Наибольшее и наименьшее значения функции одной переменной. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. Наибольшее и наименьшее значение функции - определения, иллюстрации

\(\blacktriangleright\) Для того, чтобы найти наибольшее/наименьшее значение функции на отрезке \(\) , необходимо схематично изобразить график функции на этом отрезке.
В задачах из данной подтемы это можно сделать с помощью производной: найти промежутки возрастания (\(f">0\) ) и убывания (\(f"<0\) ) функции, критические точки (где \(f"=0\) или \(f"\) не существует).

\(\blacktriangleright\) Не стоит забывать, что наибольшее/наименьшее значение функция может принимать не только во внутренних точках отрезка \(\) , а также на его концах.

\(\blacktriangleright\) Наибольшее/наименьшее значение функции - это значение координаты \(y=f(x)\) .

\(\blacktriangleright\) Производная сложной функции \(f(t(x))\) ищется по правилу: \[{\Large{f"(x)=f"(t)\cdot t"(x)}}\]
\[\begin{array}{|r|c|c|} \hline & \text{Функция } f(x) & \text{Производная } f"(x)\\ \hline \textbf{1} & c & 0\\&&\\ \textbf{2} & x^a & a\cdot x^{a-1}\\&&\\ \textbf{3} & \ln x & \dfrac1x\\&&\\ \textbf{4} & \log_ax & \dfrac1{x\cdot \ln a}\\&&\\ \textbf{5} & e^x & e^x\\&&\\ \textbf{6} & a^x & a^x\cdot \ln a\\&&\\ \textbf{7} & \sin x & \cos x\\&&\\ \textbf{8} & \cos x & -\sin x\\ \hline \end{array} \quad \quad \quad \quad \begin{array}{|r|c|c|} \hline & \text{Функция } f(x) & \text{Производная } f"(x)\\ \hline \textbf{9} & \mathrm{tg}\, x & \dfrac1{\cos^2 x}\\&&\\ \textbf{10} & \mathrm{ctg}\, x & -\,\dfrac1{\sin^2 x}\\&&\\ \textbf{11} & \arcsin x & \dfrac1{\sqrt{1-x^2}}\\&&\\ \textbf{12} & \arccos x & -\,\dfrac1{\sqrt{1-x^2}}\\&&\\ \textbf{13} & \mathrm{arctg}\, x & \dfrac1{1+x^2}\\&&\\ \textbf{14} & \mathrm{arcctg}\, x & -\,\dfrac1{1+x^2}\\ \hline \end{array}\]

Задание 1 #2357

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции \(y = e^{x^2 - 4}\) на отрезке \([-10; -2]\) .

ОДЗ: \(x\) – произвольный.

1) \

\ Таким образом, \(y" = 0\) при \(x = 0\) .

3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \([-10; -2]\) :


4) Эскиз графика на отрезке \([-10; -2]\) :


Таким образом, наименьшего на \([-10; -2]\) значения функция достигает в \(x = -2\) .

\ Итого: \(1\) – наименьшее значение функции \(y\) на \([-10; -2]\) .

Ответ: 1

Задание 2 #2355

Уровень задания: Равен ЕГЭ

\(y = \sqrt{2}\cdot\sqrt{x^2 + 1}\) на отрезке \([-1; 1]\) .

ОДЗ: \(x\) – произвольный.

1) \

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[\sqrt{2}\cdot\dfrac{x}{\sqrt{x^2 + 1}} = 0\qquad\Leftrightarrow\qquad x = 0\,.\] Производная существует при любом \(x\) .

2) Найдём промежутки знакопостоянства \(y"\) :


3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \([-1; 1]\) :


4) Эскиз графика на отрезке \([-1; 1]\) :


Таким образом, наибольшего на \([-1; 1]\) значения функция достигает в \(x = -1\) или в \(x = 1\) . Сравним значения функции в этих точках.

\ Итого: \(2\) – наибольшее значение функции \(y\) на \([-1; 1]\) .

Ответ: 2

Задание 3 #2356

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции \(y = \cos 2x\) на отрезке \(\) .

ОДЗ: \(x\) – произвольный.

1) \

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[-2\cdot \sin 2x = 0\qquad\Leftrightarrow\qquad 2x = \pi n, n\in\mathbb{Z}\qquad\Leftrightarrow\qquad x = \dfrac{\pi n}{2}, n\in\mathbb{Z}\,.\] Производная существует при любом \(x\) .

2) Найдём промежутки знакопостоянства \(y"\) :


(здесь бесконечное число промежутков, в которых чередуются знаки производной).

3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \(\) :


4) Эскиз графика на отрезке \(\) :


Таким образом, наименьшего на \(\) значения функция достигает в \(x = \dfrac{\pi}{2}\) .

\ Итого: \(-1\) – наименьшее значение функции \(y\) на \(\) .

Ответ: -1

Задание 4 #915

Уровень задания: Равен ЕГЭ

Найдите наибольшее значение функции

\(y = -\log_{17}(2x^2 - 2\sqrt{2}x + 2)\) .

ОДЗ: \(2x^2 - 2\sqrt{2}x + 2 > 0\) . Решим на ОДЗ:

1) Обозначим \(2x^2-2\sqrt{2}x+2=t(x)\) , тогда \(y(t)=-\log_{17}t\) .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[-\dfrac{1}{\ln 17}\cdot\dfrac{4x-2\sqrt{2}}{2x^2-2\sqrt{2}x+2} = 0\qquad\Leftrightarrow\qquad 4x-2\sqrt{2} = 0\] – на ОДЗ, откуда находим корень \(x = \dfrac{\sqrt{2}}{2}\) . Производная функции \(y\) не существует при \(2x^2-2\sqrt{2}x+2 = 0\) , но у данного уравнения отрицательный дискриминант, следовательно, у него нет решений. Для того, чтобы найти наибольшее/наименьшее значение функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства \(y"\) :

3) Эскиз графика:

Таким образом, наибольшее значение функция достигает в \(x = \dfrac{\sqrt{2}}{2}\) :

\(y\left(\dfrac{\sqrt{2}}{2}\right) = -\log_{17}1 = 0\) ,

Итого: \(0\) – наибольшее значение функции \(y\) .

Ответ: 0

Задание 5 #2344

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции

\(y = \log_{3}(x^2 + 8x + 19)\) .

ОДЗ: \(x^2 + 8x + 19 > 0\) . Решим на ОДЗ:

1) Обозначим \(x^2 + 8x + 19=t(x)\) , тогда \(y(t)=\log_{3}t\) .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[\dfrac{1}{\ln 3}\cdot\dfrac{2x+8}{x^2 + 8x + 19} = 0\qquad\Leftrightarrow\qquad 2x+8 = 0\] – на ОДЗ, откуда находим корень \(x = -4\) . Производная функции \(y\) не существует при \(x^2 + 8x + 19 = 0\) , но у данного уравнения отрицательный дискриминант, следовательно, у него нет решений. Для того, чтобы найти наибольшее/наименьшее значение функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства \(y"\) :

3) Эскиз графика:

Таким образом, \(x = -4\) – точка минимума функции \(y\) и наименьшее значение достигается в ней:

\(y(-4) = \log_{3}3 = 1\) .

Итого: \(1\) – наименьшее значение функции \(y\) .

Ответ: 1

Задание 6 #917

Уровень задания: Сложнее ЕГЭ

Найдите наибольшее значение функции

\(y = -e^{(x^2 - 12x + 36 + 2\ln 2)}\) .


С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования... Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X , который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .

Навигация по странице.

Наибольшее и наименьшее значение функции - определения, иллюстрации.

Кратко остановимся на основных определениях.

Наибольшим значением функции , что для любого справедливо неравенство .

Наименьшим значением функции y=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:"Всегда ли можно определить наибольшее (наименьшее) значение функции"? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На отрезке


На первом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее - в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале


На четвертом рисунке функция принимает наибольшее (max y ) и наименьшее (min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .

На интервале , о наибольшем значении никаких выводов сделать нельзя.

На бесконечности


В примере, представленном на седьмом рисунке, функция принимает наибольшее значение (max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение (min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .

На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3 . Графическая иллюстрация этого примера приведена на рисунке №8.

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке .

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок . Для этого, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b .
  5. Из полученных значений функции выбираем наибольшее и наименьшее - они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Пример.

Найти наибольшее и наименьшее значение функции

  • на отрезке ;
  • на отрезке [-4;-1] .

Решение.

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Находим производную функции по :

Очевидно, производная функции существует во всех точках отрезков и [-4;-1] .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2 . Эта стационарная точка попадает в первый отрезок .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :

Следовательно, наибольшее значение функции достигается при x=1 , а наименьшее значение – при x=2 .

Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):

Решение.

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2) .

А теперь можно сопоставить полученные в каждом пункте результаты с графиком функции. Синими пунктирными линиями обозначены асимптоты.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Вариант 1. у

1. График функции у= f (x ) изображен на рисунке.

Укажите наибольшее значение этой функции 1

на отрезке [ a ; b ]. а 0 1 b х

1) 2,5; 2) 3; 3) 4; 4) 2.

https://pandia.ru/text/78/524/images/image003_127.gif" width="242" height="133 src="> 1) -4; 2) -2; 3) 4; 4) 2.

4. Функции у= f (x ) задана на отрезке [ a ; b ]. у

На рисунке изображен график ее производной

у= f ´(x ). Исследуйте на экстремумы 1 b

функцию у= f (x ). В ответе укажите количество a 0 1 х

точек минимума.

1) 6; 2) 7; 3) 4;

5. Найдите наибольшее значение функции у= -2х2+8х -7.

1) -2; 2) 7; 3) 1;

6. Найдите наименьшее значение функции на отрезке .

1) https://pandia.ru/text/78/524/images/image005_87.gif" width="17" height="48 src=">.

7. Найдите наименьшее значение функции у= |2х+3 | - .

1) - https://pandia.ru/text/78/524/images/image006_79.gif" width="17" height="47">; 4) - .

https://pandia.ru/text/78/524/images/image009_67.gif" width="144" height="33 src="> имеет минимум в точке хо=1,5 ?

1) 5; 2) -6; 3) 4; 4) 6. у

9. Укажите наибольшее значение функции у= f (x ) ,

1 х

0 1

1) 2,5; 2) 3; 3) -3;

у= lg (100 – x 2 ).

1) 10 ; 2) 100 ; 3) 2 ; 4) 1 .

11. Найдите наименьшее значение функции у=2 sin -1.

1) -1 ; 2) -3 ; 3) -2 ; 4) - .

Тест 14. Экстремумы. Наибольшее (наименьшее) значение функции.

https://pandia.ru/text/78/524/images/image013_44.gif" width="130" height="115 src=">1. График функции у= f (x ) изображен на рисунке.

Укажите наименьшее значение этой функции 1

на отрезке [ a ; b ]. а b

0 1 x

1) 0; 2) - 4 ,5; 3) -2; 4) - 3.

2. у На рисунке изображен график функции у= f (x ).

Сколько точек максимума имеет функция?

1

0 1 х 1) 5; 2) 6; 3) 4; 4) 1.

3. В какой точке функция у= 2х2+24х -25 принимает наименьшее значение?

https://pandia.ru/text/78/524/images/image018_37.gif" width="76" height="48"> на отрезке [-3;-1].

1) - https://pandia.ru/text/78/524/images/image020_37.gif" width="17" height="47 src=">; 2); 4) - 5.

https://pandia.ru/text/78/524/images/image022_35.gif" width="135" height="33 src="> имеет минимум в точке хо= -2 ?

; 2) -6;; 4) 6. у

9. Укажите наименьшее значение функции у= f (x ) ,

график которой изображен на рисунке. 1 х

0 1

1) -1,5; 2) -1; 3) -3;

10. Найдите наибольшее значение функции у= log 11 (121 – x 2 ).

1) 11;; 3) 1;

11. Найдите наибольшее значение функции у=2 cos +3.

1) 5 ; 2) 3 ; 3) 2 ; 4) .

Ответы:

В этой статье я расскажу про алгоритм поиска наибольшего и наименьшего значения функции, точек минимума и максимума.

Из теории нам точно пригодится таблица производных и правила дифференцирования . Все это есть в этой табличке:

Алгоритм поиска наибольшего и наименьшего значения.

Мне удобнее объяснять на конкретном примере. Рассмотрим:

Пример: Найдите наибольшее значение функции y=x^5+20x^3–65x на отрезке [–4;0].

Шаг 1. Берем производную.

Y" = (x^5+20x^3–65x)" = 5x^4 + 20*3x^2 - 65 = 5x^4 + 60x^2 - 65

Шаг 2. Находим точки экстремума.

Точкой экстремума мы называем такие точки, в которых функция достигает своего наибольшего или наименьшего значения.

Чтобы найти точки экстремума, надо приравнять производную функции к нулю (y" = 0)

5x^4 + 60x^2 - 65 = 0

Теперь решаем это биквадратное уравнение и найденные корни есть наши точки экстремума.

Я решаю такие уравнения заменой t = x^2, тогда 5t^2 + 60t - 65 = 0.

Сократим уравнение на 5, получим: t^2 + 12t - 13 = 0

D = 12^2 - 4*1*(-13) = 196

T_(1) = (-12 + sqrt(196))/2 = (-12 + 14)/2 = 1

T_(2) = (-12 - sqrt(196))/2 = (-12 - 14)/2 = -13

Делаем обратную замену x^2 = t:

X_(1 и 2) = ±sqrt(1) = ±1
x_(3 и 4) = ±sqrt(-13) (исключаем, под корнем не может быть отрицательных чисел, если конечно речь не идет о комплексных числах)

Итого: x_(1) = 1 и x_(2) = -1 - это и есть наши точки экстремума.

Шаг 3. Определяем наибольшее и наименьшее значение.

Метод подстановки.

В условии нам был дан отрезок [b][–4;0]. Точка x=1 в этот отрезок не входит. Значит ее мы не рассматриваем. Но помимо точки x=-1 нам также надо рассмотреть левую и правую границу нашего отрезка, то есть точки -4 и 0. Для этого подставляем все эти три точки в исходную функцию. Заметьте исходную - это ту, которая дана в условии (y=x^5+20x^3–65x), некоторые начинают подставлять в производную...

Y(-1) = (-1)^5 + 20*(-1)^3 - 65*(-1) = -1 - 20 + 65 = [b]44
y(0) = (0)^5 + 20*(0)^3 - 65*(0) = 0
y(-4) = (-4)^5 + 20*(-4)^3 - 65*(-4) = -1024 - 1280 + 260 = -2044

Значит наибольшее значение функции это [b]44 и достигается оно в точки [b]-1, которая называется точкой максимума функции на отрезке [-4; 0].

Мы решили и получили ответ, мы молодцы, можно расслабиться. Но стоп! Вам не кажется, что считать y(-4) как-то слишком сложно? В условиях ограниченного времени лучше воспользоваться другим способом, я называю его так:

Через промежутки знакопостоянства.

Находятся эти промежутки для производной функции, то есть для нашего биквадратного уравнения.

Я делаю это следующим образом. Рисую направленный отрезок. Расставляю точки: -4, -1, 0, 1. Не смотря на то, что 1 не входит в заданный отрезок, ее все равно следует отметить для того, чтобы корректно определить промежутки знакопостоянства. Возьмем какое-нибудь число во много раз больше 1, допустим 100, мысленно подставим его в наше биквадратное уравнение 5(100)^4 + 60(100)^2 - 65. Даже ничего не считая становится очевидно, что в точке 100 функция имеет знак плюс. А значит и на промежутки от 1 до 100 она имеет знак плюс. При переходе через 1 (мы идем справа налево)функция сменит знак на минус. При переходе через точку 0 функция сохранит свой знак, так как это лишь граница отрезка, а не корень уравнения. При переходе через -1 функция опять сменит знак на плюс.

Из теории мы знаем, что там, где производная функции (а мы именно для нее это и чертили) меняет знак с плюса на минус (точка -1 в нашем случае) функция достигает своего локального максимума (y(-1)=44, как была посчитано ранее) на данном отрезке (это логически очень понятно, функция перестала возрастать, так как достигла своего максимума и начала убывать).

Соответственно, там где производная функции меняет знак с минуса на плюс , достигается локальный минимум функции . Да, да, мы также нашли точку локального минимума это 1, а y(1) - это минимальное значение функции на отрезке, допустим от -1 до +∞. Обратите огромное внимание, что это лишь ЛОКАЛЬНЫЙ МИНИМУМ, то есть минимум на определенном отрезке. Так как действительный (глобальный) минимум функция достигнет где-то там, в -∞.

На мой взгляд первый способ проще теоретически, а второй проще с точки зрения арифметических действий, но намного сложнее с точки зрения теории. Ведь иногда бывают случаи, когда функция не меняет знак при переходе через корень уравнения, да и вообще можно запутаться с этими локальными, глобальными максимумами и минимумами, хотя Вам так и так придется это хорошо освоить, если вы планируете поступать в технический ВУЗ (а для чего иначе сдавать профильное ЕГЭ и решать это задание). Но практика и только практика раз и навсегда научит Вас решать такие задачи. А тренироваться можете на нашем сайте. Вот .

Если появились какие-то вопросы, или что-то непонятно - обязательно спросите. Я с радостью Вам отвечу, и внесу изменения, дополнения в статью. Помните мы делаем этот сайт вместе!

Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

  • область определения функции
  • область значений функции
  • нули функции
  • промежутки возрастания и убывания
  • точки максимума и минимума
  • наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:

Абсцисса - это координата точки по горизонтали.
Ордината - координата по вертикали.
Ось абсцисс - горизонтальная ось, чаще всего называемая ось .
Ось ординат - вертикальная ось, или ось .

Аргумент - независимая переменная, от которой зависят значения функции. Чаще всего обозначается .
Другими словами, мы сами выбираем , подставляем в формулу функции и получаем .

Область определения функции - множество тех (и только тех) значений аргумента , при которых функция существует.
Обозначается: или .

На нашем рисунке область определения функции - это отрезок . Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции - это множество значений, которые принимает переменная . На нашем рисунке это отрезок - от самого нижнего до самого верхнего значения .

Нули функции - точки, где значение функции равно нулю, то есть . На нашем рисунке это точки и .

Значения функции положительны там, где . На нашем рисунке это промежутки и .
Значения функции отрицательны там, где . У нас это промежуток (или интервал) от до .

Важнейшие понятия - возрастание и убывание функции на некотором множестве . В качестве множества можно взять отрезок , интервал , объединение промежутков или всю числовую прямую.

Функция возрастает

Иными словами, чем больше , тем больше , то есть график идет вправо и вверх.

Функция убывает на множестве , если для любых и , принадлежащих множеству , из неравенства следует неравенство .

Для убывающей функции большему значению соответствует меньшее значение . График идет вправо и вниз.

На нашем рисунке функция возрастает на промежутке и убывает на промежутках и .

Определим, что такое точки максимума и минимума функции .

Точка максимума - это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума - такая точка, значение функции в которой больше , чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке - точка максимума.

Точка минимума - внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума - такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке - точка минимума.

Точка - граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции . В нашем случае это и .

А что делать, если нужно найти, например, минимум функции на отрезке ? В данном случае ответ: . Потому что минимум функции - это ее значение в точке минимума.

Аналогично, максимум нашей функции равен . Он достигается в точке .

Можно сказать, что экстремумы функции равны и .

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке равно и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно . Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.



Читайте также: