Что изучает механика. Механика - Механика - Темы по физике - Каталог лекций - Физика — простым языком Что изучает механика в физике

Механика

[от греч. mechanike (téchne) - наука о машинах, искусство построения машин], наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Под механическим движением понимают изменение с течением времени взаимного положения тел или их частиц в пространстве. Примерами таких движений, изучаемых методами М., являются: в природе - движения небесных тел, колебания земной коры, воздушные и морские течения, тепловое движение молекул и т. п., а в технике - движения различный летательных аппаратов и транспортных средств, частей всевозможных двигателей, машин и механизмов, деформации элементов различных конструкций и сооружений, движения жидкостей и газов и многие др.

Рассматриваемые в М. взаимодействия представляют собой те действия тел друг на друга, результатом которых являются изменения механического движения этих тел. Их примерами могут быть притяжения тел по закону всемирного тяготения, взаимные давления соприкасающихся тел, воздействия частиц жидкости или газа друг на друга и на движущиеся в них тела и др. Обычно под М. понимают т. н. классическую М., в основе которой лежат Ньютона законы механики и предметом которой является изучение движения любых материальных тел (кроме элементарных частиц), совершаемого со скоростями, малыми по сравнению со скоростью света. Движение тел со скоростями порядка скорости света рассматривается в относительности теории (См. Относительности теория), а внутриатомные явления и движение элементарных частиц изучаются в квантовой механике (См. Квантовая механика).

При изучении движения материальных тел в М. вводят ряд абстрактных понятий, отражающих те или иные свойства реальных тел; таковы: 1) Материальная точка - объект пренебрежимо малых размеров, имеющий массу; это понятие применимо, если в изучаемом движении можно пренебречь размерами тела по сравнению с расстояниями, проходимыми его точками. 2) Абсолютно твёрдое тело - тело, расстояние между двумя любыми точками которого всегда остаётся неизменным; это понятие применимо, когда можно пренебречь деформацией тела. 3) Сплошная изменяемая среда; это понятие применимо, когда при изучении движения изменяемой среды (деформируемого тела, жидкости, газа) можно пренебречь молекулярной структурой среды.

При изучении сплошных сред прибегают к следующим абстракциям, отражающим при данных условиях наиболее существенные свойства соответствующих реальных тел: идеально упругое тело, пластичное тело, идеальная жидкость, вязкая жидкость, идеальный газ и др. В соответствии с этим М. разделяют на: М. материальной точки, М. системы материальных точек, М. абсолютно твёрдого тела и М. сплошной среды; последняя, в свою очередь, подразделяется на теорию упругости, теорию пластичности, гидромеханику, аэромеханику, газовую динамику и др. В каждом из этих разделов в соответствии с характером решаемых задач выделяют: статику - учение о равновесии тел под действием сил, кинематику - учение о геометрических свойствах движения тел и динамику - учение о движении тел под действием сил. В динамике рассматриваются 2 основные задачи: нахождение сил, под действием которых может происходить данное движение тела, и определение движения тела, когда известны действующие на него силы.

Для решения задач М. широко пользуются всевозможными математическими методами, многие из которых обязаны М. самим своим возникновением и развитием. Изучение основных законов и принципов, которым подчиняется механическое движение тел, и вытекающих из этих законов и принципов общих теорем и уравнений составляет содержание т. н. общей, или теоретической, М. Разделами М., имеющими важное самостоятельное значение, являются также теория колебаний (См. Колебания), теория устойчивости равновесия (См. Устойчивость равновесия) и устойчивости движения (См. Устойчивость движения), теория Гироскоп а, Механика тел переменной массы , теория автоматического регулирования (см. Автоматическое управление), теория Удар а. Важное место в М., особенно в М. сплошных сред, занимают экспериментальные исследования, проводимые с помощью разнообразных механических, оптических, электрических и др. физических методов и приборов.

М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соответствующих обобщениях находит приложение в оптике, статистической физике, квантовой М., электродинамике, теории относительности и др. (см., например, Действие , Лагранжа функция , Лагранжа уравнения механики, Механики уравнения канонические , Наименьшего действия принцип). Кроме того, при решении ряда задач газовой динамики (См. Газовая динамика), теории Взрыв а, теплообмена в движущихся жидкостях и газах, аэродинамики разреженных газов (См. Аэродинамика разреженных газов), магнитной гидродинамики (См. Магнитная гидродинамика) и др. одновременно используются методы и уравнения как теоретической М., так и соответственно термодинамики, молекулярной физики, теории электричества и др. Важное значение М. имеет для многих разделов астрономии (См. Астрономия), особенно для небесной механики (См. Небесная механика).

Часть М., непосредственно связанную с техникой, составляют многочисленные общетехнические и специальные дисциплины, такие, как Гидравлика , Сопротивление материалов , кинематика механизмов, динамика машин и механизмов, теория гироскопических устройств (См. Гироскопические устройства), внешняя Баллистика , Динамика ракет , теория движения различных наземных, морских и воздушных транспортных средств, теория регулирования и управления движением различных объектов, строительная М., ряд разделов технологии и многое др. Все эти дисциплины пользуются уравнениями и методами теоретической М. Т. о., М. является одной из научных основ многих областей современной техники.

Основные понятия и методы механики. Основными кинематическими мерами движения в М. являются: для точки - её Скорость и Ускорение , а для твёрдого тела - скорость и ускорение поступательного движения и Угловая скорость и Угловое ускорение вращательного движения тела. Кинематическое состояние деформируемого твёрдого тела характеризуется относительными удлинениями и сдвигами его частиц; совокупность этих величин определяет т. н. тензор деформаций. Для жидкостей и газов кинематическое состояние характеризуется тензором скоростей деформаций; кроме того, при изучении поля скоростей движущейся жидкости пользуются понятием о вихре, характеризующем вращение частицы.

Основной мерой механического взаимодействия материальных тел в М. является Сила . Одновременно в М. широко пользуются понятием момента силы (См. Момент силы) относительно точки и относительно оси. В М. сплошной среды силы задаются их поверхностным или объёмным распределением, т. е. отношением величины силы к площади поверхности (для поверхностных сил) или к объёму (для массовых сил), на которые соответствующая сила действует. Возникающие в сплошной среде внутренние напряжения характеризуются в каждой точке среды касательными и нормальными напряжениями, совокупность которых представляет собой величину, называемую тензором напряжений (См. Напряжение). Среднее арифметическое трёх нормальных напряжений, взятое с обратным знаком, определяет величину, называемую Давление м в данной точке среды.

Помимо действующих сил, движение тела зависит от степени его инертности, т. е. от того, насколько быстро оно изменяет своё движение под действием приложенных сил. Для материальной точки мерой инертности является величина, называемая массой (См. Масса) точки. Инертность материального тела зависит не только от его общей массы, но и от распределения масс в теле, которое характеризуется положением центра масс и величинами, называемыми осевыми и центробежными моментами инерции (См. Момент инерции); совокупность этих величин определяет т. н. тензор инерции. Инертность жидкости или газа характеризуется их Плотность ю.

В основе М. лежат законы Ньютона. Первые два справедливы по отношению к т. н. инерциальной системе отсчёта (См. Инерциальная система отсчёта). Второй закон даёт основные уравнения для решения задач динамики точки, а вместе с третьим - для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются ещё законы, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таков Гука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, которым подчиняются др. среды, см. Пластичности теория и Реология .

Важное значение для решения задач М. имеют понятия о динамических мерах движения, которыми являются Количество движения , Момент количества движения (или кинетический момент) и Кинетическая энергия , и о мерах действия силы, каковыми служат Импульс силы и Работа . Соотношение между мерами движения и мерами действия силы дают теоремы об изменении количества движения, момента количества движения и кинетической энергии, называемые общими теоремами динамики. Эти теоремы и вытекающие из них законы сохранения количества движения, момента количества движения и механической энергии выражают свойства движения любой системы материальных точек и сплошной среды.

Эффективные методы изучения равновесия и движения несвободной системы материальных точек, т. е. системы, на движение которой налагаются заданные наперёд ограничения, называемые связями механическими (См. Связи механические), дают Вариационные принципы механики , в частности Возможных перемещений принцип , Наименьшего действия принцип и др., а также Д"Аламбера принцип. При решении задач М. широко используются вытекающие из её законов или принципов дифференциальные уравнения движения материальной точки, твёрдого тела и системы материальных точек, в частности уравнения Лагранжа, канонические уравнения, уравнение Гамильтона - Якоби и др., а в М. сплошной среды - соответствующие уравнения равновесия или движения этой среды, уравнение неразрывности (сплошности) среды и уравнение энергии.

Исторический очерк. М. - одна из древнейших наук. Её возникновение и развитие неразрывно связаны с развитием производительных сил общества, нуждами практики. Раньше др. разделов М. под влиянием запросов главным образом строительной техники начинает развиваться статика. Можно полагать, что элементарные сведения о статике (свойства простейших машин) были известны за несколько тысяч лет до н. э., о чём косвенно свидетельствуют остатки древних вавилонских и египетских построек; но прямых доказательств этого не сохранилось. К первым дошедшим до нас трактатам по М., появившимся в Древней Греции, относятся натурфилософские сочинения Аристотеля (См. Аристотель) (4 в. до н. э.), который ввёл в науку сам термин « М. ». Из этих сочинений следует, что в то время были известны законы сложения и уравновешивания сил, приложенных в одной точке и действующих вдоль одной и той же прямой, свойства простейших машин и закон равновесия рычага. Научные основы статики разработал Архимед (3 в. до н. э.).

Его труды содержат строгую теорию рычага, понятие о статическом моменте, правило сложения параллельных сил, учение о равновесии подвешенных тел и о центре тяжести, начала гидростатики. Дальнейший существенный вклад в исследования по статике, приведший к установлению правила параллелограмма сил и развитию понятия о моменте силы, сделали И. Неморарий (около 13 в.), Леонардо да Винчи (15 в.), голландский учёный Стевин (16 в.) и особенно - французский учёный П. Вариньон (17 в.), завершивший эти исследования построением статики на основе правил сложения и разложения сил и доказанной им теоремы о моменте равнодействующей. Последним этапом в развитии геометрической статики явилась разработка французский учёным Л. Пуансо теории пар сил и построение статики на её основе (1804). Др. направление в статике, основывавшееся на принципе возможных перемещений, развивалось в тесной связи с учением о движении.

Проблема изучения движения также возникла в глубокой древности. Решения простейших кинематических задач о сложении движений содержатся уже в сочинениях Аристотеля и в астрономических теориях древних греков, особенно в теории эпициклов, завершенной Птолемеем (См. Птолемей) (2 в. н. э.). Однако динамическое учение Аристотеля, господствовавшее почти до 17 в., исходило из ошибочных представлений о том, что движущееся тело всегда находится под действием некоторой силы (для брошенного тела, например, это подталкивающая сила воздуха, стремящегося занять место, освобождаемое телом; возможность существования вакуума при этом отрицалась), что скорость падающего тела пропорциональна его весу, и т. п.

Периодом создания научных основ динамики, а с ней и всей М. явился 17 век. Уже в 15-16 вв. в странах Западной и Центральной Европы начинают развиваться буржуазные отношения, что привело к значительному развитию ремёсел, торгового мореплавания и военного дела (совершенствование огнестрельного оружия). Это поставило перед наукой ряд важных проблем: исследование полёта снарядов, удара тел, прочности больших кораблей, колебаний маятника (в связи с созданием часов) и др. Но найти их решение, требовавшее развития динамики, можно было только разрушив ошибочные положения продолжавшего господствовать учения Аристотеля. Первый важный шаг в этом направлении сделал Н. Коперник (16 в.), учение которого оказало огромное влияние на развитие всего естествознания и дало М. понятия об относительности движения и о необходимости при его изучении выбора системы отсчёта. Следующим шагом было открытие И. Кеплер ом опытным путём кинематических законов движения планет (начало 17 в.). Окончательно ошибочные положения аристотелевой динамики опроверг Г. Галилей , заложивший научные основы современной М. Он дал первое верное решение задачи о движении тела под действием силы, найдя экспериментально закон равноускоренного падения тел в вакууме. Галилей установил два основных положения М. - принцип относительности классической М. и закон инерции, который он, правда, высказал лишь для случая движения вдоль горизонтальной плоскости, но применял в своих исследованиях в полной общности. Он первый нашёл, что в вакууме траекторией тела, брошенного под углом к горизонту, является парабола, применив при этом идею сложения движений: горизонтального (по инерции) и вертикального (ускоренного). Открыв изохронность малых колебаний маятника, он положил начало теории колебаний. Исследуя условия равновесия простых машин и решая некоторые задачи гидростатики, Галилей использует сформулированное им в общем виде т. н. золотое правило статики - начальную форму принципа возможных перемещений. Он же первый исследовал прочность балок, чем положил начало науке о сопротивлении материалов. Важная заслуга Галилея - планомерное введение в М. научного эксперимента.

Заслуга окончательной формулировки основных законов М. принадлежит И. Ньютон у (1687). Завершив исследования своих предшественников, Ньютон обобщил понятие силы и ввёл в М. понятие о массе. Сформулированный им основной (второй) закон М. позволил Ньютону успешно разрешить большое число задач, относящихся главным образом к небесной М., в основу которой был положен открытый им же закон всемирного тяготения. Он формулирует и 3-й из основных законов М. - закон равенства действия и противодействия, лежащий в основе М. системы материальных точек. Исследованиями Ньютона завершается создание основ классической М. К тому же периоду относится установление двух исходных положений М. сплошной среды. Ньютон, исследовавший сопротивление жидкости движущимися в ней телами, открыл основной закон внутреннего трения в жидкостях и газах, а английский учёный Р. Гук экспериментально установил закон, выражающий зависимость между напряжениями и деформациями в упругом теле.

В 18 в. интенсивно развивались общие аналитические методы решения задач М. материальной точки, системы точек и твёрдого тела, а также небесной М., основывавшиеся на использовании открытого Ньютоном и Г. В. Лейбниц ем исчисления бесконечно малых. Главная заслуга в применении этого исчисления для решения задач М. принадлежит Л. Эйлер у. Он разработал аналитические методы решения задач динамики материальной точки, развил теорию моментов инерции и заложил основы М. твёрдого тела. Ему принадлежат также первые исследования по теории корабля, теории устойчивости упругих стержней, теории турбин и решение ряда прикладных задач кинематики. Вкладом в развитие прикладной М. явилось установление французскими учёными Г. Амонтоном и Ш. Кулоном экспериментальных законов трения.

Важным этапом развития М. было создание динамики несвободных механических систем. Исходными для решения этой проблемы явились принцип возможных перемещений, выражающий общее условие равновесия механической системы, развитию и обобщению которого в 18 в. были посвящены исследования И. Бернулли , Л. Карно , Ж. Фурье , Ж. Л. Лагранж а и др., и принцип, высказанный в наиболее общей форме Ж. Д’Аламбером (См. Д"Аламбер) и носящий его имя. Используя эти два принципа, Лагранж завершил разработку аналитических методов решения задач динамики свободной и несвободной механической системы и получил уравнения движения системы в обобщённых координатах, названные его именем. Им же были разработаны основы современной теории колебаний. Др. направление в решении задач М. исходило из принципа наименьшего действия в том его виде, который для одной точки высказал П. Мопертюи и развил Эйлер, а на случай механической системы обобщил Лагранж. Небесная М. получила значительное развитие благодаря трудам Эйлера, Д’Аламбера, Лагранжа и особенно П. Лаплас а.

Приложение аналитических методов к М. сплошной среды привело к разработке теоретических основ гидродинамики идеальной жидкости. Основополагающими здесь явились труды Эйлера, а также Д. Бернулли , Лагранжа, Д’Аламбера. Важное значение для М. сплошной среды имел открытый М. В. Ломоносовым закон сохранения вещества.

В 19 в. продолжалось интенсивное развитие всех разделов М. В динамике твёрдого тела классические результаты Эйлера и Лагранжа, а затем С. В. Ковалевской, продолженные др. исследователями, послужили основой для теории гироскопа, которая приобрела особенно большое практическое значение в 20 в. Дальнейшему развитию принципов М. были посвящены основополагающие труды М. В. Остроградского (См. Остроградский), У. Гамильтон а, К. Якоби , Г. Герца и др.

В решении фундаментальной проблемы М. и всего естествознания - об устойчивости равновесия и движения, ряд важных результатов получили Лагранж, англ. учёный Э. Раус и Н. Е. Жуковский . Строгая постановка задачи об устойчивости движения и разработка наиболее общих методов её решения принадлежат А. М. Ляпунов у. В связи с запросами машинной техники продолжались исследования по теории колебаний и проблеме регулирования хода машин. Основы современной теории автоматического регулирования были разработаны И. А. Вышнеградским (См. Вышнеградский).

Параллельно с динамикой в 19 в. развивалась и кинематика, приобретавшая всё большее самостоятельное значение. Франц. учёный Г. Кориолис доказал теорему о составляющих ускорения, явившуюся основой М. относительного движения. Вместо терминов «ускоряющие силы» и т. п. появился чисто кинематический термин «ускорение» (Ж. Понселе , А. Резаль). Пуансо дал ряд наглядных геометрических интерпретаций движения твёрдого тела. Возросло значение прикладных исследований по кинематике механизмов, важный вклад в которые сделал П. Л. Чебышев . Во 2-й половине 19 в. кинематика выделилась в самостоятельный раздел М.

Значительное развитие в 19 в. получила и М. сплошной среды. Трудами Л. Навье и О. Коши были установлены общие уравнения теории упругости. Дальнейшие фундаментальные результаты в этой области получили Дж. Грин , С. Пуассон , А. Сен-Венан , М. В. Остроградский, Г. Ламе , У. Томсон , Г. Кирхгоф и др. Исследования Навье и Дж. Стокс а привели к установлению дифференциальных уравнений движения вязкой жидкости. Существенный вклад в дальнейшее развитие динамики идеальной и вязкой жидкости внесли Гельмгольц (учение о вихрях), Кирхгоф и Жуковский (отрывное обтекание тел), О. Рейнольдс (начало изучения турбулентных течений), Л. Прандтль (теория пограничного слоя) и др. Н. П. Петров создал гидродинамическкую теорию трения при смазке, развитую далее Рейнольдсом, Жуковским совместно с С. А. Чаплыгин ым и др. Сен-Венан предложил первую математическую теорию пластичного течения металла.

В 20 в. начинается развитие ряда новых разделов М. Задачи, выдвинутые электро- и радиотехникой, проблемами автоматического регулирования и др., вызвали появление новой области науки - теории нелинейных колебаний, основы которой были заложены трудами Ляпунова и А. Пуанкаре . Другим разделом М., на котором базируется теория реактивного движения, явилась динамика тел переменной массы; её основы были созданы ещё в конце 19 в. трудами И. В. Мещерского (См. Мещерский). Исходные исследования по теории движения ракет принадлежат К. Э. Циолковскому (См. Циолковский).

В М. сплошной среды появляются два важных новых раздела: аэродинамика, основы которой, как и всей авиационной науки, были созданы Жуковским, и газовая динамика, основы которой были заложены Чаплыгиным. Труды Жуковского и Чаплыгина имели огромное значение для развития всей современной гидроаэродинамики.

Современные проблемы механики. К числу важных проблем современной М. относятся уже отмечавшиеся задачи теории колебаний (особенно нелинейных), динамики твёрдого тела, теории устойчивости движения, а также М. тел переменной массы и динамики космических полётов. Во всех областях М. всё большее значение приобретают задачи, в которых вместо «детерминированных», т. е. заранее известных, величин (например, действующих сил или законов движения отдельных объектов) приходится рассматривать «вероятностные» величины, т. е. величины, для которых известна лишь вероятность того, что они могут иметь те или иные значения. В М. непрерывной среды весьма актуальна проблема изучения поведения макрочастиц при изменении их формы, что связано с разработкой более строгой теории турбулентных течений жидкостей, решением проблем пластичности и ползучести и созданием обоснованной теории прочности и разрушения твёрдых тел.

Большой круг вопросов М. связан также с изучением движения плазмы в магнитном поле (магнитная гидродинамика), т. е. с решением одной из самых актуальных проблем современной физики - осуществление управляемой термоядерной реакции. В гидродинамике ряд важнейших задач связан с проблемами больших скоростей в авиации, баллистике, турбостроении и двигателестроении. Много новых задач возникает на стыке М. с др. областями наук. К ним относятся проблемы гидротермохимии (т. е. исследования механических процессов в жидкостях и газах, вступающих в химические реакции), изучение сил, вызывающих деление клеток, механизма образования мускульной силы и др.

При решении многих задач М. широко используются электронно-вычислительные и аналоговые машины. В то же время разработка методов решения новых задач М. (особенно М. сплошной среды) с помощью этих машин - также весьма актуальная проблема.

Исследования в разных областях М. ведутся в университетах и в высших технических учебных заведениях страны, в институте проблем механики АН СССР, а также во многих других научно-исследовательских институтах как в СССР, так и за рубежом.

Для координации научных исследований по М. периодически проводятся международные конгрессы по теоретической и прикладной М. и конференции, посвященные отдельным областям М., организуемые Международным союзом по теоретической и прикладной М. (IUTAM), где СССР представлен Национальным комитетом СССР по теоретической и прикладной М. Этот же комитет совместно с др. научными учреждениями периодически организует всесоюзные съезды и конференции, посвященные исследованиям в различных областях М.

ГИМНАЗИЯ № 1534

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

ПО ФИЗИКЕ

“ИСТОРИЯ РАЗВИТИЯ МЕХАНИКИ”

Выполнила: ученица 11 “А” класса

Сорокина А. А.

Проверила: Горкина Т. Б.

Москва 2003 г.

1. ВВЕДЕНИЕ

4. ИСТОРИЯ РАЗВИТИЯ МЕХАНИКИ

Эпоха, предшествовавшая установлению основ механики

Период создания основ механики

Развитие методов механики в XVIII в.

Механика XIX и начала XX вв.

Механика в России и СССР

5. ПРОБЛЕМЫ СОВРЕМЕННОЙ МЕХАНИКИ

6. ЗАКЛЮЧЕНИЕ

7. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

8. ПРИЛОЖЕНИЕ

1. ВВЕДЕНИЕ

Для каждого человека существуют два мира: внутренний и внешний; посредниками между этими двумя мирами являются органы чувств. Внешний мир имеет способность влиять на органы чувств, вызывать у них особого рода изменения, или, как принято говорить, возбуждать в них раздражения. Внутренний мир человека определяется совокупностью тех явлений, которые абсолютно не могут быть доступны непосредственному наблюдению другого человека.

Вызванное внешним миром раздражение в органе чувств передается миру внутреннему и со своей стороны вызывает в нем субъективное ощущение, для появления которого необходимо наличие сознания.

Воспринятое внутренним миром субъективное ощущение объективируется, т.е. переносится во внешнее пространство, как нечто, принадлежащее определенному месту и определенному времени. Иначе говоря, путем такого объективирования мы переносим во внешний мир наши ощущения, причем пространство и время служат тем фоном, на котором располагаются эти объективные ощущения. В тех местах пространства, где они помещаются, мы невольным образом предполагаем порождающую их причину.

Человеку присуща способность сравнивать между собой воспринимаемые ощущения, судить об их одинаковости или неодинаковости и, во втором случае, отличать неодинаковости качественные и количественные, причем количественная неодинаковость может относиться или к напряженности (интенсивности), или к протяженности (экстенсивность) или, наконец, к продолжительности раздражающей объективной причины.

Так как умозаключения, сопровождающие всякое объективирование, исключительно основаны на воспринятом ощущении, то полнейшая одинаковость этих ощущений непременно повлечет за собой и тождественность объективных причин, и эта тождественность помимо, и даже против нашей воли сохраняется и в тех случаях, когда другие органы чувств неоспоримо свидетельствуют нам о неодинаковости причин. Здесь кроется один из главных источников несомненно ошибочных умозаключений, приводящих к так называемым обманам зрения, слуха и т. п. Другой источник – отсутствие навыка при новых ощущениях.

Восприятие в пространстве и времени чувственных впечатлений, которые мы сравниваем между собой и которым мы придаем значение объективной реальности, существующей помимо нашего сознания, называется внешним явлением. Изменение цвета тел в зависимости от освещения, одинаковость уровня воды в сосудах, качание маятника – внешние явления.

Один из могучих рычагов, двигающих человечество по пути его развития – это любознательность, имеющая последней, недостижимой целью – познание сущности нашего бытия, истинного отношения нашего мира внутреннего к миру внешнему. Результатом любознательности явилось знакомство с весьма большим числом разнообразнейших явлений, которые составляют предмет целого ряда наук, между которыми физика занимает одно из первые мест, благодаря обширности обрабатываемого ею поля и тому значению, которое она имеет почти для всех других наук.

2. ОПРЕДЕЛЕНИЕ МЕХАНИКИ; ЕЕ МЕСТО СРЕДИ ДРУГИХ НАУК; ПОДРАЗДЕЛЕНИЯ МЕХАНИКИ

Механика (от греческого m h c a n i c h - мастерство, относящееся к машинам; наука о машинах) – наука о простейшей форме движении материи – механическом движении, представляющем изменение с течением времени пространственного расположения тел, и о связанных с движением тел взаимодействиях между ними. Механика исследует общие закономерности, связывающие механические движения и взаимодействия, принимая для самих взаимодействий законы, полученные опытным путем и обосновываемые в физике. Методы механики широко используются в различных областях естествознания и техники.

Механика изучает движения материальных тел, пользуясь следующими абстракциями:

1) Материальная точка, как тело пренебрежимо малых размеров, но конечной массы. Роль материальной точки может играть центр инерции системы материальных точек, в котором при этом считается сосредоточенной масса всей системы;

2) Абсолютно твердое тело, совокупность материальных точек, находящихся на неизменных расстояниях друг от друга. Эта абстракция применима, если можно пренебречь деформацией тела;

3) Сплошная среда. При этой абстракции допускается изменение взаимного расположения элементарных объемов. В противоположность твердому телу для задания движения сплошной среды требуется бесчисленное множество параметров. К сплошным средам относятся твердые, жидкие и газообразные тела, отражаемые в следующих отвлечённых представлениях: идеально упругое тело, пластичное тело, идеальная жидкость, вязкая жидкость, идеальный газ и другие. Указанные отвлечённые представления о материальном теле отражают действительные свойства реальных тел, существенные в данных условиях.

Соответственно этому механику разделяют на:

  • механику материальной точки;
  • механику системы материальных точек;
  • механику абсолютно твердого тела;
  • механику сплошной среды.

Последняя в свою очередь подразделяется на теорию упругости, гидромеханику, аэромеханику, газовую механику и другие (см. Приложение).

Термином “теоретическая механика” обычно обозначают часть механики, занимающуюся исследованием наиболее общих законов движения, формулировкой её общих положений и теорем, а также приложением методов механики к изучению движения материальной точки, системы конечного числа материальных точек и абсолютно твердого тела.

В каждом из этих разделов, прежде всего, выделяется статика, объединяющая вопросы, относящиеся к исследованию условий равновесия сил. Различают статику твердого тела и статику сплошной среды: статику упругого тела, гидростатику и аэростатику (см. Приложение). Движение тел в отвлечении от взаимодействия между ними изучает кинематика (см. Приложение). Существенная особенность кинематики сплошных сред заключается в необходимости определить для каждого момента времени распределение в пространстве перемещений и скоростей. Предметом динамики являются механические движения материальных тел в связи с их взаимодействиями.

Существенные применения механики относятся к области техники. Задачи, выдвигаемые техникой перед механикой, весьма разнообразны; это – вопросы движения машин и механизмов, механика транспортных средств на суше, на море и в воздухе, строительной механики, разнообразных отделов технологии и многие другие. В связи с необходимостью удовлетворения запросов техники из механики выделились специальные технические науки. Кинематика механизмов, динамика машин, теория гироскопов, внешняя баллистика (см. Приложение) представляют технические науки, использующие методы абсолютно твердого тела. Сопротивление материалов и гидравлика (см. Приложение), имеющие с теорией упругости и гидродинамикой общие основы, вырабатывают для практики методы расчёта, корректируемые экспериментальными данными. Все разделы механики развивались и продолжают развиваться в тесной связи с запросами практики, в ходе разрешения задач техники.

Механика как раздел физики развивался в тесной взаимосвязи с другими её разделами – с оптикой, термодинамикой и другими. Основы так называемой классической механики были обобщены в начале XX в. в связи с открытием физических полей и законов движения микрочастиц. Содержание механики быстродвижущихся частиц и систем (со скоростями порядка скорости света) изложены в теории относительности, а механика микродвижений – в квантовой механике.

3. ОСНОВНЫЕ ПОНЯТИЯ И МЕТОДЫ МЕХАНИКИ

Законы классической механики справедливы по отношению к так называемым инерциальным, или галилеевым, системам отсчёта (см. Приложение). В пределах, в которых справедлива ньютонова механика, время можно рассматривать независимо от пространства. Промежутки времени практически одинаковы во всех системах отчета, каково бы ни было их взаимное движение, если относительная скорость их мала по сравнению со скоростью света.

Основными кинематическими мерами движения являются скорость, которая имеет векторный характер, так как определяет не только быстроту изменения пути со временем, но и направление движения, и ускорение – вектор, являющийся мерой измерения вектора скорости во времени. Мерами вращательного движения твердого тела служат векторы угловой скорости и углового ускорения. В статике упругого тела основное значение имеет вектор перемещения и соответствующий ему тензор деформации, включающий понятия относительных удлинений и сдвигов.

Основной мерой взаимодействия тел, характеризующей изменение во времени механического движения тела, является сила. Совокупности величины (интенсивности)

силы, выраженной в определенных единицах, направления силы (линии действия) и точки приложения определяют вполне однозначно силу как вектор.

В основе механики лежат следующие законы Ньютона. П е р в ы й з а к о н, или закон инерции, характеризует движение тел в условиях изолированности от других тел, либо при уравновешенности внешних воздействий. Закон этот гласит: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения, пока приложенные силы не заставят его изменить это состояние. Первый закон может служить для определения инерциальных систем отсчета. В т о р о й з а к о н, устанавливающий количественную связь между приложенной к точке силой и вызываемым этой силой изменением количества движения, гласит: изменение движения происходит пропорционально приложенной силе и происходит в направлении линии действия этой силы. Согласно этому закону, ускорение материальной точки пропорционально приложенной к ней силе: данная сила F вызывает тем меньшее ускорение а тела, чем больше его инертность. Мерой инертности служит масса. По второму закону Ньютона сила пропорциональна произведению массы материальной точки на её ускорение; при надлежащем выборе единицы силы последняя может быть выражена произведением массы точки m на ускорение а :

Это векторное равенство представляет основное уравнение динамики материальной точки. Т р е т и й з а к о н Ньютона гласит: действию всегда соответствует равное ему и противоположно направленное противодействие, т. е. действие двух тел друг на друга всегда равны и направлены по одной прямой в противоположных направлениях. В то время как первые два закона Ньютона относятся к одной материальной точке, третий закон является основным для системы точек. Наряду с этими тремя основными законами динамики имеет место закон независимости действия сил, который формулируется так: если на материальную точку действует несколько сил, то ускорение точки складывается из тех ускорений, которые точка имела бы под действием каждой силы в отдельности. Закон независимости действия сил приводит к правилу параллелограмма сил.

Кроме названных ранее понятий, в механике применяются и другие меры движения и действия. Важнейшими являются меры движения: векторная – количество движения p = mv, равное произведению массы на вектор скорости, и скалярная – кинетическая энергия E k = 1 / 2 mv 2 , равная половине произведения массы на квадрат скорости. В случае вращательного движения твердого тела инерционные свойства его задаются тензором инерции, определяющим в каждой точке тела моменты инерции и центробежные моменты относительно трех осей, проходящих через эту точку. Мерой вращательного движения твердого тела служит вектор момента количества движения, равный произведению момента инерции на угловую скорость. Мерами действия сил являются: векторная – элементарный импульс силы F dt (произведение силы на элемент времени её действия), и скалярная – элементарная работа F*dr (скалярное произведение векторов силы и элементарного перемещения точки положения); при вращательном движении мерой воздействия служит момент силы.

Основные меры движения в динамике сплошной среды представляют собой непрерывно распределенные величины и, соответственно, задаются своими функциями распределения. Так, плотность определяет распределение массы; силы задаются их поверхностным или объёмным распределением. Движение сплошной среды, вызываемое приложенными к ней внешними силами, приводит к возникновению в среде напряженного состояния, характеризуемого в каждой точке совокупностью нормальных и касательных напряжений, представляемой единой физической величиной – тензором напряжений. Среднее арифметическое трех нормальных напряжений в данной точке, взятое с обратным знаком, определяет давление (см. Приложение).

В основе изучения равновесия и движения сплошной среды лежат законы связи между тензором напряжения и тензором деформации или скоростей деформации. Таков закон Гука в статике линейно-упругого тела и закон Ньютона в динамике вязкой жидкости (см. Приложение). Эти законы – простейшие; установлены и другие соотношения, более точно характеризующие явления, происходящие в реальных телах. Существуют теории, учитывающие предшествующую историю движения и напряжения тела, теории ползучести, релаксации и другие (см. Приложение).

Соотношения между мерами движения материальной точки или системы материальных точек и мерами действия сил содержатся в общих теоремах динамики:

количеств движения, моментов количества движения и кинетической энергии. Эти теоремы выражают свойства движений как дискретной системы материальных точек, так и сплошной среды. При рассмотрении равновесия и движения несвободной системы материальных точек, т. е. системы, подчиненной заданным наперед ограничениям – механическим связям (см. Приложение), важное значение имеет применение общих принципов механики – принципа возможных перемещений и принципа Д’Аламбера. В применении к системе материальных точек принцип возможных перемещений состоит в следующем: для равновесия системы материальных точек со стационарными и идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на систему активных сил при всяком возможном перемещении системы была равна нулю (для связей неосвобождающих) или же была равна нулю или меньше нуля (для связей освобождающих). Принцип Д’Аламбера для свободной материальной точки гласит: в каждый момент времени силы, приложенные к точке, могут быть уравновешены добавлением к ним силы инерции.

При формулировке задач механика исходит из основных уравнений, выражающих найденные законы природы. Для решения этих уравнений применяют математические методы, причем многие из них зарождались и получали свое развитие именно в связи с проблемами механики. При постановке задачи всегда приходилось сосредотачивать внимание на тех сторонах явления, которые представляются основными. В случаях, когда необходимо учитывать и побочные факторы, а также в тех случаях, когда явление по своей сложности не поддается математическому анализу, широко применяется экспериментальное исследование. Экспериментальные методы механики базируются на развитой технике физического эксперимента. Для записи движений используются как оптические методы, так и методы электрической регистрации, основанные на предварительном преобразовании механического перемещения в электрический сигнал. Для измерения сил используются различные динамометры и весы, снабжаемые автоматическими приспособлениями и следящими системами. Для измерения механических колебаний широкое распространение получили разнообразные радиотехнические схемы. Особых успехов достиг эксперимент в механике сплошных сред. Для измерения напряжения используется оптический метод (см. Приложение), заключающийся в наблюдении нагружённой прозрачной модели в поляризованном свете. Для измерения деформации большое развитие в последние годы приобрело тензометрирование при помощи механических и оптических тензометров (см. Приложение), а также тензометров сопротивления. Для измерения скоростей и давлений в движущихся жидкостях и газах с успехом применяют термоэлектрические, ёмкостные, индукционные и другие методы.

4. ИСТОРИЯ РАЗВИТИЯ МЕХАНИКИ

История механики, так же как и других естественных наук, неразрывно связана с историей развития общества, с общей историей развития его производительных сил. Историю механики можно разделить на несколько периодов, отличающихся как характером проблем, так и методами их решения.

Эпоха, предшествовавшая установлению основ механики. Эпоху создания первых орудий производства и искусственных построек следует признать началом накопления того опыта, который в дальнейшем служил основой для открытия основных законов механики. В то время как геометрия и астрономия античного мира представляли уже довольно развитые научные системы, в области механики были известны лишь отдельные положения, относящиеся к наиболее простым случаям равновесия тел. Ранее всех разделов механики зародилась статика. Этот раздел развивался в тесной связи со строительным искусством античного мира.

Основное понятие статики – понятие силы – вначале тесно связывалось с мускульным усилием, вызванным давлением предмета на руку. Примерно к началу IV в. до н. э. уже были известны простейшие законы сложения и уравновешивания сил, приложенных к одной точке вдоль одной и той же прямой. Особый интерес привлекала задача о рычаге. Теория рычага была создана великим ученым древности Архимедом (III в. до н. э.) и изложена в сочинении “О рычагах”. Им были установлены правила сложения и разложения параллельных сил, дано определение понятия центра тяжести системы двух грузов, подвешенных к стержню, и выяснены условия равновесия такой системы. Архимеду же принадлежит открытие основных законов гидростатики. Свои

теоретические знания в области механики он применял к различным практическим вопросам строительства и военной техники. Понятие момента силы, играющее основную роль во всей современной механике, в скрытом виде уже имеется в законе Архимеда. Великий итальянский ученый Леонардо да Винчи (1452 – 1519) вводил представление о плече силы под видом “потенциального рычага”. Итальянский механик Гвидо Убальди (1545 – 1607) применяет понятие момента в своей теории блоков, где было введено понятие полиспаста. Полиспаст (греч. p o l u s p a s t o n , от p o l u - много и s p a w - тяну) – система подвижных и неподвижных блоков, огибаемых канатом, используются для получения выигрыша в силе и, реже, для получения выигрыша в скорости. Обычно к статике принято относить ещё учение о центре тяжести материального тела. Развитие этого чисто геометрического учения (геометрия масс) тесно связано с именем Архимеда, указавшего, при помощи знаменитого метода исчерпывания, положение центра тяжести многих правильных геометрических форм, плоских и пространственных. Общие теоремы о центрах тяжести тел вращения дали греческий математик Папп (III в. н. э.) и швейцарский математик П. Гюльден в XVII в. Развитием своих геометрических методов статика обязана французскому математику П. Вариньону (1687); наиболее полно эти методы были разработаны французским механиком Л. Пуансо, трактат которого “Элементы статики” вышел в 1804 г. Аналитическая статика, основанная на принципе возможных перемещений, была создана знаменитым французским ученым Ж. Лагранжем.

С развитием ремесел, торговли, мореплавания и военного дела и связанного с ними накопления новых знаний, в XIV и XV вв. – в эпоху Возрождения – начинается расцвет наук и искусств. Крупным событием, революционизировавшим человеческое мировоззрение, явилось создание великим польским астрономом Николаем Коперником (1473 – 1543) учения о гелиоцентрической системе мира, в которой шарообразная Земля занимает центральное неподвижное положение, а вокруг нее по своим круговым орбитам движутся небесные тела: Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн.

Кинематические и динамические исследования эпохи Возрождения были обращены, главным образом, на уточнение представлений о неравномерном и криволинейном движении точки. До этого времени общепринятыми были не соответствующие действительности динамические воззрения Аристотеля, изложенные в его “Проблемах механики”. Так, он считал, что для поддержания равномерного и прямолинейного движения тела к нему нужно приложить постоянно действующую силу. Это утверждение представлялось ему согласным с повседневным опытом. О том, что при этом возникает сила трения, Аристотель, конечно, ничего не знал. Также он считал, что скорость свободного падения тел зависит от их веса: “Если половинный вес в некоторое время пройдет столько-то, то удвоенный вес пройдет столько же в половинное время”. Считая, что все состоит из четырех стихий – земли, воды, воздуха и огня, он пишет: “Тяжело все то, что способно нестись к середине или средоточию мира; легко все то, что несется от середины или средоточия мира”. Из этого он сделал вывод: так как тяжелые тела падают к центру Земли, то этот центр является средоточием мира, а Земля неподвижна. Не владея еще понятием об ускорении, которое было позднее введено Галилеем, исследователи этой эпохи рассматривали ускоренное движение как состоящее из отдельных равномерных движений, в каждом интервале обладающих своей собственной скоростью. Галилей еще в 18-летнем возрасте, наблюдая во время богослужения за малыми затухающими колебаниями люстры и отсчитывая время по ударам пульса, установил, что период колебания маятника не зависит от его размаха. Усомнившись в правильности утверждений Аристотеля, Галилей начал производить опыты, с помощью которых он, не анализирую причины, установил законы движения тел вблизи земной поверхности. Сбрасывая тела с башни, он установил, что время падения тела не зависит от его веса и определяется высотой падения. Он первым доказал, что при свободном падении тела пройденный путь пропорционален квадрату времени.

Замечательные экспериментальные исследования свободного вертикального падения тяжёлого тела были проведены Леонардо да Винчи; это были, вероятно, первые в истории механики специально организованные опытные исследования.

Период создания основ механики. Практика (главным образом торговое мореплавание и военное дело) ставит перед механикой XVI – XVII вв. ряд важнейших проблем, занимающих умы лучших ученых того времени. “… Вместе с возникновением городов, крупных построек и развитием ремесла развилась и механика. Вскоре она становится необходимой также для судоходства и военного дела” (Энгельс Ф., Диалектика природы, 1952, стр. 145).

Нужно было точно исследовать полет снарядов, прочность больших кораблей, колебания маятника, удар тела. Наконец, победа учения Коперника выдвигает проблему движения небесных тел. Гелиоцентрическое мировоззрение к началу XVI в. создало предпосылки к установлению законов движения планет немецким астрономом И. Кеплером (1571 – 1630). Он сформулировал первые два закона движения планет:

1. Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.

2. Радиус-вектор, проведенный от Солнца к планете, за равные промежутки времени описывает равные площади.

Основоположником механики является великий итальянский ученый Г. Галилей (1564 – 1642). Он экспериментально установил количественный закон падения тел в пустоте, согласно которому расстояния, проходимые падающим телом в одинаковые промежутки времени, относятся между собой, как последовательные нечетные числа. Галилей установил законы движения тяжелых тел по наклонной плоскости, показав, что, падают ли тяжелые тела по вертикали или по наклонной плоскости, они всегда приобретают такие скорости, которые нужно сообщить им, чтобы поднять их на ту высоту, с которой они упали. Переходя к пределу, он показал, что на горизонтальной плоскости тяжелое тело будет находиться в покое или будет двигаться равномерно и прямолинейно. Тем самым он сформулировал закон инерции. Складывая горизонтальное и вертикальное движения тела (это первое в истории механики сложение конечных независимых движений), он доказал, что тело, брошенное под углом к горизонту, описывает параболу, и показал, как рассчитать длину полета и максимальную высоту траектории. При всех своих выводах он всегда подчеркивал, что речь идет о движении при отсутствии сопротивления. В диалогах о двух системах мира очень образно, в форме художественного описания, он показал, что все движения, которые могут происходить в каюте корабля, не зависят от того, находится ли корабль в покое или движется прямолинейно и равномерно. Этим он установил принцип относительности классической механики (так называемый принцип относительности Галилей – Ньютона). В частном случае силы веса Галилей тесно связывал постоянство веса с постоянством ускорения падения, но только Ньютон, введя понятие массы, дал точную формулировку связи между силой и ускорением (второй закон). Исследуя условия равновесия простых машин и плавания тел, Галилей, по существу, применяет принцип возможных перемещений (правда, в зачаточной форме). Ему же наука обязана первым исследованием прочности балок и сопротивления жидкости движущимся в ней телам.

Французский геометр и философ Р. Декарт (1596 – 1650) высказал плодотворную идею сохранения количества движения. Он применяет математику к анализу движения и, вводя в нее переменные величины, устанавливает соответствие между геометрическими образами и алгебраическими уравнениями. Но он не заметил существенного факта, что количество движения является величиной направленной, и складывал количества движения арифметически. Это привело его к ошибочным выводам и снизило значение данных им применений закона сохранения количества движения, в частности, к теории удара тел.

Последователем Галилея в области механики был голландский ученый Х. Гюйгенс (1629 – 1695). Ему принадлежит дальнейшее развитие понятий ускорения при криволинейном движении точки (центростремительное ускорение). Гюйгенс также решил ряд важнейших задач динамики – движение тела по кругу, колебания физического маятника, законы упругого удара. Он первый сформулировал понятия центростремительной и центробежной силы, момента инерции, центра колебания физического маятника. Но основная его заслуга состоит в том, что он первый применил принцип, по существу эквивалентный принципу живых сил (центр тяжести физического маятника может подняться только на высоту, равную глубине его падения). Пользуясь этим принципом, Гюйгенс решил задачу о центре колебания маятника – первую задачу динамики системы материальных точек. Исходя из идеи сохранения количества движения, он создал полную теорию удара упругих шаров.

Заслуга формулировки основных законов динамики принадлежит великому английскому ученому И. Ньютону (1643 – 1727). В своем трактате “Математические начала натуральной философии”, вышедшем первым изданием в 1687 г., Ньютон подвел итог достижениям своих предшественников и указал пути дальнейшего развития механики на столетия вперед. Завершая воззрения Галилея и Гюйгенса, Ньютон обогащает понятие силы, указывает новые типы сил (например, силы тяготения, силы сопротивления среды, силы вязкости и много других), изучает законы зависимости этих сил от положения и движения тел. Основное уравнения динамики, являющееся выражением второго закона, позволило Ньютону успешно разрешить большое число задач, относящихся, главным образом, к небесной механике. В ней его больше всего интересовали причины, заставляющие двигаться по эллиптическим орбитам. Еще в студенческие году Ньютон задумался над вопросами тяготения. В его бумагах нашли следующую запись: “Из правила Кеплера о том, что периоды планет находятся в полуторной пропорции к расстоянию от центров их орбит, я вывел, что силы, удерживающие планеты на их орбитах, должны быть в обратном отношении квадратов их расстояний от центров, вокруг коих они вращаются. Отсюда я сравнил силу, требующуюся для удержания Луны на ее орбите, с силой тяжести на поверхности Земли и нашел, что они почти отвечают друг другу”.

В приведенном отрывке Ньютон не сообщает доказательства, но я могу предположить, что ход его рассуждений состоял в следующем. Если приближенно считать, что планеты равномерно движется по круговым орбитам, то согласно третьему закону Кеплера, на который ссылается Ньютон, я получу

T 2 2 / T 2 1 = R 3 2 / R 3 1 , (1.1) где T j и R j – периоды обращения и радиусы орбит двух планет (j = 1, 2).

При равномерном движении планет по круговым орбитам со скоростями V j их периоды обращения определяются равенствами T j = 2 p R j / V j .

Следовательно,

T 2 / T 1 = 2 p R 2 V 1 / V 2 2 p R 1 = V 1 R 2 / V 2 R 1 .

Теперь соотношение (1.1) приводится к виду

V 2 1 / V 2 2 = R 2 / R 1 . (1.2)

К рассматриваемым годам Гюйгенс уже установил, что центробежная сила пропорциональна квадрату скорости и обратно пропорциональна радиусу окружности, т. е. F j = kV 2 j / R j , где k – коэффициент пропорциональности.

Если теперь внести в равенство (1.2) соотношение V 2 j = F j R j / k, то я получу

F 1 / F 2 = R 2 2 / R 2 1 , (1.3) что устанавливает обратную пропорциональность центробежных сил планет квадратам их расстояний до Солнца.

Ньютону принадлежат также исследования сопротивления жидкостей движущимися телам; им установлен закон сопротивления, согласно которому сопротивление жидкости движению тела в ней пропорционально квадрату скорости тела. Ньютоном открыт основной закон внутреннего трения в жидкостях и газах.

К концу XVII в. основы механики были обстоятельно разработаны. Если древние века считать предисторией механики, то XVII в. можно рассматривать как период создания ее основ.

Развитие методов механики в XVIII в.. В XVIII в. потребности производства – необходимость изучения важнейших механизмов, с одной стороны, и проблема движения Земли и Луны, выдвинутая развитием небесной механики, с другой, - привели к созданию общих приемов решения задач механики материальной точки, системы точек твердого тела, развитых в “Аналитической механике” (1788 г.) Ж. Лагранжа (1736 – 1813).

В развитии динамики посленьютоновского периода основная заслуга принадлежит петербургскому академику Л. Эйлеру (1707 – 1783). Он развил динамику материальной точки в направлении применения методов анализа бесконечно малых к решению уравнений движения точки. Трактат Эйлера “Механика, т. е. наука о движении, изложенная аналитическим методом”, вышедший в свет в Петербурге в 1736 г., содержит общие единообразные методы аналитического решения задач динамики точки.

Л. Эйлер - основоположник механики твердого тела. Ему принадлежит общепринятый метод кинематического описания движения твердого тела при помощи трех эйлеровых углов. Фундаментальную роль в дальнейшем развитии динамики и многих ее технических приложений сыграли установленные Эйлером основные дифференциальные уравнения вращательного движения твердого тела вокруг неподвижного центра. Эйлер установил два интеграла: интеграл момента количеств движения

A 2 w 2 x + B 2 w 2 y + C 2 w 2 z = m

и интеграл живых сил (интеграл энергии)

A w 2 x + B w 2 y + C w 2 z = h,

где m и h – произвольные постоянные, A,B и C – главные моменты инерции тела для неподвижной точки, а w x, w y, w z – проекции угловой скорости тела на главные оси инерции тела.

Эти уравнения явились аналитическим выражением открытой им теоремы моментов количества движения, которая представляет собой необходимое дополнение к закону количестве движения, сформулированному в общем виде в “Началах” Ньютона. В “Механике” Эйлера дана близкая к современной формулировка закона “живых сил” для случая прямолинейного движения и отмечено наличие таких движений материальной точки, при которых изменение живой силы при переходе точки из одного положения в другое не зависит от формы траектории. Этим было положено начало понятия потенциальной энергии. Эйлер – основоположник гидромеханики. Им были даны основные уравнения динамики идеальной жидкости; ему принадлежит заслуга создания основ теории корабля и теории устойчивости упругих стержней; Эйлер заложил основу теории расчета турбин, выведя турбинное уравнение; в прикладной механике имя Эйлера связано с вопросами кинематики фигурных колес, расчета трения между канатом и шкивом и многими другими.

Небесная механика была в значительной своей части развита французским ученым П. Лапласом (1749 – 1827), который в обширном труде “Трактат о небесной механике” объединил результаты исследования своих предшественников – от Ньютона до Лагранжа – собственными исследованиями устойчивости солнечной системы, решением задачи трех тел, движения Луны и многих других вопросов небесной механики (см. Приложение).

Одним из важнейших приложений ньютоновской теории тяготения явился вопрос о фигурах равновесия вращающихся жидких масс, частицы которых тяготеют друг к другу, в частности о фигуре Земли. Основы теории равновесия вращающихся масс были изложены Ньютоном в третьей книге “Начал”. Проблема фигур равновесия и устойчивости вращающейся жидкой массы сыграла значительную роль в развитии механики.

Великий русский ученый М. В. Ломоносов (1711 – 1765) высоко оценивал значение механики для естествознания, физики и философии. Ему принадлежит материалистическая трактовка процессов взаимодействия двух тел: “когда одно тело ускоряет движение другого и сообщает ему часть своего движения, то только так, что само теряет такую же часть движения”. Он является одним из основоположников кинетической теории теплоты и газов, автором закона сохранения энергии и движения. Приведем слова Ломоносова из письма Эйлеру (1748 г.): “Все изменения, случающиеся в природе, проходят так, что если что-либо прибавится к чему-либо, то столько же отнимется от чего-то другого. Так, сколько к какому-нибудь телу присоединится материи, столько же отнимется от другого; сколько часов я употребляю в сон, столько же отнимаю от бдения и т. д. Так как этот закон природы всеобщ, то он простирается даже и в правила движения, и тело, побуждающее своим толчком другое к движению столько же теряет своего движения, сколько сообщает другому, движимому им”. Ломоносов впервые предсказал существование абсолютного нуля температуры, высказал мысль о связи электрических и световых явлений. В результате деятельности Ломоносова и Эйлера появились первые труды русских ученых, творчески овладевших методами механики и способствовавших ее дальнейшему развитию.

История создания динамики несвободной системы связана с развитием принципа возможных перемещений, выражающим общие условия равновесия системы. Этот принцип был впервые применен голландским ученым С. Стевином (1548 – 1620) при рассмотрении равновесия блока. Галилей сформулировал принцип в виде “золотого правила” механики, согласно которому “что выигрывается в силе, то теряется в скорости”. Современная формулировка принципа была дана в конце XVIII в. на основе абстракции “идеальных связей”, отражающих представление об “идеальной” машине, лишенной внутренних потерь на вредные сопротивления в передаточном механизме. Выглядит она следующим образом: если в положении изолированного равновесия консервативной системы со стационарными связями потенциальная энергия имеет минимум, то это положение равновесия устойчиво.

Созданию принципов динамики несвободной системы способствовала задача о движении несвободной материальной точки. Материальная точка называется несвободной, если она не может занимать произвольного положения в пространстве. В этом случае принцип Д’Аламбера звучит следующим образом: действующие на движущуюся материальную точку активные силы и реакции связей можно в любой момент времени уравновесить добавлением к ним силы инерции.

Выдающийся вклад в развитие аналитической динамики несвободной системы внес Лагранж, который в фундаментальном двухтомном сочинении “Аналитическая механика” указал аналитическое выражение принципа Д’Аламбера – “общую формулу динамики”. Как же Лагранж получил ее?

После того, как Лагранж изложил различные принципы статики, он переходит к установлению “общей формулы статики для равновесия любой системы сил”. Начиная

с двух сил, Лагранж устанавливает методом индукции следующую общую формулу для

равновесия любой системы сил:

P dp + Q dq + R dr + … = 0. (2.1)

Это уравнение представляет математическую запись принципа возможных перемещений. В современных обозначениях этот принцип имеет вид

å n j=1 F j d r j = 0 (2.2)

Уравнения (2.1) и (2.2) практически одинаковы. Основное отличие состоит, конечно, не в форме записи, а в определении вариации: в наши дни – это произвольно мыслимое перемещение точки приложения силы, совместимое со связями, а у Лагранжа – это малое перемещение вдоль линии действия силы и в сторону ее действия.

Лагранж вводит в рассмотрение функцию П (теперь она называется потенциальной энергией), определив ее равенством

d П = P dp + Q dq + R dr + … , (2.3) в декартовых координатах функция П (после интегрирования) имеет вид

П = А + Вx + Сy + Dz + … + Fx 2 + Gxy + Hy 2 + Kxz + Lyz + Mz 2 + … (2.4)

Для дальнейшего доказательства Лагранж изобретает знаменитый метод неопределенных множителей. Сущность его состоит в следующем. Рассмотрим равновесие n материальных точек, на каждую из которых действует сила F j . Между координатами точек имеется m связей j r = 0, зависящих только от их координат. Учитывая, что d j r = 0, уравнение (2.2) сразу можно привести к следующей современной форме:

å n j=1 F j d r j + å m r=1 l r d j r = 0, (2.5) где l r – неопределенные множители. Отсюда получаются следующие уравнения равновесия, называемые уравнениями Лагранжа I рода:

X j + å m r=1 l r ¶ j r / ¶ x j = 0, Y j + å m r=1 l r ¶ j r / ¶ y j = 0,

Z j + å m r=1 l r ¶ j r / ¶ z j = 0 (2.6) К этим уравнениям нужно присоединить m уравнений связей j r = 0 (X j , Y j , Z j – проекции силы F j ).

Покажем, как Лагранж использует этот метод для вывода уравнений равновесия абсолютно гибкой и нерастяжимой нити. Прежде всего, отнесенную к единице длины нити (ее размерность равна F / L ). Уравнение связи для нерастяжимой нити имеет вид ds = const, и, следовательно, d ds = 0. В уравнении (2.5) суммы переходят в интегралы по длине нити l

ò l 0 F d rds + ò l 0 l d ds = 0. (2.7) Учитывая равенство

(ds) 2 = (dx) 2 + (dy) 2 + (dz) 2 ,

d ds = dx / ds d dx + dy / ds d dy + dz / ds d dz.

ò l 0 l d ds = ò l 0 (l dx / ds d dx + l dy / ds d dy + l dz / ds d dz)

или, переставляя операции d и d и интегрируя по частям,

ò l 0 l d ds = (l dx / ds d x + l dy / ds d y + l dz / ds d z)

- ò l 0 d (l dx / ds) d x + d (l dy / ds) d y + d (l dz / ds) d z.

Считая, что нить на концах закреплена, получим d x = d y = d z = 0 при s = 0 и s = l , и, следовательно, первое слагаемое обращается в нуль. Оставшуюся часть внесем в уравнение (2.7), раскроем скалярное произведение F * dr и сгруппируем члены:

ò l 0 [ Xds – d (l dx / ds) ] d x + [ Yds – d (l dy / ds) ] d y + [ Zds – d (d dz / ds) ] d z = 0.

Так как вариации d x, d y и d z произвольны и независимы, то все квадратные скобки должны равняться нулю, что дает три уравнения равновесия абсолютно гибкой нерастяжимой нити:

d / ds (l dx / ds) – X = 0, d / ds (l dy / ds) – Y = 0,

d/ ds (l dz / ds) – Z = 0. (2.8)

Лагранж так объясняет физический смысл множителя l: “Так как величина l d ds может представлять собой момент некоторой силы l (в современной терминологии –“виртуальная (возможная) работа”) стремящейся уменьшить длину элемента ds , то член ò l d ds общего уравнения равновесия нити выразит сумму моментов всех сил l , которые мы можем себе представить действующими на все элементы нити. В самом деле, благодаря своей нерастяжимости каждый элемент противостоит действию внешних сил, и это сопротивление обычно рассматривают как активную сила, которую называют натяжением . Таким образом, l представляет собою натяжение нити ”.

Переходя к динамике, Лагранж, принимая тела за точки массой m, пишет, что “величины

m d 2 x / dt 2 , m d 2 y / dt 2 , m d 2 z / dt 2 (2.9) выражают силы, примененные непосредственно для того, чтобы двигать тело m параллельно осям x, y, z ”. Заданные ускоряющие силы P, Q, R , …, по Лагранжу, действуют вдоль линий p, q, r, …, пропорциональны массам, направлены к соответствующим центрам и стремятся уменьшить расстояния до этих центров. Поэтому вариации линий действия будут - d p, - d q, - d r , …, а виртуальная работа приложенных сил и сил (2.9) будут соответственно равны

å m (d 2 x / dt 2 d x + d 2 y / dt 2 d y + d 2 z / dt 2 d z) , - å (P d p + Q d q + R d r + …) . (2.10)

Приравнивая эти выражения и перенося все члены в одну сторону, Лагранж получает уравнение

å m (d 2 x /dt 2 d x + d 2 y / dt 2 d y + d 2 z / dt 2 d z) + å (P d p + Q d q + R d r + …) = 0, (2.11) которое он назвал “общей формулой динамики для движения любой системы тел”. Именно эту формулу Лагранж положил в основу всех дальнейших выводов – как общих теорем динамики, так и теорем небесной механики и динамики жидкостей и газов.

После вывода уравнения (2.11) Лагранж разлагает силы P, Q, R, … по осям прямоугольных координат и приводит это уравнение к следующему виду:

å (m d 2 x / dt 2 +X) d x + (m d 2 y / dt 2 + Y) d y + (m d 2 z / dt 2 + Z) d z = 0. (2.12)

С точностью до знаков уравнение (2.12) полностью совпадает с современной формой общего уравнения динамики:

å j (F j – m j d 2 r j / dt 2) d r j = 0; (2.13) если раскрыть скалярное произведение, то получим уравнение (2.12) (за исключением знаков в скобках).

Таким образом, продолжая труды Эйлера, Лагранж завершил аналитическое оформление динамики свободной и несвободной системы точек и дал многочисленные примеры, иллюстрирующие практическую мощь этих методов. Исходя из “общей формулы динамики”, Лагранж указал две основные формы дифференциальных уравнений движения несвободной системы, носящие ныне его имя: “уравнения Лагранжа первого рода” и уравнения в обобщенных координатах, или “уравнение Лагранжа второго рода”. Что навело Лагранжа на уравнения в обобщенных координатах? Лагранж в своих работах по механике, в том числе и по небесной механике, определял положение системы, в частности, твердого тела различными параметрами (линейными, угловыми или их комбинацией). Для такого гениального математика, каким был Лагранж, естественно встала проблема обобщения – перейти к произвольным, не конкретизированным параметрам. Это и привело его к дифференциальным уравнениям в обобщенных координатах. Лагранж назвал их “дифференциальные уравнения для решения всех проблем механики”, теперь мы называем их уравнениями Лагранжа II рода:

d / dt ¶ L / ¶ q j - ¶ L / ¶ q j = 0 ( L = T П ).

Подавляющее большинство решенных в “Аналитической механике” задач отражает технические проблемы того времени. С этой точки зрения необходимо особо выделить группу важнейших задач динамики, объединенные Лагранжем под общим наименованием “О малых колебаниях любой системы тел”. Этот раздел представляет собой основу современной теории колебаний. Рассматривая малые движения, Лагранж показал, что любое такое движение можно представить как результат наложения друг на друга простых гармонических колебаний.

Механика XIX и начала XX вв. “Аналитическая механика” Лагранжа подвела итог достижениям теоретической механики XVIII в. и определила следующие главные направления ее развития:

1) расширение понятия связей и обобщение основных уравнений динамики несвободной системы для новых видов связей;

2) формулировка вариационных принципов динамики и принципа сохранения механической энергии;

3) разработка методов интегрирования уравнений динамики.

Параллельно с этим выдвигались и были разрешены новые фундаментальные задачи механики. Для дальнейшего развития принципов механики основополагающими были работы выдающегося русского ученого М. В. Остроградского (1801 – 1861). Он первый рассмотрел связи, зависящие от времени, ввел новое понятие о неудерживающих связях, т. е. связях, выражающихся аналитически при помощи неравенств, и обобщил на случай такого рода связей принцип возможных перемещений и общее уравнение динамики. Остроградскому принадлежит также приоритет в рассмотрении дифференциальных связей, накладывающих ограничения на скорости точек системы; аналитически такие связи выражаются при помощи неинтегрируемых дифференциальных равенств или неравенств.

Естественным дополнением, расширяющим область применения принципа Д’Аламбера, явилось предложенное Остроградским приложение принципа к системам, подверженным действию мгновенных и импульсных сил, возникающих при действии на систему ударов. Такого рода ударные явления Остроградский рассматривал, как результат мгновенного уничтожения связей или мгновенного введения в систему новых связей.

В середине XIX в. был сформулирован принцип сохранения энергии: для любой физической системы можно определить величину, называемую энергией и равную сумме кинетической, потенциальной, электрической и других энергий и теплоты, значение которой остается постоянным независимо от того, какие изменения происходят в системе. Значительно ускорившийся к началу XIX в. процесс создания новых машин и стремление к дальнейшему их усовершенствованию вызвали в первой четверти века появление прикладной, или технической, механики. В первых трактатах по прикладной механике окончательно оформились понятия работы сил.

Принцип Д’Аламбера, содержащий наиболее общую формулировку законов движения несвободной системы, не исчерпывает всех возможностей постановки проблем динамики. В середине XVIII в. возникли, и в XIX в. получили развитие новые общие принципы динамики – вариационные принципы. Первым вариационным принципом явился принцип наименьшего действия, выдвинутый в 1744 г. без какого бы то ни было доказательства, как некоторый общий закон природы, французским ученым П. Мопертюи (1698 – 1756). Принцип наименьшего действия гласит, “что путь, которого он (свет) придерживается, является путем, для которого количество действий будет наименьшим”.

Развитие общих методов интегрирования дифференциальных уравнений динамики относится, главным образом, к середине XIX в. Первый шаг в деле приведения дифференциальных уравнений динамики к системе уравнений первого порядка был сделан в 1809 г. французским математиком С. Пуассоном (1781 – 1840). Задача о приведении уравнений механики к “канонической” системе уравнений первого порядка для случая связей, не зависящих от времени, была решена в 1834 г. английским математиком и физиком У. Гамильтоном (1805 – 1865). Окончательное завершение ее принадлежит Остроградскому, который распространил эти уравнения на случаи нестационарных связей.

Крупнейшими проблемами динамики, постановка и решение которых относятся, главным образом, к XIX в., являются: движение тяжелого твердого тела, теория упругости (см. Приложение) равновесия и движения, а также тесно связанная с этой теорией задача о колебаниях материальной системы. Первое решение задачи о вращении тяжелого твердого тела произвольной формы вокруг неподвижного центра в частном случае, когда неподвижный центр совпадает с центром тяжести, принадлежит Эйлеру. Кинематические представления этого движения были даны в 1834 г. Л. Пуансо. Случай вращения, когда неподвижный центр, не совпадающий с центром тяжести тела, помещен на оси симметрии, был рассмотрен Лагранжем. Решение этих двух классических задач легло в основу создания строгой теории гироскопических явлений (гироскоп – прибор для наблюдения вращения). Выдающиеся исследования в этой области принадлежат французскому физику Л. Фуко (1819 – 1968), создавшему ряд гироскопических приборов. Примерами таких приборов могут служить гироскопический компас, искусственный горизонт, гироскоп и другие. Эти исследования указали на принципиальную возможность, не прибегая к астрономическим наблюдениям, установить суточное вращение Земли и определить широту и долготу места наблюдения. После работ Эйлера и Лагранжа, несмотря на усилия ряда выдающихся математиков, проблема вращения тяжелого твердого тела вокруг неподвижной точки долго не получала дальнейшего развития.

Определение

Механикой называется часть физики, изучающая движение и взаимодействие материальных тел. При этом механическое движение рассматривается как изменение с течением времени взаимного положения тел или их частей в пространстве.

Основоположниками классической механики являются Г. Галилей (1564-1642) и И. Ньютон (1643-1727). Методами классической механики изучается движение любых материальных тел (кроме микрочастиц) со скоростями, малыми по сравнению со скоростью света в вакууме. Движение микрочастиц рассматривается в квантовой механике, а движение тел со скоростями, близкими к скорости света - в релятивистской механике (специальной теории относительности).
Свойства пространства и времени, принятые в классической физике Дадим определения вышеуказанным определениям.
Одномерное пространство
- параметрическая характеристика, в которой положение точки описывается одним параметром.
Евклидово пространство и время означает, что сами по себе они не искривлены и описываются в рамках евклидовой геометрии.
Однородность пространства означает, что его свойства не зависят от расстояния до наблюдателя. Однородность времени означает, что оно не растягивается и не сжимается, а течет равномерно. Изотропность пространства означает, что его свойства не зависят от направления. Поскольку время одномерно, то об изотропности его говорить не приходится. Время в классической механике рассматривается как «стрела времени», направленная из прошлого в будущее. Оно необратимо: нельзя вернуться в прошлое и что-то там «подправить».
Пространство, и время континуальны (от лат. continuum - непрерывное, сплошное), т.е. их можно дробить на все более мелкие части сколь угодно долго. Иначе говоря, в пространстве и времени нет «прорех», внутри которых они бы отсутствовали. Механику делят на Кинематику и Динамику

Кинематика изучает движение тел как простое перемещение в пространстве, вводя в рассмотрение так называемые кинематические характеристики движения: перемещение, скорость и ускорение.

При этом скорость материальной точки рассматривается как быстрота ее перемещения в пространстве или, с математической точки зрения, как векторная величина, равная производной по времени ее радиус вектора:

Ускорение материальной точки рассматривается как быстрота изменения ее скорости или, с математической точки зрения, как векторная величина, равная производной по времени ее скорости или второй производной по времени ее радиус-вектора:


Динамика

Динамика изучает движение тел в связи с действующими на них силами, оперируя так называемыми динамическими характеристиками движения: массой, импульсом, силой и др.

При этом масса тела рассматривается как мера его инерции, т.е. сопротивляемости по отношению к действующей на данное тело силе, стремящейся изменить его состояние (привести в движение или, наоборот, остановить, или изменить скорость движения). Масса может рассматриваться также как мера гравитационных свойств тела, т.е. его способности взаимодействовать с другими телами, также обладающими массой и находящимися на некотором расстоянии от данного тела. Импульс тела рассматривается как количественная мера его движения, определяемая как произведение массы тела на его скорость:

Сила рассматривается как мера механического действия на данное материальное тело со стороны других тел.



План:

    Введение
  • 1 Основные понятия
  • 2 Основные законы
    • 2.1 Принцип относительности Галилея
    • 2.2 Законы Ньютона
    • 2.3 Закон сохранения импульса
    • 2.4 Закон сохранения энергии
  • 3 История
    • 3.1 Древнее время
    • 3.2 Новое время
      • 3.2.1 XVII век
      • 3.2.2 XVIII век
      • 3.2.3 XIX век
    • 3.3 Новейшее время
  • Примечания
    Литература

Введение

Класси́ческая меха́ника - вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «Ньютоновской механикой ».

Классическая механика подразделяется на:

  • статику (которая рассматривает равновесие тел)
  • кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин)
  • динамику (которая рассматривает движение тел).

Существует несколько эквивалентных способов формального математического описания классической механики:

  • Законы Ньютона
  • Лагранжев формализм
  • Гамильтонов формализм
  • Формализм Гамильтона - Якоби

Классическая механика даёт очень точные результаты в рамках повседневного опыта. Однако её применение ограничено телами, скорости которых много меньше скорости света, а размеры значительно превышают размеры атомов и молекул. Обобщением классической механики на тела, двигающиеся с произвольной скоростью, является релятивистская механика, а на тела, размеры которых сравнимы с атомными - квантовая механика. Квантовая теория поля рассматривает квантовые релятивистские эффекты.

Тем не менее, классическая механика сохраняет своё значение, поскольку:

  1. она намного проще в понимании и использовании, чем остальные теории
  2. в обширном диапазоне она достаточно хорошо описывает реальность.

Классическую механику можно использовать для описания движения таких объектов, как волчок и бейсбольный мяч, многих астрономических объектов (таких, как планеты и галактики), и иногда даже многих микроскопических объектов, таких как молекулы.

Классическая механика является самосогласованной теорией, то есть в её рамках не существует утверждений, противоречащих друг другу. Однако, её объединение с другими классическими теориями, например классической электродинамикой и термодинамикой приводит к появлению неразрешимых противоречий. В частности, классическая электродинамика предсказывает, что скорость света постоянна для всех наблюдателей, что несовместимо с классической механикой. В начале XX века это привело к необходимости создания специальной теории относительности. При рассмотрении совместно с термодинамикой, классическая механика приводит к парадоксу Гиббса, в котором невозможно точно определить величину энтропии, и к ультрафиолетовой катастрофе, в которой абсолютно чёрное тело должно излучать бесконечное количество энергии. Попытки разрешить эти проблемы привели к развитию квантовой механики.


1. Основные понятия

Классическая механика оперирует несколькими основными понятиями и моделями. Среди них следует выделить:


2. Основные законы

2.1. Принцип относительности Галилея

Основным принципом, на котором базируется классическая механика является принцип относительности, сформулированный на основе эмпирических наблюдений Г. Галилеем. Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Во всех инерциальных системах отсчёта свойства пространства и времени одинаковы, и все процессы в механических системах подчиняются одинаковым законам. Этот принцип можно также сформулировать как отсутствие абсолютных систем отсчёта, то есть систем отсчёта, каким-либо образом выделенных относительно других .


2.2. Законы Ньютона

Основой классической механики являются три закона Ньютона.

Первый закон устанавливает наличие свойства инертности у материальных тел и постулирует наличие таких систем отсчёта, в которых движение свободного тела происходит с постоянной скоростью (такие системы отсчёта называются инерциальными).

Второй закон Ньютона вводит понятие силы как меры взаимодействия тела и на основе эмпирических фактов постулирует связь между величиной силы, ускорением тела и его инертностью (характеризуемой массой). В математической формулировке второй закон Ньютона чаще всего записывается в следующем виде:

где - результирующий вектор сил, действующих на тело; - вектор ускорения тела; m - масса тела.

Второй закон Ньютона может быть также записан в терминах изменения импульса тела :

В такой форме закон справедлив и для тел с переменной массой, а также в релятивистской механике.

Второго закона Ньютона недостаточно для описания движения частицы. Дополнительно требуется описание силы , полученное из рассмотрения сущности физического взаимодействия, в котором участвует тело.

Третий закон Ньютона уточняет некоторые свойства введёного во втором законе понятия силы. Им постулируется наличие для каждой силы, действующей на первое тело со стороны второго, равной по величине и противоположной по направлению силы, действующей на второе тело со стороны первого. Наличие третьего закона Ньютона обеспечивает выполнение закона сохранения импульса для системы тел.


2.3. Закон сохранения импульса

Закон сохранения импульса является следствием законов Ньютона для замкнутых систем, то есть систем, на которые не действуют внешние силы. С более фундаментальной точки зрения закон сохранения импульса является следствием однородности пространства .

2.4. Закон сохранения энергии

Закон сохранения энергии является следствием законов Ньютона для замкнутых консервативных систем, то есть систем, в которых действует только консервативные силы. С более фундаментальной точки зрения закон сохранения энергии является следствием однородности времени .

3. История

3.1. Древнее время

Классическая механика зародилась в древности главным образом в связи с проблемами, которые возникали при строительстве. Первым из разделов механики, получившим развитие стала статика, основы которой были заложены в работах Архимеда в III веке до н. э. Им были сформулированы правило рычага, теорема о сложении параллельных сил, введено понятие центра тяжести, заложены основы гидростатики (сила Архимеда).


3.2. Новое время

3.2.1. XVII век

Динамика как раздел классической механики начал развиваться только в XVII веке. Его основы были заложены Галилео Галилеем, который первым правильно решил задачу о движении тела под действием заданной силы. На основе эмпирических наблюдений им были открыты закон инерции и принцип относительности. Помимо этого Галилеем внесён вклад в зарождение теории колебаний и науки о сопротивлении материалов.

Христиан Гюйгенс проводил исследования в области теории колебаний, в частности изучал движение точки по окружности, а также колебания физического маятника. В его работах были также впервые сформулированы законы упругого удара тел.

Заложение основ классической механики завершилось работами Исаака Ньютона, сформулировавшего в наиболее общей форме законы механики и открывшего закон всемирного тяготения. Им же в 1684 году был установлен закон вязкого трения в жидкостях и газах.

Так же в XVII веке в 1660 году был сформулирован закон упругих деформаций, носящий имя своего первооткрывателя Роберта Гука.


3.2.2. XVIII век

В XVIII веке зарождается и интенсивно развивается аналитическая механика. Её методы для задачи о движении материальной точки были разработаны Леонардом Эйлером, которые заложил основы динамики твёрдого тела. Эти методы основываются на принципе виртуальных перемещений и на принципе Д’Аламбера. Разработку аналитических методов завершил Лагранж, которому удалось сформулировать уравнения динамики механической системы в наиболее общем виде: с использованием обобщённых координат и импульсов. Помимо этого, Лагранж принял участие в заложении основ современной теории колебаний.

Альтернативный метод аналитической формулировки классической механики основывается на принципе наименьшего действия, который впервые был высказан Мопертюи по отношению к одной материальной точке и обобщён на случай системы материальных точек Лагранжем.

Так же в XVIII веке в работах Эйлера, Даниила Бернулли, Лагранжа и Д’Аламбера были разработаны основы теоретического описания гидродинамики идеальной жидкости.


3.2.3. XIX век

В XIX веке развитие аналитической механики происходит в работах Остроградского, Гамильтона, Якоби, Герца и др. В теории колебаний Раусом, Жуковским и Ляпуновым была разработана теория устойчивости механических систем. Кориолис разработал теорию относительного движения, доказав теорему о разложении ускорения на составляющие. Во второй половине XIX века происходит выделение кинематики в отдельный раздел механики.

Особенно значительны в XIX веке были успехи в области механики сплошной среды. Навье и Коши в общей форме сформулировали уравнения теории упругости. В работах Навье и Стокса были получены дифференциальные уравнения гидродинамики с учётом вязкости жидкости. Наряду с этим происходит углубление знаний в области гидродинамики идеальной жидкости: появляются работы Гельмгольца о вихрях, Кирхгофа, Жуковского и Рейнольдса о турбулентности, Прандтля о пограничных эффектах. Сен-Венан разработал математическую модель, описывающую пластические свойства металлов.


3.3. Новейшее время

В XX веке интерес исследователей переключается на нелинейные эффекты в области классической механики. Ляпунов и Анри Пуанкаре заложили основы теории нелинейных колебаний. Мещерский и Циолковский провели анализ динамики тел переменной массы. Из механики сплошной среды выделяется аэродинамика, основы которой разработаны Жуковским. В середине XX века активно развивается новое направление в классической механике - теория хаоса. Важными также остаются вопросы устойчивости сложных динамических систем.


Примечания

  1. 1 2 3 4 Ландау, Лифшиц, с. 9
  2. 1 2 Ландау, Лифшиц, с. 26-28
  3. 1 2 Ландау, Лифшиц, с. 24-26
  4. Ландау, Лифшиц, с. 14-16

Литература

  • Б. М. Яворский, А. А. Детлаф Физика для школьников старших классов и поступающих в вузы. - М .: Академия, 2008. - 720 с. - (Высшее образование). - 34 000 экз . - ISBN 5-7695-1040-4
  • Сивухин Д. В. Общий курс физики. - Издание 5-е, стереотипное. - М .: Физматлит, 2006. - Т. I. Механика. - 560 с. - ISBN 5-9221-0715-1
  • А. Н. Матвеев Механика и теория относительности - www.alleng.ru/d/phys/phys108.htm. - 3-е изд.. - М .: ОНИКС 21 век: Мир и Образование, 2003. - 432 с. - 5000 экз . - ISBN 5-329-00742-9
  • Ч. Киттель, У. Найт, М. Рудерман Механика. Берклеевский курс физики.. - М .: Лань, 2005. - 480 с. - (Учебники для вузов). - 2000 экз . - ISBN 5-8114-0644-4
  • Ландау, Л. Д., Лифшиц, Е. М. Механика. - Издание 5-е, стереотипное. - М .: Физматлит, 2004. - 224 с. - («Теоретическая физика», том I). - ISBN 5-9221-0055-6
  • Г. Голдстейн Классическая механика. - 1975. - 413 с.
  • С. M. Тарг . Механика - www.femto.com.ua/articles/part_1/2257.html - статья из Физической энциклопедии

HTML-версии работы пока нет.


Подобные документы

    Предмет и задачи механики – раздела физики, изучающего простейшую форму движения материи. Механическое движение - изменение с течением времени положения тела в пространстве относительно других тел. Основные законы классической механики, открытые Ньютоном.

    презентация , добавлен 08.04.2012

    Теоретическая механика (статика, кинематика, динамика). Изложение основных законов механического движения и взаимодействия материальных тел. Условия их равновесия, общие геометрические характеристики движения и законы движения тел под действием сил.

    курс лекций , добавлен 06.12.2010

    Определение основных физических терминов: кинематика, механическое движение и его траектория, точка и система отсчета, путь, поступательное перемещение и материальная точка. Формулы, характеризующие равномерное и прямолинейное равноускоренное движение.

    презентация , добавлен 20.01.2012

    Аксиомы статики. Моменты системы сил относительно точки и оси. Трение сцепления и скольжения. Предмет кинематики. Способы задания движения точки. Нормальное и касательное ускорение. Поступательное и вращательное движение тела. Мгновенный центр скоростей.

    шпаргалка , добавлен 02.12.2014

    Обзор разделов классической механики. Кинематические уравнения движения материальной точки. Проекция вектора скорости на оси координат. Нормальное и тангенциальное ускорение. Кинематика твердого тела. Поступательное и вращательное движение твердого тела.

    презентация , добавлен 13.02.2016

    Относительность движения, его постулаты. Системы отсчета, их виды. Понятие и примеры материальной точки. Численное значение вектора (модуль). Скалярное произведение векторов. Траектория и путь. Мгновенная скорость, ее компоненты. Круговое движение.

    презентация , добавлен 29.09.2013

    Изучение основных задач динамики твердого тела: свободное движение и вращение вокруг оси и неподвижной точки. Уравнение Эйлера и порядок вычисления момента количества движения. Кинематика и условия совпадения динамических и статических реакций движения.

    лекция , добавлен 30.07.2013

    Механика, ее разделы и абстракции, применяемые при изучении движений. Кинематика, динамика поступательного движения. Механическая энергия. Основные понятия механики жидкости, уравнение неразрывности. Молекулярная физика. Законы и процессы термодинамики.

    презентация , добавлен 24.09.2013

    Вывод формулы для нормального и тангенциального ускорения при движении материальной точки и твердого тела. Кинематические и динамические характеристики вращательного движения. Закон сохранения импульса и момента импульса. Движение в центральном поле.

    реферат , добавлен 30.10.2014

    Что понимают под относительностью движения в физике. Понятие системы отсчёта как совокупности тела отсчёта, системы координат и системы отсчёта времени, связанных с телом, по отношению к которому изучается движение. Система отсчета движения небесных тел.



Читайте также: