Относительная молярная и молекулярная массы вещества. Молярный объем вещества. Нахождение молярного объема газов. Законы идеальных газов. Объемная доля Как изменяется молярный объем


Теоретический материал смотри на странице "Молярный объём газа ".

Основные формулы и понятния:

Из закона Авогадро, например, следует, что при одинаковых условиях в 1 литре водорода и в 1 литре кислорода содержится одинаковое кол-во молекул, хотя их размеры сильно разнятся.

Первое следствие из закона Авогадро:

Объём, который занимает 1 моль любого газа при нормальных условиях (н.у.), равен 22,4 литра и называется молярным объёмом газа (V m).

V m =V/ν (м 3 /моль)

Что называют нормальными условиями (н.у.):

  • нормальная температура = 0°C или 273 К;
  • нормальное давление = 1 атм или 760 мм рт.ст. или 101,3 кПа

Из первого следствия закона Авогадро вытекает, что, например, 1 моль водорода (2 г) и 1 моль кислорода (32 г) занимают один и тот же объем, равный 22,4 литра при н.у.

Зная V m , можно найти объем любого кол-ва (ν) и любой массы (m) газа:

V=V m ·ν V=V m ·(m/M)

Типовая задача 1 : Какой объём при н.у. занимает 10 моль газа?

V=V m ·ν=22,4·10=224 (л/моль)

Типовая задача 2 : Какой объём при н.у. занимает 16 г кислорода?

V(O 2)=V m ·(m/M) M r (O 2)=32; M(O 2)=32 г/моль V(O 2)=22,4·(16/32)=11,2 л

Второе следствие из закона Авогадро:

Зная пллотность газа (ρ=m/V) при н.у., можно вычислить молярную массу этого газа: M=22,4·ρ

Плотностью (D) одного газа по другому называют отношение массы определённого объёма первого газа к массе аналогичного объёма второго газа, взятого при одинаковых условиях.

Типовая задача 3 : Определить относительную плотность углекислого газа по водороду и воздуху.

D водород (CO 2) = M r (CO 2)/M r (H 2) = 44/2 = 22 D воздух = 44/29 = 1,5

  • один объём водорода и один объём хлора дают два объёма хлористого водорода: H 2 +Cl 2 =2HCl
  • два объёма водорода и один объём кислорода дают два объёма водяного пара: 2H 2 +O 2 =2H 2 O

Задача 1 . Сколько молей и молекул содержится в 44 г углекислого газа.

Решение:

M(CO 2)=12+16·2=44 г/моль ν = m/M = 44/44 = 1 моль N(CO 2) = ν·N A = 1·6,02·10 23 = 6,02·10 23

Задача 2 . Вычислить массу одной молекулы озона и атома аргона.

Решение:

M(O 3) = 16·3 = 48 г m(O 3) = M(O 3)/N A = 48/(6,02·10 23) = 7,97·10 -23 г M(Ar) = 40 г m(Ar) = M(Ar)/N A = 40/(6,02·10 23) = 6,65·10 -23 г

Задача 3 . Какой объём при н.у. занимает 2 моля метана.

Решение:

ν = V/22,4 V(CH 4) = ν·22,4 = 2·22,4 = 44,8 л

Задача 4 . Определить плотность и относительную плотность оксида углерода (IV) по водороду, метану и воздуху.

Решение:

M r (CO 2)=12+16·2=44; M(CO 2)=44 г/моль M r (CH 4)=12+1·4=16; M(CH 4)=16 г/моль M r (H 2)=1·2=2; M(H 2)=2 г/моль M r (воздуха)=29; М(воздуха)=29 г/моль ρ=m/V ρ(CO 2)=44/22,4=1,96 г/моль D(CH 4)=M(CO 2)/M(CH 4)=44/16=2,75 D(H 2)=M(CO 2)/M(H 2)=44/2=22 D(воздуха)=M(CO 2)/M(воздуха)=44/24=1,52

Задача 5 . Определить массу газовой смеси, в которую входят 2,8 кубометров метана и 1,12 кубометров оксида углерода.

Решение:

M r (CO 2)=12+16·2=44; M(CO 2)=44 г/моль M r (CH 4)=12+1·4=16; M(CH 4)=16 г/моль 22,4 кубометра CH 4 = 16 кг 2,8 кубометра CH 4 = x m(CH 4)=x=2,8·16/22,4=2 кг 22,4 кубометра CO 2 = 28 кг 1,12 кубометра CO 2 = x m(CO 2)=x=1,12·28/22,4=1,4 кг m(CH 4)+m(CO 2)=2+1,4=3,4 кг

Задача 6 . Определить объёмы кислорода и воздуха требуемые для сжигания 112 кубометров двухвалентного оксида углерода при содержании в нем негорючих примесей в объёмных долях 0,50.

Решение:

  • определяем объём чистого CO в смеси: V(CO)=112·0,5=66 кубометров
  • определяем объём кислорода, необходимый для сжигания 66 кубов CO: 2CO+O 2 =2CO 2 2моль+1моль 66м 3 +X м 3 V(CO)=2·22,4 = 44,8 м 3 V(O 2)=22,4 м 3 66/44,8 = X/22,4 X = 66·22,4/44,8 = 33 м 3 или 2V(CO)/V(O 2) = V 0 (CO)/V 0 (O 2) V - молярные объемы V 0 - вычисляемые объемы V 0 (O 2) = V(O 2)·(V 0 (CO)/2V(CO))

Задача 7 . Как изменится давление в сосуде, заполненном газами водорода и хлора после того, как они вступят в реакцию? Аналогично для водорода и кислорода?

Решение:

  • H 2 +Cl 2 =2HCl - в результате взаимодействия 1 моля водорода и 1 моля хлора получается 2 моля хлороводорода: 1(моль)+1(моль)=2(моль), следовательно, давление не изменится, поскольку получившийся объм газовой смеси равен сумме объемов компонентов, вступивших в реакцию.
  • 2H 2 +O 2 =2H 2 O - 2(моль)+1(моль)=2(моль) - давление в сосуде уменьшится в полтора раза, поскольку из 3 объёмов компонентов, вступивших в реакцию, получилось 2 объёма газовой смеси.

Задача 8 . 12 литров газовой смеси из аммиака и четырехвалентного оксида углерода при н.у. имеют массу 18 г. Сколько в смеси каждого из газов?

Решение:

V(NH 3)=x л V(CO 2)=y л M(NH 3)=14+1·3=17 г/моль M(CO 2)=12+16·2=44 г/моль m(NH 3)=x/(22,4·17) г m(CO 2)=y/(22,4·44) г Система уравнений объем смеси: x+y=12 масса смеси: x/(22,4·17)+y/(22,4·44)=18 После решения получим: x=4,62 л y=7,38 л

Задача 9 . Какое кол-во воды получится в результате реакции 2 г водорода и 24 г кислорода.

Решение:

2H 2 +O 2 =2H 2 O

Из уравнения реакции видно, что кол-ва реагирующих веществ не соответствуют отношению стехиометрических коэффициентов в уравнении. В таких случаях вычисления проводят по веществу, которого меньше, т.е., это вещество закончится первым в ходе реакции. Чтобы определить какой из компонентов находится в недостатке, надо обратить внимание на коэффициенте в уравнении реакции.

Количества исходных компонентов ν(H 2)=4/2=2 (моль) ν(O 2)=48/32=1,5 (моль)

Однако, торопиться не надо. В нашем случае для реакции с 1,5 моль кислорода необходимо 3 моль водорода (1,5·2), а у нас его только 2 моль, т.е., не хватает 1 моль водорода, чтобы прореагировали все полтора моля кислорода. Поэтому, расчёт кол-ва воды будем вести по водороду:

ν(H 2 O)=ν(H 2)=2 моль m(H 2 O) = 2·18=36 г

Задача 10 . При температуре 400 К и давлении 3 атмосферы газ занимает объём 1 литр. Какой объем будет занимать этот газ при н.у.?

Решение:

Из уравнения Клапейрона:

P·V/T = P н ·V н /T н V н = (PVT н)/(P н T) V н = (3·1·273)/(1·400) = 2,05 л

При изучении химических веществ важными понятиями являются такие величины, как молярная масса, плотность вещества, молярный объем. Так, что же такое молярный объем, и в чем его отличие для веществ в разном агрегатном состоянии?

Молярный объем: общая информация

Чтобы вычислить молярный объем химического вещества необходимо молярную массу этого вещества разделить на его плотность. Таким образом, молярный объем вычисляется по формуле:

где Vm – молярный объем вещества, М – молярная масса, p – плотность. В Международной системе СИ эта величина измеряется в кубический метр на моль (м 3 /моль).

Рис. 1. Молярный объем формула.

Молярный объем газообразных веществ отличается от веществ, находящихся в жидком и твердом состоянии тем, что газообразный элемент количеством 1 моль всегда занимает одинаковый объем (если соблюдены одинаковые параметры).

Объем газа зависит от температуры и давления, поэтому при расчетах следует брать объем газа при нормальных условиях. Нормальными условиями считается температура 0 градусов и давление 101,325 кПа.

Молярный объем 1 моля газа при нормальных условиях всегда одинаков и равен 22,41 дм 3 /моль. Этот объем называется молярным объемом идеального газа. То есть, в 1 моле любого газа (кислород, водород, воздух) объем равен 22,41 дм 3 /м.

Молярный объем при нормальных условиях можно вывести, используя уравнение состояния для идеального газа, которое называется уравнением Клайперона-Менделеева:

где R – универсальная газовая постоянная, R=8.314 Дж/моль*К=0,0821 л*атм/моль К

Объем одного моля газа V=RT/P=8.314*273.15/101.325=22.413 л/моль, где Т и Р – значение температуры (К) и давления при нормальных условиях.

Рис. 2. Таблица молярных объемов.

Закон Авогадро

В 1811 году А. Авогадро выдвинул гипотезу, что в равных объемах различных газов при одинаковых условиях (температуре и давлении) содержится одинаковой число молекул. Позже гипотеза подтвердилась и стала законом, носящим имя великого итальянского ученого.

Рис. 3. Амедео Авогадро.

Закон становится понятен, если вспомнить, что в газообразном виде расстояние между частицами несопоставимо больше, чем размеры самих частиц.

Таким образом, из закона Авогадро можно сделать следующие выводы:

  • В равных объёмах любых газов, взятых при одной и той же температуре и при одном и том же давлении, содержится одно и то же число молекул.
  • 1 моль совершенно различных газов при одинаковых условиях занимает одинаковый объем.
  • Один моль любого газа при нормальных условиях занимает объем 22,41 л.

Следствие из закона Авогадро и понятие молярного объема основаны на том, что моль любого вещества содержит одинаковое число частиц (для газов – молекул), равное постоянной Авогадро.

Чтобы узнать число молей растворенного вещества содержится в одном литре раствора, необходимо определить молярную концентрацию вещества по формуле c=n/V, где n – количество растворенного вещества, выражаемое в молях, V – объем раствора, выражаемый в литрах С – молярность.

Что мы узнали?

В школьной программе по химии 8 класса изучается тема «Молярный объем». В одном моле газа всегда содержится одинаковый объем, равный 22,41 кубический метр/моль. Этот объем называется молярным объемом газа.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 64.

Молярный объем газа равен отношению объема газа к количеству вещества этого газа, т.е.


V m = V(X) / n(X),


где V m - молярный объем газа - постоянная величина для любого газа при данных условиях;


V(X) – объем газа Х;


n(X) – количество вещества газа Х.


Молярный объем газов при нормальных условиях (нормальном давлении р н = 101 325 Па ≈ 101,3 кПа и температуре Т н =273,15 К ≈ 273 К) составляет V m = 22,4 л/моль.

Законы идеальных газов

В расчетах, связанных с газами, часто приходится переходить от данных условий к нормальным или наоборот. При этом удобно пользоваться формулой, следующей из объединенного газового закона Бойля-Мариотта и Гей-Люссака:


pV / Т = p н V н / Т н


Где p -давление; V - объем; Т- температура вшкале Кельвина; индекс «н» указывает на нормальные условия.

Объемная доля

Состав газовых смесей часто выражают при помощи объемной доли - отношения объема данного компонента к общему объему системы, т.е.


φ(Х) = V(X) / V


где φ(Х) - объемная доля компонента Х;


V(X) - объем компонента Х;


V - объем системы.


Объемная доля - безразмерная величина, её выражают в долях от единицы или в процентах.


Пример 1. Какой объем займет при температуре 20°С и давлении 250 кПа аммиак массой 51 г?







1. Определяем количество вещества аммиака:


n(NH 3) = m(NH 3) / М(NH 3) = 51 / 17 = 3 моль.


2. Объем аммиака при нормальных условиях составляет:


V(NH 3) = V m · n(NH 3) = 22,4 · 3 = 67,2 л.


3. Используя формулу (3), приводим объем аммиака к данным условиям (температура Т = (273 + 20) К = 293 К):


V(NH 3) = p н V н (NH 3) / pТ н = 101,3 · 293 · 67,2 / 250 · 273 = 29,2 л.


Ответ: V(NH 3) = 29,2 л.






Пример 2. Определите объем, который займет при нормальных условиях газовая смесь, содержащая водород, массой 1,4 г и азот, массой 5,6 г.







1. Находим количества вещества водорода и азота:


n(N 2) = m(N 2) / М(N 2) = 5,6 / 28 = 0,2 моль


n(H 2) = m(H 2) / М(H 2) = 1,4 / 2 = 0,7 моль


2. Так как при нормальных условиях эти газы не взаимодействуют между собой, то объем газовой смеси будет равен сумме объемов газов, т.е.


V(смеси) = V(N 2) + V(H 2) = V m · n(N 2) + V m · n(H2) = 22,4 · 0,2 + 22,4 · 0,7 = 20,16 л.


Ответ: V(смеси) = 20,16 л.





Закон объемных отношений

Как решить задачу с использованием «Закона объемных отношений»?


Закон объемных отношений: объемы газов, участвующих в реакции, относятся друг к другу как небольшие целые числа, равные коэффициентам в уравнении реакции.


Коэффициенты в уравнениях реакций показывают числа объемов реагирующих и образовавшихся газообразных веществ.


Пример. Вычислите объем воздуха, необходимый для сгорания 112 л ацетилена.


1. Составляем уравнение реакции:

2. На основании закона объемных отношений вычисляем объем кислорода:


112 / 2 = Х / 5, откуда Х = 112 · 5 / 2 = 280л


3. Определяем объм воздуха:


V(возд) = V(O 2) / φ(O 2)


V(возд) = 280 / 0,2 = 1400 л.

Наряду с массой и объемом в химических расчетах часто используется количество вещества, пропорциональное числу содержащихся в веществе структурных единиц. При этом в каждом случае должно быть указано, какие именно структурные единицы (молекулы, атомы, ионы и т. д.) имеются в виду. Единицей количества вещества является моль.

Моль - количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится атомов в 12 г изотопа углерода 12С.

Число структурных единиц, содержащихся в 1 моле вещества (постоянная Авогадро) определено с большой точностью; в практических расчетах его принимают равным 6,02 1024 моль -1 .

Нетрудно показать, что масса 1 моля вещества (мольная масса), - выраженная в граммах, численно равна относительной молекулярной массе этого вещества.

Так, относительная молекулярная масса (или, сокращенно молекулярная масса) свободного хлора С1г равна 70,90. Следовательно, мольная масса молекулярного хлора составляет 70,90 г/моль. Однако мольная масса атомов хлора вдвое меньше (45,45 г/моль), так как 1 моль молекул хлора Сl содержит 2 моля атомов хлора.

Согласно закону Авогадро, в равных объемах любых газов, взятых при одной и той же температуре и одинаковом давлении, содержится одинаковое число молекул. Иными словами, одно и то же число молекул любого газа занимает при одинаковых условиях один и тот же объем. Вместе с тем 1 моль любого газа содержит одинаковое число молекул. Следовательно, при одинаковых условиях 1 моль любого газа занимает один и тот же объем. Этот объем называется мольным объемом газа и при нормальных условиях (0°С, давление 101, 425 кПа) равен 22,4 л.

Например, утверждение «содержание диоксида углерода в воздухе составляет 0,04% (об.)» означает, что при парциальном давлении СО 2 , равном давлению воздуха, и при той же температуре диоксид углерода, содержащийся в воздухе, займет 0,04% общего объема, занимаемого воздухом.

Контрольное задание

1. Сопоставить числа молекул, содержащихся в 1 г NH 4 и в 1 г N 2 . В каком случае и во сколько раз число молекул больше?

2. Выразить в граммах массу одной молекулы диоксида серы.



4. Сколько молекул содержится в 5,00 мл хлора при нормальных условиях?

4. Какой объем при нормальных условиях занимают 27 10 21 молекул газа?

5. Выразить в граммах массу одной молекулы NО 2 -

6. Каково соотношение объемов, занимаемых 1 молем О 2 и 1 молем Оз (условия одинаковые)?

7. Взяты равные массы кислорода, водорода и метана при одинаковых условиях. Найти отношение объемов взятых газов.

8. На вопрос, какой объем займет 1 моль воды при нормальных условиях, получен ответ: 22,4 л. Правильный ли это ответ?

9. Выразить в граммах массу одной молекулы HCl.

Сколько молекул диоксида углерода находится в 1 л воздуха, если объемное содержание СО 2 составляет 0,04% (условия нормальные)?

10. Сколько молей содержится в 1 м 4 любого газа при нормальных условиях?

11. Выразить в граммах массу одной молекулы Н 2 О-

12. Сколько молей кислорода находится в 1 л воздуха, если объемное

14. Сколько молей азота находится в 1 л воздуха, если объемное содержание его составляет 78% (условия нормальные)?

14. Взяты равные массы кислорода, водорода и азота при одинаковых условиях. Найти отношение объемов взятых газов.

15. Сопоставить числа молекул, содержащихся в 1 г NО 2 и в 1 г N 2 . В каком случае и во сколько раз число молекул больше?

16. Сколько молекул содержится в 2,00 мл водорода при нормальных условиях?

17. Выразить в граммах массу одной молекулы Н 2 О-

18. Какой объем при нормальных условиях занимают 17 10 21 молекул газа?

СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

При определении понятия скорости химической реакции необходимо различать гомогенные и гетерогенные реакции. Если реакция протекает в гомогенной системе, например, в растворе или в смеси газов, то она идет во всем объеме системы. Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени в единице объема системы. Поскольку отношение числа молей вещества к объему, в котором оно распределено, есть молярная концентрация вещества, скорость гомогенной реакции можно также определить как изменение концентрации в единицу времени какого-либо из веществ: исходного реагента или продукта реакции . Чтобы результат расчета всегда был положительным, независимо, от того, производится он по реагенту или продукту, в формуле используется знак «±»:



В зависимости от характера реакции время может быть выражено не только в секундах, как требует система СИ, но также в минутах или часах. В ходе реакции величина ее скорости не постоянна, а непрерывно изменяется: уменьшается, так как уменьшаются концентрации исходных веществ. Вышеприведенный расчет дает среднее значение скорости реакции за некоторый интервал времени Δτ = τ 2 – τ 1 . Истинная (мгновенная) скорость определяется как предел к которому стремится отношение ΔС / Δτ при Δτ → 0, т. е. истинная скорость равна производной концентрации по времени.

Для реакции, в уравнении которой есть стехиометрические коэффициенты, отличающиеся от единицы, значения скорости, выраженные по разным веществам, неодинаковы. Например для реакции А + 4В = D + 2Е расход вещества А равен одному молю, вещества В – трем молям, приход вещества Е – двум молям. Поэтому υ (А) = ⅓υ (В) = υ (D) =½υ (Е) или υ (Е) . = ⅔υ (В) .

Если реакция протекает между веществами, находящимися в различных фазах гетерогенной системы, то она может идти только на поверхности раздела этих фаз. Например, взаимодействие раствора кислоты и куска металла происходит только на поверхности металла. Скоростью гетерогенной реакции называется количество вещества, вступающего в реакцию или образующегося в результате реакции за единицу времени на единице поверхности раздела фаз:

.

Зависимость скорости химической реакции от концентрации реагирующих веществ выражается законом действующих масс: при постоянной температуре скорость химической реакции прямо пропорциональна произведению молярных концентраций реагирующих веществ, возведенных в степени, равные коэффициентам при формулах этих веществ в уравнении реакции . Тогда для реакции

2А + В → продукты

справедливо соотношение υ ~ ·С А 2 ·С В, а для перехода к равенству вводится коэффициент пропорциональности k , называемый константой скорости реакции :

υ = k ·С А 2 ·С В = k ·[А] 2 ·[В]

(молярные концентрации в формулах могут обозначаться как буквой С с со­ответствующим индексом, так и формулой вещества, заключенной в квадратные скобки). Физический смысл константы скорости реакции – скорость реакции при концентрациях всех реагирующих веществ, равных 1 моль/л. Размерность константы скорости реакции зависит от числа сомножителей в правой части уравнения и может быть с –1 ; с –1 ·(л/моль); с –1 ·(л 2 /моль 2) и т. п., то есть такой, чтобы в любом случае при вычислениях скорость реакции выражалась в моль·л –1 ·с –1 .

Для гетерогенных реакций в уравнение закона действия масс входят концентрации только тех веществ, которые находятся в газовой фазе или в растворе. Концентрация вещества, находящегося в твердой фазе, представ­ляет постоянную величину и входит в константу скорости, например, для процесса горения угля С + О 2 = СО 2 закон действия масс записывается:

υ = k I ·const··= k ·,

где k = k I ·const.

В системах, где одно или несколько веществ являются газами, скорость реакции зависит также и от давления. Например, при взаимодействии водорода с парами иода H 2 + I 2 =2HI скорость химической реакции будет определяться выражением:

υ = k ··.

Если увеличить давление, например, в 4 раза, то во столько же раз уменьшится объем, занимаемый системой, и, следовательно, во столько же раз увеличатся концентрации каждого из реагирующих веществ. Скорость реакции в этом случае возрастет в 9 раз

Зависимость скорости реакции от температуры описывается правилом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость реакции увеличивается в 2‑4 раза . Это означает, что при повышении температуры в арифметической прогрессии скорость химической реакции возрастает в геометрической прогрессии. Основанием в формуле прогрессии является температурный коэффициент скорости реакции γ, показывающий, во сколько раз увеличива­ется скорость данной реакции (или, что то же самое – константа скорости) при росте температуры на 10 градусов. Математически правило Вант-Гоффа выражается формулами:

или

где и – скорости реакции соответственно при начальной t 1 и конечной t 2 температурах. Правило Вант-Гоффа может быть также выражено следующими соотношениями:

; ; ; ,

где и – соответственно скорость и константа скорости реакции при тем­пературе t ; и – те же величины при температуре t +10n ; n – число «десятиградусных» интервалов (n =(t 2 –t 1)/10), на которые изменилась температура (может быть числом целым или дробным, положительным или отрицательным).

Контрольное задание

1. Найти значение константы скорости реакции А + В -> АВ, если при концентрациях веществ А и В, равных соответственно 0,05 и 0,01 моль/л, скорость реакции равна 5 10 -5 моль/(л-мин).

2. Во сколько раз изменится скорость реакции 2А + В -> А2В, если концентрацию вещества А увеличить в 2 раза, а концентрацию вещества В уменьшить в 2 раза?

4. Во сколько раз следует увеличить концентрацию вещества, В 2 в системе 2А 2 (г.) + В 2 (г.) = 2А 2 В(г.), чтобы при уменьшении концентрации вещества А в 4 раза скорость прямой реакции не изменилась?

4. Через некоторое время после начала реакции ЗА+В->2C+D концентрации веществ составляли: [А] =0,04 моль/л; [В] = 0,01 моль/л; [С] =0,008 моль/л. Каковы исходные концентрации веществ А и В?

5. В системе СО + С1 2 = СОС1 2 концентрацию увеличили от 0,04 до 0,12 моль/л, а концентрацию хлора - от 0,02 до 0,06 моль/л. Во сколько раз возросла скорость прямой реакции?

6. Реакция между веществами А и В выражается уравнением: А + 2В → С. Начальные концентрации составляют: [А] 0 = 0,04 моль/л, [В] о = 0,05 моль/л. Константа скорости реакции равна 0,4. Найти начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

7. Как изменится скорость реакции 2СO + О2 = 2СО2 , протекающей в закрытом сосуде, если увеличить давление в 2 раза?

8. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 20 °С до 100 °С, приняв значение температурного коэффициента скорости реакции равным 4.

9. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если увеличить давление в системе в 4 раза;

10. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если уменьшить объем системы в 4 раза?

11. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если повысить концентрацию NO в 4 раза?

12. Чему равен температурный коэффициент скорости реакции, если при увеличении температуры на 40 градусов скорость реакции

возрастает в 15,6 раза?

14. . Найти значение константы скорости реакции А + В -> АВ, если при концентрациях веществ А и В, равных соответственно 0,07 и 0,09 моль/л, скорость реакции равна 2,7 10 -5 моль/(л-мин).

14. Реакция между веществами А и В выражается уравнением: А + 2В → С. Начальные концентрации составляют: [А] 0 = 0,01 моль/л, [В] о = 0,04 моль/л. Константа скорости реакции равна 0,5. Найти начальную скорость реакции и скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшится на 0,01 моль/л.

15. Как изменится скорость реакции 2NO(r.) + 0 2 (г.) → 2N02(r.), если увеличить давление в системе в 2 раза;

16. В системе СО + С1 2 = СОС1 2 концентрацию увеличили от 0,05 до 0,1 моль/л, а концентрацию хлора - от 0,04 до 0,06 моль/л. Во сколько раз возросла скорость прямой реакции?

17. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 20 °С до 80 °С, приняв значение температурного коэффициента скорости реакции равным 2.

18. Вычислить, во сколько раз увеличится скорость реакции, если повысить температуру системы от 40 °С до 90 °С, приняв значение температурного коэффициента скорости реакции равным 4.

ХИМИЧЕСКАЯ СВЯЗЬ. ОБРАЗОВАНИЕ Й СТРУКТУРА МОЛЕКУЛ

1.Какие типы химической связи Вам известны? Приведите пример образования ионной связи по методу валентных связей.

2. Какую химическую связь называют ковалентной? Что характерно для ковалентного типа связи?

4. Какими свойствами характеризуется ковалентная связь? Покажите это на конкретных примерах.

4. Какой тип химической связи в молекулах Н 2; Cl 2 НС1?

5.Какой характер имеют связи в молекулах NCI 4 , CS 2 , СО 2 ? Укажите для каждой нз них направление смещения общей электронной пары.

6. Какую химическую связь называют ионной? Что характерно для ионного типа связи?

7. Какой тип связи в молекулах NaCl, N 2 , Cl 2 ?

8. Изобразите все возможные способы перекрывания s-орбитали с р-орбиталью;. Укажите направленность связи при этом.

9. Объясните донорно-акцепторный механизм ковалентной связи на примере образования иона фосфония [РН 4 ]+.

10.В молекулах СО, С0 2 , связь полярная или неполярная? Объясните. Опишите водородную связь.

11. Почему некоторые молекулы, имеющие полярные связи, в целом являются неполярными?

12.Ковалентный или ионный тип связи характерен для следующих соединений: Nal, S0 2 , KF? Почему ионная связь является предельным случаем ковалентной?

14. Что такое металлическая связь? Чем она отличается от ковалентной связи? Какие свойства металлов она обусловливает?

14. Каков характер связей между атомами в молекулах; KHF 2 , Н 2 0, HNO?

15. Чем объяснить высокую прочность связи между атомами в молекуле азота N 2 и значительно меньшую в молекуле фосфора Р 4 ?

16 . Какую связь называют водородной? Почему для молекул H2S и НС1 в отличие от Н2О и HF образование водородных связей не характерно?

17. Какую связь называют ионной? Обладает ли ионная связь свойствами насыщаемости и направленности? Почему она является предельным случаем ковалентной связи?

18. Какой тип связи в молекулах NaCl, N 2 , Cl 2 ?

В химии не используют значения абсолютных масс молекул, а пользуются величиной относительная молекулярная масса. Она показывает, во сколько раз масса молекулы больше 1/12 массы атома углерода. Эту величину обозначают M r .

Относительная молекулярная масса равна сумме относительных атомных масс входящих в нее атомов. Вычислим относительную молекулярную массу воды.

Вы знаете, что в состав молекулы воды входят два атома водорода и один атом кислорода. Тогда ее относительная молекулярная масса будет равна сумме произведений относительной атомной массы каждого химического элемента на число его атомов в молекуле воды:

Зная относительные молекулярные массы газообразных веществ, можно сравнивать их плотности, т. е. вычислять относительную плотность одного газа по другому - D(А/Б). Относительная плотность газа А по газу Б равна отношению их относительных молекулярных масс:

Вычислим относительную плотность углекислого газа по водороду:

Теперь вычисляем относительную плотность углекислого газа по водороду:

D(угл. г./водор.) = M r (угл. г.) : M r (водор.) = 44:2 = 22.

Таким образом, углекислый газ в 22 раза тяжелее водорода.

Как известно, закон Авогадро применим только к газообразным веществам. Но химикам необходимо иметь представление о количестве молекул и в порциях жидких или твердых веществ. Поэтому для сопоставления числа молекул в веществах химиками была введена величина - молярная масса .

Молярная масса обозначается М , она численно равна относительной молекулярной массе.

Отношение массы вещества к его молярной массе называется количеством вещества .

Количество вещества обозначается n . Это количественная характеристика порции вещества, наряду с массой и объемом. Измеряется количество вещества в молях.

Слово «моль» происходит от слова «молекула». Число молекул в равных количествах вещества одинаково.

Экспериментально установлено, что 1 моль вещества содержит частиц (например, молекул). Это число называется числом Авогадро. А если к нему добавить единицу измерения - 1/моль, то это будет физическая величина - постоянная Авогадро, которая обозначается N А.

Молярная масса измеряется в г/моль. Физический смысл молярной массы в том, что эта масса 1 моль вещества.

В соответствии с законом Авогадро, 1 моль любого газа будет занимать один и тот же объем. Объем одного моля газа называется молярным объемом и обозначается V n .

При нормальных условиях (а это 0 °С и нормальное давление - 1 атм. или 760 мм рт. ст. или 101,3 кПа) молярный объем равен 22,4 л/моль.

Тогда количество вещества газа при н.у. можно вычислить как отношение объема газа к молярному объему.

ЗАДАЧА 1 . Какое количество вещества соответствует 180 г воды?

ЗАДАЧА 2. Вычислим объем при н.у., который займет углекислый газ количеством 6 моль.

Список литературы

  1. Сборник задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. - М.: АСТ: Астрель, 2006. (с. 29-34)
  2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с. 27-32)
  3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005. (§§ 12, 13)
  4. Химия: неорг. химия: учеб. для 8 кл. общеобр.учрежд. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§§ 10, 17)
  5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.
  1. Единая коллекция цифровых образовательных ресурсов ().
  2. Электронная версия журнала «Химия и жизнь» ().
  3. Тесты по химии (онлайн) ().

Домашнее задание

1. с.69 № 3; с.73 №№ 1, 2, 4 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. №№ 65, 66, 71, 72 из Сборника задач и упражнений по химии: 8-й класс: к учебнику П.А. Оржековского и др. «Химия, 8 класс» / П.А. Оржековский, Н.А. Титов, Ф.Ф. Гегеле. - М.: АСТ: Астрель, 2006.



Читайте также: