Почему нужно указывать на относительность движения. Относительная скорость. Относительность движения: основные положения

Можно ли быть неподвижным и при этом двигаться быстрее автомобиля Формулы 1? Оказывается, можно. Любое движение зависит от выбора системы отсчета, то есть любое движение относительно. Тема сегодняшнего урока: «Относительность движения. Закон сложения перемещений и скоростей». Мы узнаем, как выбрать систему отсчета в том или ином случае, как при этом найти перемещение и скорость тела.

Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени. В этом определении ключевой является фраза «относительно других тел». Каждый из нас относительно какой-либо поверхности неподвижен, но относительно Солнца мы совершаем вместе со всей Землей орбитальное движение со скоростью 30 км/с, то есть движение зависит от системы отсчета.

Система отсчета - совокупность системы координат и часов, связанных с телом, относительно которого изучается движение. Например, описывая движения пассажиров в салоне автомобиля, систему отсчета можно связать с придорожным кафе, а можно с салоном автомобиля или с движущимся встречным автомобилем, если мы оцениваем время обгона (рис. 1).

Рис. 1. Выбор системы отсчета

Какие же физические величины и понятия зависят от выбора системы отсчета?

1. Положение или координаты тела

Рассмотрим произвольную точку . В различных системах она имеет разные координаты (рис. 2).

Рис. 2. Координаты точки в разных системах координат

2. Траектория

Рассмотрим траекторию точки, находящейся на пропеллере самолета, в двух системах отсчета: системе отсчета, связанной с пилотом, и системе отсчета, связанной с наблюдателем на Земле. Для пилота данная точка будет совершать круговое вращение (рис. 3).

Рис. 3. Круговое вращение

В то время как для наблюдателя на Земле траекторией данной точки будет винтовая линия (рис. 4). Очевидно, что траектория зависит от выбора системы отсчета.

Рис. 4. Винтовая траектория

Относительность траектории. Траектории движения тела в различных системах отсчета

Рассмотрим, как меняется траектория движения в зависимости от выбора системы отсчета на примере задачи.

Задача

Какой будет траектория точки на конце пропеллера в разных СО?

1. В СО, связанной с летчиком самолета.

2. В СО, связанной с наблюдателем на Земле.

Решение:

1. Относительно самолета ни летчик, ни пропеллер не перемещаются. Для летчика траектория точки будет казаться окружностью (рис. 5).

Рис. 5. Траектория точки относительно летчика

2. Для наблюдателя на Земле точка движется двумя способами: вращаясь и двигаясь вперед. Траектория будет винтовой (рис. 6).

Рис. 6. Траектория точки относительно наблюдателя на Земле

Ответ : 1) окружность; 2) винтовая линия.

На примере данной задачи мы убедились, что траектория - это относительное понятие.

В качестве самостоятельной проверки предлагаем вам решить следующую задачу:

Какой будет траектория точки на конце колеса относительно центра колеса, если это колесо совершает поступательное движение вперед, и относительно точек, находящихся на земле (неподвижный наблюдатель)?

3. Перемещение и путь

Рассмотрим ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег. Перемещение пловца относительно рыбака, сидящего на берегу, и относительно плота будет разным (рис. 7).

Перемещение относительно земли называют абсолютным, а относительно движущегося тела - относительным. Перемещение движущегося тела (плота) относительно неподвижного тела (рыбака) называют переносным.

Рис. 7. Перемещение пловца

Из примера следует, что перемещение и путь являются относительными величинами.

4. Скорость

С помощью предыдущего примера можно легко показать, что скорость тоже относительная величина. Ведь скорость - это отношение перемещения ко времени. Время у нас одно и то же, а перемещение разное. Следовательно, скорость будет разной.

Зависимость характеристик движения от выбора системы отсчета называется относительностью движения .

В истории человечества были и драматичные случаи, связанные как раз с выбором системы отсчета. Казнь Джордано Бруно, отречение Галилео Галилея - все это следствия борьбы между сторонниками геоцентрической системы отсчета и гелиоцентрической системы отсчета. Уж очень сложно было человечеству привыкнуть к мысли о том, что Земля - это вовсе не центр мироздания, а вполне обычная планета. А движение можно рассматривать не только относительно Земли, это движение будет абсолютным и относительно Солнца, звезд или любых других тел. Описывать движение небесных тел в системе отсчета, связанной с Солнцем, намного удобнее и проще, это убедительно показали сначала Кеплер, а потом и Ньютон, который на основании рассмотрения движения Луны вокруг Земли вывел свой знаменитый закон всемирного тяготения.

Если мы говорим, что траектория, путь, перемещение и скорость являются относительными, то есть зависят от выбора системы отсчета, то про время мы этого не говорим. В рамках классической, или Ньютоновой, механики время есть величина абсолютная, то есть протекающее во всех системах отсчета одинаково.

Рассмотрим, как находить перемещение и скорость в одной системе отсчета, если они нам известны в другой системе отсчета.

Рассмотрим предыдущую ситуацию, когда плывет плот и в какой-то момент с него спрыгивает пловец и стремится переправиться на противоположный берег.

Как же связано перемещение пловца относительно неподвижной СО (связанной с рыбаком) с перемещением относительно подвижной СО (связанной с плотом) (рис. 8)?

Рис. 8. Иллюстрация к задаче

Перемещение в неподвижной системе отсчета мы назвали . Из треугольника векторов следует, что . Теперь перейдем к поиску соотношения между скоростями. Вспомним, что в рамках Ньютоновой механики время является абсолютной величиной (время во всех системах отсчета течет одинаково). Значит, каждое слагаемое из предыдущего равенства можно разделить на время. Получаем:

Это скорость, с которой движется пловец для рыбака;

Это собственная скорость пловца;

Это скорость плота (скорость течения реки).

Задача на закон сложения скоростей

Рассмотрим закон сложения скоростей на примере задачи.

Задача

Два автомобиля движутся навстречу друг другу: первый автомобиль со скоростью , второй - со скоростью . С какой скоростью сближаются автомобили (рис. 9)?

Рис. 9. Иллюстрация к задаче

Решение

Применим закон сложения скоростей. Для этого перейдем от привычной СО, связанной с Землей, к СО, связанной с первым автомобилем. Таким образом, первый автомобиль становится неподвижным, а второй движется к нему со скоростью (относительная скорость). С какой скоростью, если первый автомобиль неподвижен, вращается вокруг первого автомобиля Земля? Она вращается со скоростью и скорость направлена по направлению скорости второго автомобиля (переносная скорость). Два вектора, которые направлены вдоль одной прямой, суммируются. .

Ответ: .

Границы применимости закона сложения скоростей. Закон сложения скоростей в теории относительности

Долгое время считалось, что классический закон сложения скоростей справедлив всегда и применим ко всем системам отсчета. Однако порядка лет назад оказалось, что в некоторых ситуациях данный закон не работает. Рассмотрим такой случай на примере задачи.

Представьте себе, что вы находитесь на космической ракете, которая движется со скоростью . И капитан космической ракеты включает фонарик в направлении движения ракеты (рис. 10). Скорость распространения света в вакууме составляет . Какой же будет скорость света для неподвижного наблюдателя на Земле? Будет ли она равна сумме скоростей света и ракеты?

Рис. 10. Иллюстрация к задаче

Дело в том, что тут физика сталкивается с двумя противоречащими концепциями. С одной стороны, согласно электродинамике Максвелла, максимальная скорость - это скорость света, и она равна . С другой стороны, согласно механике Ньютона, время является абсолютной величиной. Задача решилась, когда Эйнштейн предложил специальную теорию относительности, а точнее ее постулаты. Он первым предположил, что время не является абсолютным. То есть где-то оно течет быстрее, а где-то медленнее. Конечно, в нашем мире небольших скоростей мы не замечаем данный эффект. Для того чтобы почувствовать эту разницу, нам необходимо двигаться со скоростями, близкими к скорости света. На основании заключений Эйнштейна был получен закон сложения скоростей в специальной теории относительности. Он выглядит следующим образом:

Это скорость относительно неподвижной СО;

Это скорость относительно подвижной СО;

Это скорость подвижной СО относительно неподвижной СО.

Если подставить значения из нашей задачи, то получим, что скорость света для неподвижного наблюдателя на Земле будет составлять .

Противоречие было решено. Также можно убедиться, что если скорости очень малы по сравнению со скоростью света, то формула для теории относительности переходит в классическую формулу для сложения скоростей.

В большинстве случаев мы будем пользоваться классическим законом.

Сегодня мы выяснили, что движение зависит от системы отсчета, что скорость, путь, перемещение и траектория - это понятия относительные. А время в рамках классической механики - понятие абсолютное. Научились применять полученные знания, разобрав некоторые типовые примеры.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Интернет-портал Class-fizika.narod.ru ().
  2. Интернет-портал Nado5.ru ().
  3. Интернет-портал Fizika.ayp.ru ().

Домашнее задание

  1. Дать определение относительности движения.
  2. Какие физические величины зависят от выбора системы отсчета?

Представьте себе электричку. Она едет тихонько по рельсам, развозя пассажиров по дачам. И вдруг сидящий в последнем вагоне хулиган и тунеядец Сидоров замечает, что на станции «Сады» в вагон входят контролеры. Билет, естественно, Сидоров не купил, а штраф платить ему хочется еще меньше.

Относительность движения безбилетника в поезде

И вот, чтобы его не поймали, он быстренько совершает в другой вагон. Контролеры, проверив билеты у всех пассажиров, движутся в том же направлении. Сидоров опять переходит в следующий вагон и так далее.

И вот, когда он достигает первого вагона и идти дальше уже некуда, оказывается, что поезд как раз доехал до нужной ему станции «Огороды», и счастливый Сидоров выходит, радуясь тому, что проехал зайцем и не попался.

Что мы можем извлечь из этой остросюжетной истории? Мы можем, без сомнения, порадоваться за Сидорова, а можем, кроме того, обнаружить еще один небезынтересный факт.

В то время, как поезд за пять минут проехал пять километров от станции «Сады» до станции «Огороды», заяц Сидоров за это же время преодолел такое же расстояние плюс расстояние, равное длине поезда, в котором он ехал, то есть около пяти тысяч двухсот метров за те же пять минут.

Получается, что Сидоров двигался быстрее электрички. Впрочем, такую же скорость развили и следующие за ним по пятам контролеры. Учитывая, что скорость поезда была около 60 км/ч впору выдать им всем несколько олимпийских медалей.

Однако, конечно же, никто такой глупостью заниматься не будет, потому что все понимают, что невероятная скорость Сидорова была развита им только лишь относительно неподвижных станций, рельсов и огородов, и обусловлена эта скорость была передвижением поезда, а вовсе не невероятными способностями Сидорова.

Относительно же поезда Сидоров двигался вовсе и не быстро и не дотягивает не то что до олимпийской медали, но даже до ленточки от нее. Вот тут-то мы и сталкиваемся с таким понятием как относительность движения.

Понятие относительности движения: примеры

Относительность движения не имеет определения, так как не является физической величиной. Относительность механического движения проявляется в том, что некоторые характеристики движения, такие как скорость, путь, траектория и так далее, относительны, то есть зависят от наблюдателя. В различных системах отсчета эти характеристики будут различны.

Кроме приведенного примера с гражданином Сидоровым в поезде, можно взять практически любое движение любого тела и показать, насколько оно относительно. Идя на работу, вы двигаетесь вперед относительно дома и в то же время передвигаетесь назад относительно автобуса, на который опоздали.

Вы стоите на месте относительно плеера в кармане и несетесь с огромной скоростью относительно звезды по имени Солнце. Каждый ваш шаг будет гигантским расстоянием для молекулы асфальта и ничтожным для планеты Земля. Любое движение, как и все его характеристики всегда имеют смысл только относительно чего-либо еще.

Вопросы.

1. Что означают следующие утверждения: скорость относительна, траектория движения относительна, путь относителен?

Это означает, что эти величины (скорость, траектория и путь) для движения различаются в зависимости от того, из какой системы отсчета ведется наблюдение.

2. Покажите на примерах, что скорость, траектория движения и пройденный путь являются относительными величинами.

Например, человек стоит неподвижно на поверхности Земли (нет ни скорости, ни траектории, ни пути), однако в это время Земля вращается вокруг своей оси, и следовательно человек, относительно, например центра Земли, движется по определенной траектории (по окружности), перемещается и имеет определенную скорость.

3. Сформулируйте коротко, в чем заключается относительность движения.

Движение тела (скорость, путь, траектория) различны в разных системах отсчета.

4. В чем основное отличие гелиоцентрической системы от геоцентрической?

В гелиоцентрической системе тело отсчета- Солнце, а в геоцентрической- Земля.

5. Объясните смену дня и ночи на Земле в гелиоцентрической системе (см. рис. 18).

В гелиоцентрической системе смена дня и ночи объясняется вращением Земли.

Упражнения.

1. Вода в реке движется со скоростью 2 м/с относительно берега. По реке плывёт плот. Какова скорость плота относительно берега? относительно воды в реке?

Скорость плота относительно берега - 2 м/с, относительно воды в реке - 0 м/с.

2. В некоторых случаях скорость тела может быть одинаковой в разных системах отсчёта. Например, поезд движется с одной и той же скоростью в системе отсчета, связанной со зданием вокзала, и в системе отсчёта, связанной с растущим у дороги деревом. Не противоречит ли это утверждению о том, что скорость относительна? Ответ поясните.

Если оба тела, с которыми связаны системы отсчета этих тел, остаются неподвижными друг относительно друга, то они связаны с третьей системой отсчета - Землёй, относительно которой и происходят измерения.

3. При каком условии скорость движущегося тела будет одинакова относительно двух систем отсчета?

Если эти системы отсчета неподвижны относительно друг друга.

4. Благодаря суточному вращению Земли человек, сидящий на стуле в своём доме в Москве, движется относительно земной оси со скоростью примерно 900 км/ч. Сравните эту скорость с начальной скоростью пули относительно пистолета, которая равна 250 м/с.

5. Торпедный катер идет вдоль шестидесятой параллели южной широты со скоростью 90 км/ч по отношению к суше. Скорость суточного вращения Земли на этой широте равна 223 м/с. Чему равна в (СИ) и куда направлена скорость катера относительно земной оси, если она движется на восток? на запад?



Относительность механического движения

Движение в физике – это перемещение тела в пространстве, которое обладает своими специфическими особенностями.

Механическое движение можно представить в виде изменения положения конкретного материального тела в пространстве. Все изменения должны происходить относительно друг друга с течением времени.

Типы механического движения

Механическое движение бывает трех основных типов:

  • прямолинейное движение;
  • равномерное движение;
  • криволинейное движение.

Для решения задач в физике принято использовать допущения в виде представления объекта материальной точкой. Это имеет смысл в тех случаях, когда форму, размер и тело можно не учитывать в его истинных параметрах и выбрать изучаемый объект в виде определенной точки.

Существует несколько основных условий, когда применяется в решении задачи метод внедрения материальной точки:

  • в случаях, если размеры тела чрезвычайно малы по отношению к расстоянию, которое оно проходит;
  • в случаях, если тело двигается поступательно.

Поступательное движение возникает в момент, когда все точки материального тела движутся одинаково. Также тело будет двигаться поступательным образом, когда через две точки этого объекта проведут прямую, и она должна смещаться параллельно первоначальному месторасположению.

При начале изучения относительности механического движения вводят понятие системы отсчета. Она образуется вместе с телом отсчета и системой координат, включая часы для отсчета времени движения. Все элементы составляют единую систему отсчета.

Система отсчета

Замечание 2

Телом отсчета считается такое тело, относительно которого определяется положение иных тел, находящихся в движении.

Если не задать дополнительные данные в решение задачи по просчету механического движения, то его нельзя будет заметить, так как все движения тела высчитываются относительно взаимодействия с другими физическими телами.

Ученые для понимания явления ввели дополнительные понятия, в том числе:

  • прямолинейное равномерное движение;
  • скорость перемещения тела.

С их помощью исследователи пытались выяснить, каким образом тело двигалось в пространстве. В частности, можно было определить вид движения тела относительно наблюдателей, которые имели разную скорость. Выяснилось, что результат наблюдения зависит от соотношения скоростей движения тела и наблюдателей относительно друг друга. Во всех расчетах использовались формулы классической механики.

Существует несколько основных систем отсчета, которые применяются при решении задач:

  • подвижные;
  • неподвижные;
  • инерциальные.

При рассмотрении движения относительно подвижной системы отсчета применяют классический закон сложения скоростей. Скорость тела относительно неподвижной системы отсчета будет равна векторной сумме скорости тела относительно подвижной системы отсчета, а также скорости подвижной системы отсчета относительно неподвижной.

$\overline{v} = \overline{v_{0}} + \overline{v_{s}}$, где:

  • $\overline{v}$ - скорость тела по неподвижной системе отсчета,
  • $\overline{v_{0}}$ - это скорость тела по подвижной системе отсчета,
  • $\overline{v_{s}}$ - это скорость дополнительного фактора, который влияет на определение скорости.

Относительность механического движения заключается в относительности скоростей, с которыми перемещаются тела. Скорости тел относительно различных систем отсчета также будут отличаться. Например, скорость человека, находящегося в поезде или самолете будет отличаться в зависимости от того, в какой системе отсчета определяют эти скорости.

Скорости различаются по направлению и величине. Определение конкретного объекта исследования при механическом движении играет важнейшую роль при высчитывании параметров движения материальной точки. Скорости могут определяться в системе отсчета, которая связана с движущимся транспортом, а может быть в относительной зависимости от неподвижной Земли или ее вращения на орбите в космосе.

Такую ситуацию можно смоделировать на простом примере. Двигающийся по железной дороге поезд будет совершать механические движения относительно другого поезда, который двигается на параллельных путях или относительно Земли. Решение задачи зависит напрямую от выбранной системы отсчета. В разных системах отсчета будут различные траектории движения. При механическом движении траектория также является относительной. От выбранной системы отсчета зависит путь, который был пройден телом. При механическом движении путь является относительным.

Развитие относительности механического движения

Также согласно закону инерции, стали формировать инерциальные системы отсчета.

Процесс осознания относительности механического движения занял немалый исторический промежуток времени. Если сначала долгое время считалась приемлемой модель геоцентрической системы мира (Земля – центр Вселенной), то движение тел в разных системах отсчета стали рассматривать во времена известного ученого Николая Коперника, который сформировал гелиоцентрическую модель мира. Согласно ей, планеты Солнечной системы совершают вращение вокруг Солнца, а также совершают вращения вокруг собственной оси.

Поменялась структура системы отсчета, что привело позже к построению прогрессивной гелиоцентрической системы. Эта модель сегодня позволяет решать различные научные цели и задачи, в том числе в сфере прикладной астрономии, когда просчитывается траектории движения звезд, планет, галактик, исходя из метода относительности.

В начале 20 века была сформулирована теория относительности, которая также базируется на основополагающих принципах механического движения и взаимодействия тел.

Все формулы, которые применяются для высчитывания механических движений тел и определения их скорости, имеют смысл на скоростях меньше скорости света в вакууме.

Еще в школьной программе есть положение о том, что любое движение одного тела можно зафиксировать только лишь относительно иного тела. Это положение и называют термином «относительность движения». По картинкам учебников было понятно, что для стоящего на берегу реки плывущей мимо лодки складывается из ее скорости и скорости течения реки. После такого детального рассмотрения становится ясно, что относительность движения окружает нас во всех аспектах нашей жизни. Скорость объекта - величина относительная, но и производная от нее, ускорение, также становится Важность такого вывода состоит в том, что именно ускорение имеется в составе формулы второго закона Ньютона (основного закона механики). По этому закону любая сила, воздействующая на тело, дает ему пропорциональное ей ускорение. Относительность движения заставляет задать дополнительный вопрос: относительно какого тела придается ускорение?

В данном законе нет никаких пояснений на этот счет, но путем простых логических умозаключений можно прийти к выводу, что, поскольку сила является мерой воздействия одного тела (1) на другое (2), то эта же сила сообщает телу (2) ускорение относительно тела (1), а не просто какое-то абстрактное ускорение.

Относительность движения - это зависимость определенной какого-либо тела, определенного пути, скорости и перемещения от выбранных систем отсчета. В аспекте кинематики любые применяемые системы отсчета равноправны, но при этом все кинематические характеристики этого движения (траектория, скорость, перемещение) в них разные. Все величины, зависящие от выбранной системы отсчета, с помощью которой будут производиться их измерения, называются относительными.

Относительность движения, определение которой довольно сложно дать без детального рассмотрения других понятий, требует точного математического расчета. Говорить о том, движется тело или нет, можно тогда, когда абсолютно ясно, относительно чего (тела отсчета) меняется его положение. Система отсчета представляет собой совокупность таких элементов, как тело отсчета, а также связанных с ним системы координат и системы отсчета времени. По отношению к этим элементам и рассматривается движение любых тел или Математически движение объекта (точки) по отношению к избранной системе отсчета описывается уравнениями, устанавливающими, как изменяются во времени координаты, которые определяют положение объекта в этой системе. Такие уравнения, определяющие относительность движения, называют уравнениями движения.

В современной механике любое движение объекта является относительным, поэтому его следует рассматривать только по отношению к другому объекту (телу отсчета) или целой системе тел. Например, нельзя просто указать, что Луна движется вообще. Правильным высказыванием будет то, что Луна движется по отношению к Солнцу, Земле, звездам.

Часто в механике и систему отсчета увязывают не с телом, а с целым континуумом базовых тел (настоящих или вымышленных), которые определяют систему координат.

В кинофильмах нередко показывают движение относительно различных тел. Так, например, в одних кадрах показывают поезд, который движется на фоне какого-то пейзажа (это движение относительно поверхности Земли), а в следующих - купе вагона, в окнах которого мелькают деревья (движение относительно одного вагона). Любое движение или покой тела, являющийся частным случаем движения, относительны. Поэтому, отвечая на простой вопрос, движется или покоится тело, и как оно движется, нужно уточнять, относительно каких объектов рассматривается его движение. Выбор систем отсчета, как правило, производится в зависимости от поставленных условий задачи.



Читайте также: