurs, reducing the freezing time;
  • gases dissolved in water lower the freezing point, taking energy for crystal formation - there are no dissolved gases in hot water.

All these conditions have been subjected to repeated experimental verification. In particular, the German scientist David Auerbach discovered that the crystallization temperature of hot water is slightly higher than that of cold water, which makes it possible to freeze the former more quickly. However, later his experiments were criticized and many scientists are convinced that the “Mpemba Effect” about which water freezes faster - hot or cold, can only be reproduced under certain conditions, which no one has been looking for and concretizing so far.

The British Royal Society of Chemistry is offering a £1,000 reward to anyone who can explain with scientific point see why in some cases hot water freezes faster than cold water.

“Modern science still cannot answer this seemingly simple question. Ice cream makers and bartenders use this effect in their daily work, but no one really knows why it works. This problem has been known for millennia, philosophers such as Aristotle and Descartes have thought about it,” said the President of the British Royal Society of Chemistry, Professor David Philips, quoted in a press release from the Society.

How an African chef beat a British physics professor

This is not an April Fool's joke, but a harsh physical reality. Today's science, which easily operates on galaxies and black holes, building giant accelerators to search for quarks and bosons, cannot explain how elemental water "works". The school textbook unambiguously states that it takes more time to cool a hot body than to cool a cold body. But for water, this law is not always observed. Aristotle drew attention to this paradox in the 4th century BC. e. Here is what he wrote ancient greek in Meteorologica I: “The fact that the water is preheated contributes to its freezing. Therefore, many people, when they want to quickly cool hot water, first put it in the sun ... ”In the Middle Ages, Francis Bacon and Rene Descartes tried to explain this phenomenon. Alas, neither the great philosophers nor the numerous scientists who developed classical thermal physics succeeded in this, and therefore about this inconvenient fact for a long time "forgotten".

And only in 1968 they “remembered” thanks to the schoolboy Erasto Mpemba from Tanzania, far from any science. While studying at a cooking school, in 1963, 13-year-old Mpembe was given the task of making ice cream. According to the technology, it was necessary to boil milk, dissolve sugar in it, cool it to room temperature, and then put it in the refrigerator to freeze. Apparently, Mpemba was not a diligent student and hesitated. Fearing that he would not be in time by the end of the lesson, he put the still hot milk in the refrigerator. To his surprise, it froze even earlier than the milk of his comrades, prepared according to all the rules.

When Mpemba shared his discovery with a physics teacher, he made fun of him in front of the whole class. Mpemba remembered the insult. Five years later, already a student at the University of Dar es Salaam, he was at a lecture by the famous physicist Denis G. Osborn. After the lecture, he asked the scientist a question: “If you take two identical containers with the same amount of water, one at 35 °C (95 °F) and the other at 100 °C (212 °F), and put them in the freezer, then water in a hot container will freeze faster. Why?" You can imagine the reaction of a British professor to a question from a young man from godforsaken Tanzania. He made fun of the student. However, Mpemba was ready for such an answer and challenged the scientist to a wager. Their argument culminated in an experimental test that proved Mpemba right and Osborne defeated. So the student-cooker inscribed his name in the history of science, and henceforth this phenomenon is called the "Mpemba effect". To discard it, to declare it as if "non-existent" does not work. The phenomenon exists, and, as the poet wrote, "not in the tooth with a foot."

Are dust particles and dissolved substances to blame?

Over the years, many have tried to unravel the mystery of freezing water. A whole bunch of explanations for this phenomenon have been proposed: evaporation, convection, the influence of solutes - but none of these factors can be considered definitive. A number of scientists devoted their entire lives to the Mpemba effect. Employee of the Department of Radiation Safety State University New York - James Brownridge - in free time has been studying the paradox for over a decade now. After conducting hundreds of experiments, the scientist claims that he has evidence of the "guilt" of hypothermia. Brownridge explains that at 0°C, water only supercools, and begins to freeze when the temperature drops below. The freezing point is regulated by impurities in the water - they change the rate of formation of ice crystals. Impurities, and these are dust particles, bacteria and dissolved salts, have their characteristic nucleation temperature, when ice crystals form around the crystallization centers. When several elements are present in water at once, the freezing point is determined by the one with the highest nucleation temperature.

For the experiment, Brownridge took two samples of water at the same temperature and placed them in a freezer. He found that one of the specimens always freezes before the other - presumably due to different combination impurities.

Brownridge claims that hot water cools faster due to the greater temperature difference between the water and the freezer - this helps it reach its freezing point before cold water reaches its natural freezing point, which is at least 5°C lower.

However, Brownridge's reasoning raises many questions. Therefore, those who can explain the Mpemba effect in their own way have a chance to compete for a thousand pounds sterling from the British Royal Society of Chemistry.

Many researchers have put forward and are putting forward their own versions as to why hot water freezes faster than cold water. It would seem a paradox - after all, in order to freeze, hot water first needs to cool down. However, the fact remains, and scientists explain it in different ways.

On the this moment There are several versions that explain this fact:

  1. Since evaporation in hot water is faster, its volume decreases. A smaller amount of water of the same temperature freezes faster.
  2. The freezer compartment of the refrigerator has a snow lining. A container containing hot water melts the snow underneath. This improves thermal contact with the freezer.
  3. Freezing of cold water, unlike hot, begins from above. In this case, convection and heat radiation, and, consequently, heat loss worsen.
  4. In cold water there are centers of crystallization - substances dissolved in it. With their small content in water, icing is difficult, although at the same time it is possible to supercool it - when it has a liquid state at sub-zero temperatures.

Although in fairness it can be said that this effect is not always observed. Cold water often freezes faster than hot water.

At what temperature does water freeze

Why does water freeze at all? It contains a certain amount of mineral or organic particles. These, for example, can be very fine particles of sand, dust or clay. As the air temperature drops, these particles become centers around which ice crystals form.

The role of crystallization nuclei can also be performed by air bubbles and cracks in a container containing water. The rate of the process of turning water into ice is largely influenced by the number of such centers - if there are many of them, the liquid freezes faster. Under normal conditions, with normal atmospheric pressure, water turns into a solid state from a liquid at a temperature of 0 degrees.

The essence of the Mpemba effect

The Mpemba effect is understood as a paradox, the essence of which is that, under certain circumstances, hot water freezes faster than cold water. This phenomenon was noticed by Aristotle and Descartes. However, it was not until 1963 that Erasto Mpemba, a schoolboy from Tanzania, determined that hot ice cream freezes in more than a short time than cold. He made such a conclusion while performing the task of cooking.

He had to dissolve sugar in boiled milk and, after cooling it, place it in the refrigerator to freeze. Apparently, Mpemba did not differ in special diligence and began to carry out the first part of the task late. Therefore, he did not wait for the milk to cool, and put it in the refrigerator hot. He was very surprised when it froze even faster than that of his classmates, who did the work in accordance with the given technology.

This fact interested the young man very much, and he began experiments with plain water. In 1969, the journal Physics Education published the results of research by Mpemba and Professor Dennis Osborn of the University of Dar es Salaam. The effect they described was given the name Mpemba. However, even today there is no clear explanation for the phenomenon. All scientists agree that the main role in this belongs to the differences in the properties of chilled and hot water, but what exactly is unknown.

Singapore version

one of the physicists Singapore universities I was also interested in the question, which water freezes faster - hot or cold? A team of researchers led by Xi Zhang explained this paradox precisely by the properties of water. Everyone still knows the composition of water from school - an oxygen atom and two hydrogen atoms. Oxygen to some extent draws electrons from hydrogen, so the molecule is a certain kind of "magnet".

As a result, certain molecules in water are slightly attracted to each other and are united by a hydrogen bond. Its strength is many times lower than the covalent bond. Singaporean researchers believe that the explanation of the Mpemba paradox lies precisely in hydrogen bonds. If water molecules are placed very closely together, then such a strong interaction between molecules can deform the covalent bond in the middle of the molecule itself.

But when water is heated, the bound molecules move slightly away from each other. As a result, relaxation occurs in the middle of the molecules. covalent bonds with the return of excess energy and the transition to a lower energy level. This leads to the fact that hot water begins to cool rapidly. At least, this is what the theoretical calculations carried out by Singaporean scientists show.

Instant Water Freeze - 5 Incredible Tricks: Video

Read also: