Диаметр молекулы воды. Основные положения молекулярно-кинетической теории. Размеры молекул — Гипермаркет знаний. Указания к решению

Когда два или более атома вступают в химические связи друг с другом, возникают молекулы. При этом не имеет значения, являются ли эти атомы одинаковыми или они вовсе отличаются друг от друга как по форме, так и по своему размеру. Мы с вами разберемся, какова величина молекул и от чего это зависит.

Что такое молекулы?

На протяжении тысячелетий ученые размышляли о тайне жизни, о том, что именно происходит при ее зарождении. Согласно самым древним культурам, жизнь и все-все в этом мире состоит из основных элементов природы - земли, воздуха, ветра, воды и огня. Однако со временем многие философы начали выдвигать идею, что все вещи состоят из крошечных, неделимых вещей, которые не могут быть созданы и уничтожены.

Однако только после появления атомной теории и современной химии ученые начали постулировать, что частицы, взятые в совокупности, породили основные строительные блоки всех вещей. Так появился термин, который в контексте современной теории частиц относится к мельчайшим единицам массы.

По своему классическому определению, молекула - это наименьшая частица вещества, которая помогает сохранять его химические и физические свойства. Она состоит из двух или более атомов, а также групп одинаковых или разных атомов, удерживаемых вместе химическими силами.

Какова величина молекул? В 5 классе природоведение (школьный предмет) дает лишь общее представление о размерах и формах, более подробно этот вопрос изучается в старших классах на уроках химии.

Примеры молекул

Молекулы могут быть простыми или сложными. Вот некоторые примеры:

  • H 2 O (вода);
  • N 2 (азот);
  • O 3 (озон);
  • CaO (оксид кальция);
  • C 6 H 12 O 6 (глюкоза).

Молекулы, состоящие из двух или более элементов, называются соединениями. Так, вода, оксид кальция и глюкоза являются составными. Не все соединения являются молекулами, но все молекулы являются соединениями. Насколько большими они могут быть? Какова величина молекулы? Известен тот факт, что почти все вокруг нас состоит из атомов (кроме света и звука). Их общий вес и будет составлять массу молекулы.

Молекулярная масса

Говоря о том, какова величина молекул, большинство ученых отталкиваются от молекулярной массы. Это общий вес всех входящих в нее атомов:

  • Вода, состоящая из двух атомов водорода (имеющих по одной единице атомной массы) и одного атома кислорода (16 единиц атомной массы), имеет молекулярный вес 18 (точнее, 18,01528).
  • Глюкоза имеет молекулярную массу 180.
  • ДНК, которая является очень длинной, может иметь молекулярную массу, которая составляет около 1010 (приблизительный вес одной человеческой хромосомы).

Измерение в нанометрах

В дополнение к массе мы также можем измерить, какова величина молекул в нанометрах. Единица воды составляет около 0,27 Нм в поперечнике. ДНК достигает 2 Нм в поперечнике и может растягиваться до нескольких метров в длину. Трудно себе представить, как такие размеры могут умещаться в одной клетке. Соотношение длины и толщины ДНК удивительно. Оно составляет 1/100 000 000, это как человеческий волос с длиной в футбольное поле.

Формы и размеры

Какова величина молекул? Они бывают разных форм и размеров. Вода и углекислый газ при этом являются одними из самых маленьких, белки - одними из самых больших. Молекулы - это элементы, состоящие из атомов, которые связаны друг с другом. Понимание внешнего вида молекул традиционно является частью химии. Помимо их непостижимо странного химического поведения, одной из важных характеристик молекул является их размер.

Где может быть особенно полезным знание о том, какова величина молекул? Ответ на этот и многие другие вопросы помогает в сфере нанотехнологий, так как концепция нанороботов и интеллектуальных материалов обязательно имеет дело с эффектами молекулярных размеров и форм.

Какова величина молекул?

В 5 классе природоведение по этой теме дает только общую информацию, что все молекулы состоят из атомов, которые находятся в постоянном беспорядочном движении. В старших классах можно уже увидеть структурные формулы в учебниках химии, которые напоминают действительную форму молекул. Однако невозможно измерить их длину с помощью обычной линейки, а чтобы это сделать, нужно знать, что молекулы представляют собой трехмерные объекты. Их изображение на бумаге является проекцией на двумерную плоскость. Длина молекулы изменяется с помощью связей длин ее углов. Существуют три основных:

  • Угол тетраэдра 109°, когда все связи этого атома со всеми другими атомами являются одинарными (только одно тире).
  • Угол шестиугольника 120°, когда один атом имеет одну двойную связь с другим атомом.
  • Угол линии 180°, когда атом имеет либо две двойные связи, либо одну тройную с другим атомом.

Реальные углы часто отличаются от этих углов, так как необходимо учитывать целый ряд разнообразных эффектов, в том числе электростатические взаимодействия.

Как представить себе размер молекул: примеры

Какова величина молекул? В 5 классе ответы на этот вопрос, как мы уже говорили, носят общий характер. Школьники знают, что размер названных соединений очень маленький. Вот, например, если превратить молекулу песка в одной единственной песчинке в целую песчинку, то под получившейся массой можно было бы спрятать дом в пять этажей. Какова величина молекул? Краткий ответ, которой также является и более научным, имеет следующий вид.

Молекулярная масса приравнивается к отношению массы всего вещества к количеству молекул в веществе или отношению молярной массы к постоянной Авогадро. Единицей измерения является килограмм. В среднем молекулярная масса составляет 10 -23 -10 -26 кг. Возьмем, например, воду. Ее молекулярная масса будет 3 х 10 -26 кг.

Как размер молекулы влияет на силы притяжения?

Ответственной за притяжение между молекулами является электромагнитная сила, которая проявляется через притяжение противоположных и отталкивание подобных зарядов. Электростатическая сила, которая существует между противоположными зарядами, доминирует во взаимодействиях между атомами и между молекулами. Гравитационная сила настолько мала в этом случае, что ею можно пренебречь.

При этом размер молекулы влияет на силу притяжения через электронное облако случайных искажений, возникающих при распределении электронов молекулы. В случае неполярных частиц, проявляющих только слабые ван-дер-ваальсовые взаимодействия или дисперсионные силы, размер молекул оказывает прямое влияние на величину электронного облака, окружающего указанную молекулу. Чем она больше, тем больше и заряженное поле, которое ее окружает.

Большее электронное облако означает, что между соседними молекулами может происходить больше электронных взаимодействий. В результате одна часть молекулы развивает временный положительный частичный заряд, а другая - отрицательный. Когда это происходит, молекула может поляризовать электронное облако у соседней. Притяжение происходит потому, что частичная положительная сторона одной молекулы притягивается к частичной отрицательной стороне другой.

Заключение

Итак, какова величина молекул? В природоведении, как мы выяснили, можно найти лишь образное представление о массе и размерах этих мельчайших частиц. Но мы знаем, что есть простые и сложные соединения. И ко вторым можно отнести такое понятие, как макромолекула. Это очень большая единица, например белок, которая обычно создается путем полимеризации меньших субъединиц (мономеров). Они обычно состоят из тысяч атомов или более.

Молекулы имеют размеры и разнообразные формы. Для наглядности будем изображать молекулу в виде шарика, воображая, что она охвачена сферической поверхностью, внутри которой находятся электронные оболочки ее атомов (рис. 4, а). По современным представлениям молекулы не имеют геометрически определенного диаметра. Поэтому за диаметр d молекулы условились принимать расстояние между центрами двух молекул (рис. 4, б), сблизившихся настолько, что силы притяжения между ними уравновешиваются силами отталкивания.

Из курса химии" известно, что килограмм-молекула (киломоль) любого вещества, независимо от его агрегатного состояния, содержит одинаковое количество молекул, называемое числом Авогадро, а именно N A = 6,02*10 26 молекул.

Теперь оценим диаметр молекулы, например воды. Для этого разделим объем киломоля воды на число Авогадро. Киломоль воды имеет массу 18 кг. Считая, что молекулы воды расположены плотно друг к другу и ее плотность 1000 кг / м 3 , можем сказать, что 1 кмоль воды занимает объем V = 0,018 м 3 . На долю одной молекулы воды приходится объем



Приняв молекулу за шарик и воспользовавшись формулой объема шара вычислим приблизительный диаметр, иначе линейный размер молекулы воды:


Диаметр молекулы меди 2,25*10 -10 м. Диаметры молекул газов того же порядка. Например, диаметр молекулы водорода 2,47*10 -10 м, углекислого газа - 3,32*10 -10 м. Значит, молекула имеет диаметр порядка 10 -10 м. На длине 1 см рядом могут расположиться 100 млн. молекул.

Произведем оценку массы молекулы, например сахара (C 12 H 22 О 11). Для этого надо массу киломоля сахара (μ = 342,31 кг / кмоль) разделить на число Авогадро, т. е. на число молекул в

Размер молекулы является величиной условной. Его оценивают так. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния d (рис. 1).

Расстояние предельного сближения центров двух молекул называют эффективным диаметром молекулы d (при этом считают, что молекулы имеют сферическую форму).

В настоящее время существует много методов определения размеров молекул. Самый простой, хотя и не самый точный, состоит в следующем. В твердых и жидких телах молекулы расположены очень близко одна к другой, почти вплотную. Поэтому можно считать, что объем V , занимаемый телом некоторой массы m , приблизительно равен сумме объемов всех его молекул.

Тогда объем одной молекулы будет \(V_{0} =\frac{V}{N},\) где V - объем тела, \(N=\frac{m}{M} \cdot N_{A}\) - число молекул в теле. Следовательно,

\(V_{0} =\frac{V\cdot M}{m\cdot N_{A}}.\)

Так как \(\frac{m}{V} =\rho,\) где ρ - плотность вещества, то

\(V_{0} =\frac{M}{\rho \cdot N_{A}}.\) (6.5)

Считая, что молекула - маленький шарик, диаметр которого d = 2r , где r - радиус, имеем

\(V_{0} = \frac{4}{3} \pi \cdot r^{3} = \frac{\pi \cdot d^{3}}{6}.\)

Подставив сюда значение V 0 (6.5), получим

\(\frac{\pi \cdot d^{3}}{6} = \frac{M}{\rho \cdot N_{A}}.\)

\(d = \sqrt[{3}]{\frac{6M}{\pi \cdot \rho \cdot N_{A}}}.\)

Так, для воды

\(d = \sqrt[{3}]{\frac{6\cdot 18\cdot 10^{-3}}{3,14 \cdot 10^{3} \cdot 6,02 \cdot 10^{23}}} = 3,8 \cdot 10^{-10}\) м.

Размеры молекул различных веществ неодинаковы, но все они порядка 10 -10 м, т.е. очень малы.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 125-126.

Молекулярно-кинетическая теория идеальных газов

В физике для описания тепловых явлений используют два основных метода: молекулярно-кинетический (статистический) и термодинамиче­ский.

Молекулярно-кинетический метод (статистический) основан на представлении о том, что все вещества состоят из молекул, находящихся в хаотическом движении. Так как число молекул огромно, то можно, применяя законы статистики, найти определенные закономерности для всего вещества в целом.

Термодинамический метод исходит из основных опытных законов, получивших название законов термодинамики. Термодинамический метод подходит к изучению явлений подобно классической механике, которая базируется на опытных законах Ньютона. При таком подходе не рассматривается внутреннее строение вещества.

Основные положения молекулярно-кинетической теории

И их опытное обоснование. Броуновское движение.

Масса и размер молекул.

Теорию, которая изучает тепловые явления в макроскопических телах и объясняет зависимости внутренних свойств тел от характера движения и взаимодействия между частицами, из которых состоят тела, называют молекулярно-кинетической теорией ( сокращённо МКТ) или просто молекулярной физикой .

В основе молекулярно-кинетической теории лежат три важнейшие положения:

Согласно первому положению МКТ , все тела состоят из огромного количества частиц (атомов и молекул), между которыми есть промежутки .

Атом – это электрически нейтральная микрочастица, состоящая из положительно заряженного ядра и окружающей его электронной оболочки. Совокупность атомов одного вида называют химическим элементом . В естественном состоянии в природе встречаются атомы 90 химических элементов, наиболее тяжёлым из которых является уран. При сближении атомы могут объединяться в устойчивые группы. Системы из небольшого числа связанных друг с другом атомов называют молекулой . Например, молекула воды состоит из трёх атомов (рис.): двух атомов водорода (Н) и одного атома кислорода (О), поэтому её обозначают Н 2 О. Молекулыявляютсянаименьшими устойчивыми частицами данного вещества, обладающими его основными химическими свойствами. Например, наименьшая частица воды – это молекула воды, наименьшая частица сахара – молекула сахара.

Про вещества, состоящие из атомов, не объединённых в молекулы, говорят, что они находятся в атомарном состоянии ; в противном случае говорят о молекулярном состоянии . В первом случае мельчайшей частицей вещества является атом (например Не), во втором случае – молекула (например Н 2 О).

Если два тела состоят из одного и того же числа частиц, то говорят, что эти тела содержат одинаковое количество вещества . Количество вещества обозначается греческой буквой ν(ню) и измеряется в молях . За 1 моль принимают количество вещества в 12 г углерода. Так как в 12 г углерода содержится приблизительно 6∙10 23 атомов, то для количества вещества (т.е. числа молей) в теле, состоящем из N частиц, можно написать

Если ввести обозначения N A = 6∙10 23 моль -1 .

то соотношение (1) примет вид следующей простой формулы:

Таким образом, количество вещества - это отношение числа N молекул (атомов) в данном макроскопическом теле к числу N A атомов в 0,012 кг атомов углерода:

В 1 моле любого вещества содержится N A = 6,02·10 23 молекул. Число N A называют постоянной Авогадро . Физический смысл постоянной Авогадро заключается в том, что её значение показывает число частиц (атомов- в атомарном веществе, молекул –в молекулярном), содержащееся в 1 моле любого вещества.

Массу одного моля вещества называют молярной массой . Если молярную массу обозначить буквой μ, то для количества вещества в теле массой m можно записать:

Из формул (2) и (3) следует, что число частиц в любом теле можно определить по формуле:

Молярная масса определяется по формуле

М=М г ·10 -3 кг/моль

Здесь через М г обозначена относительная молекулярная (атомная) масса вещества, измеренная в а.е.м. (атомные единицы массы), которой в молекулярной физике принято характеризовать массу молекул (атомов).Относительную молекулярную массуМ г можно определить, если среднюю массу молекулы (m m) данного вещества разделить на 1/12 массы изотопа углерода 12 С:

1/12 m 12 C = 1а.е.м =1,66·10 -27 кг.

При решении задач эту величину находят с помощью таблицы Менделеева. В этой таблице указаны относительные атомные массы элементов. Складывая их в соответствии с химической формулой молекулы данного вещества, и получают относительную молекулярную М г. Например, для

углерода (С) М г =12·10 -3 кг/моль

воды (Н 2 О)М г =(1·2+16)=18·10 -3 кг/моль.

Аналогично определяется и относительная атомная масса .

Моль газа при нормальных условиях занимает объем V 0 = 22,4·10 23 м 3

Следовательно, в 1 м 3 любого газа при нормальных условиях (определяемых давлением Р=101325 Па =10 5 Па=1атм; температурой 273ºК (0ºС), объёмом 1 моля идеального газа V 0 =22,4 10 -3 м 3) содержится одинаковое число молекул:

Это число получило название постоянной Лошмидта.

Чётких границ молекулы (как и атомы) не имеют. Размеры молекул твёрдых тел можно ориентировочно оценить следующим образом:

где - объём приходящийся на 1 молекулу, - объём всего тела,

m и ρ – его масса и плотность, N – число молекул в нём.

Атомы и молекулы нельзя увидеть невооружённым глазом или с помощью оптического микроскопа. Поэтому сомнения многих учёных конца XIX в. в реальности их существования понять можно. Однако в XX в. ситуация стала иной. Сейчас с помощью электронного микроскопа, а также средств голографической микроскопии можно наблюдать изображение не только молекул, но даже отдельных атомов.

Данные рентгеноструктурного анализа показывают, что диаметр любого атома имеет порядок d = 10 -8 см (10 -10 м). Размеры молекул больше размеров атомов. Поскольку молекулы состоят из нескольких атомов, то чем больше количество атомов в молекуле, тем больше её размер. Размеры молекул лежат в пределах от 10 -8 см (10 -10 м) до 10 -5 см (10 -7 м).

Массы отдельных молекул и атомов очень малы, например абсолют­ное значение массы молекулы воды порядка 3·10 -26 кг. Массу отдельных молекул экспериментально определяют с помощью специального прибора – масс-спектрометра.

Кроме прямых экспериментов, позволяющих наблюдать атомы и молекулы, в пользу их существования говорит и множество других косвенных данных. Таковы, например, факты, касающиеся теплового расширения тел, их сжимаемости, растворения одних веществ в других и т.д.

Согласно второму положению молекулярно-кинетической теории , частицы непрерывно и хаотически (беспорядочно) движутся.

Это положение подтверждается существованием диффузии, испарения, давление газа на стенки сосуда, а также явлением броуновского движения.

Хаотичность движения означает, что у молекул не существует каких-либо предпочтительных путей и их движения имеют случайные направления.

Диффузия (от латинского diffusion – растекание, распространение) – явление, когда в результате теплового движения вещества происходит самопроизвольное проникновение одного вещества в другое (если эти вещества соприкасаются). Согласно молекулярно-кинетической теории, такое перемешивание происходит в результате того, что беспорядочно движущиеся молекулы одного вещества проникают в промежутки между молекулами другого вещества. Глубина проникновения зависит от температуры: чем выше температура, тем больше скорость движения частиц вещества и тем быстрее протекает диффузия. Диффузия наблюдается во всех состояниях вещества – в газах, жидкостях и твёрдых телах. Наиболее быстро диффузия происходит в газах (именно поэтому так быстро распространяется запах в воздухе). В жидкостях диффузия происходит медленнее, чем в газах. Это объясняется тем, что молекулы жидкости расположены значительно гуще, и потому «пробираться» через них значительно труднее. Медленнее всего диффузия происходит в твёрдых телах. В одном из опытов гладко отшлифованные пластины свинца и золота положили одна на другую и сжали грузом. Через пять лет золото и свинец проникли друг в друга на 1мм. Диффузия в твёрдых телах обеспечивает соединение металлов при сварке, пайке, хромировании и т.п. Диффузия имеет большое значение в процессах жизнедеятельности человека, животных и растений. Например, именно благодаря диффузии кислород из лёгких проникает в кровь человека, а из крови - в ткани.

Броуновским движением называют беспорядочное движение взвешенных в жидкости или газе мелких частичек другого вещества. Это движение было открыто в 1827 г. английским ботаником Р.Броуном, который наблюдал в микроскоп движение цветочной пыльцы, взвешенной в воде. В наше время для таких наблюдений используют маленькие части краски гуммигут, которая не растворяется в воде. В газе броуновское движение совершают, например, взвешенные в воздухе частицы пыли или дыма. Броуновское движение частицы возникает потому, что импульсы, с которыми молекулы жидкости или газа действуют на эту частицу, не компенсируют друг друга. Молекулы среды (то есть молекулы газа или жидкости) движутся хаотично, поэтому их удары приводят броуновскую частицу в беспорядочное движение: броуновская частица быстро меняет свою скорость по направлению и по величине (рис.1).



В ходе изучения броуновского движения было обнаружено, что его интенсивность: а) увеличивается с ростом температуры среды; б) увеличивается при уменьшении размеров самих броуновских частиц; в)уменьшается в более вязкой жидкости и г) совершенно не зависит от материала (плотности) броуновских частиц. Кроме того, было установлено, что это движение универсально (поскольку наблюдается у всех веществ, взвешенных в распыленном состоянии в жидкости), непрерывно (в закрытом со всех сторон кювете, его можно наблюдать неделями, месяцами, годами) и хаотично (беспорядочно).

Согласно третьему положению МКТ , частицы вещества взаимодействуют друг с другом: притягиваются на небольших расстояниях и отталкиваются, когда эти расстояния уменьшаются.

Наличие сил межмолекулярного взаимодействия (сил взаимного притяжения и отталкивания) объясняет существование устойчивых жидких и твёрдых тел.

Этими же причинами объясняется малая сжимаемость жидкостей и способность твёрдых тел сопротивляться деформациям сжатия и растяжения.

Силы межмолекулярного взаимодействия имеют электромагнитную природу и сводятся к двум типам: притяжению и отталкиванию. Эти силы проявляются на расстояниях, сравнимых с размерами молекул. Причиной этих сил является то, что молекулы и атомы состоят из заряженных частиц с противоположными знаками зарядов – отрицательных электронов и положительно заряженных атомных ядер. В целом молекулы электрически нейтральны. На рисунке 2.2 с помощью стрелок показано, что ядра атомов, внутри которых находятся положительно заряженные протоны, отталкиваются друг от друга, так же ведут себя и отрицательно заряженные электроны. А вот между ядрами и электронами действуют силы притяжения.

Зависимость сил взаимодействия молекул от расстояния между ними качественно объясняет молекулярный механизм появления сил упругости в твёрдых телах. При растяжении твёрдого тела частицы удаляются друг от друга. При этом появляются силы притяжения молекул, которые возвращают частицы в первоначальное положение. При сжатии твёрдого тела частицы сближаются на расстояния. Это приводит к увеличению сил отталкивания, которые возвращают частицы в первоначальное положение и препятствуют дальнейшему сжатию.

Поэтому при малых деформациях (в миллионы раз превышающих размер молекул) выполняется закон Гука, согласно которому сила упругости пропорциональна деформации. При больших смещениях закон Гука не действует

О справедливости этого положения свидетельствует сопротивляемость всех тел сжатию, а также (за исключением газов) –их растяжению.

МКТ - это просто!

«Ничто не существует, кроме атомов и пустого пространства …» - Демокрит
«Любое тело может делиться до бесконечности» - Аристотель

Основные положения молекулярно-кинетической теории (МКТ)

Цель МКТ - это объяснение строения и свойств различных макроскопических тел и тепловых явлений, в них протекающих, движением и взаимодействием частиц, из которых состоят тела.
Макроскопические тела - это большие тела, состоящие из огромного числа молекул.
Тепловые явления - явления, связанные с нагреванием и охлаждением тел.

Основные утверждения МКТ

1. Вещество состоит из частиц (молекул и атомов).
2. Между частицами есть промежутки.
3. Частицы беспорядочно и непрерывно движутся.
4. Частицы взаимодействуют друг с другом (притягиваются и отталкиваются).

Подтверждение МКТ:

1. экспериментальное
- механическое дробление вещества; растворение вещества в воде; сжатие и расширение газов; испарение; деформация тел; диффузия; опыт Бригмана: в сосуд заливается масло, сверху на масло давит поршень, при давлении 10 000 атм масло начинает просачиваться сквозь стенки стального сосуда;

Диффузия; броуновское движение частиц в жидкости под ударами молекул;

Плохая сжимаемость твердых и жидких тел; значительные усилия для разрыва твердых тел; слияние капель жидкости;

2. прямое
- фотографирование, определение размеров частиц.

Броуновское движение

Броуновское движение - это тепловое движение взвешенных частиц в жидкости (или газе).

Броуновское движение стало доказательством непрерывного и хаотичного (теплового) движения молекул вещества.
- открыто английским ботаником Р. Броуном в 1827 г.
- дано теоретическое объяснение на основе МКТ А. Эйнштейном в 1905 г.
- экспериментально подтверждено французским физиком Ж. Перреном.

Масса и размеры молекул

Размеры частиц

Диаметр любого атома составляет около см.


Число молекул в веществе

где V - объем вещества, Vo - объем одной молекулы

Масса одной молекулы

где m - масса вещества,
N - число молекул в веществе

Единица измерения массы в СИ: [m]= 1 кг

В атомной физике массу обычно измеряют в атомных единицах массы (а.е.м.).
Условно принято считать за 1 а.е.м. :

Относительная молекулярная масса вещества

Для удобства расчетов вводится величина - относительная молекулярная масса вещества.
Массу молекулы любого вещества можно сравнить с 1/12 массы молекулы углерода.

где числитель - это масса молекулы, а знаменатель - 1/12 массы атома углерода

Это величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса химического элемента

где числитель - это масса атома, а знаменатель - 1/12 массы атома углерода

Величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса каждого химического элемента дана в таблице Менделеева.

Другой способ определения относительной молекулярной массы вещества

Относительная молекулярная масса вещества равна сумме относительных атомных масс химических элементов, входящих в состав молекулы вещества.
Относительную атомную массу любого химического элемента берем из таблицы Менделеева!)

Количество вещества

Количество вещества (ν) определяет относительное число молекул в теле.

где N - число молекул в теле, а Na - постоянная Авогадро

Единица измерения количества вещества в системе СИ: [ν]= 1 моль

1 моль - это количество вещества, в котором содержится столько молекул (или атомов), сколько атомов содержится в углероде массой 0,012 кг.

Запомни!
В 1 моле любого вещества содержится одинаковое число атомов или молекул!

Но!
Одинаковые количества вещества для разных веществ имеют разную массу!


Постоянная Авогадро

Число атомов в 1 моле любого вещества называют числом Авогадро или постоянной Авогадро:

Молярная масса

Молярная масса (M) - это масса вещества, взятого в одном моле, или иначе - это масса одного моля вещества.

Масса молекулы
- постоянная Авогадро

Единица измерения молярной массы: [M]=1 кг/моль.

Формулы для решения задач

Эти формулы получаются в результате подстановки вышерассмотренных формул.

Масса любого количества вещества



Читайте также: