Вращение тела вокруг неподвижной оси. Вращение твердого тела вокруг неподвижной оси Вращательное движение твердого тела вокруг неподвижной

И Савельева .

При поступательном движении тела (§ 60 в учебнике Е. М. Никитина) все его точки движутся по одинаковым траекториям и в каждый данный момент они имеют равные скорости и равные ускорения.

Поэтому поступательное движение тела задают движением какой-либо одной точки, обычно движением центра тяжести.

Рассматривая в какой-либо задаче движение автомобиля (задача 147) или тепловоза (задача 141), фактически рассматриваем движение их центров тяжести.

Вращательное движение тела (Е. М. Никитин , § 61) нельзя отождествить с движением какой-либо одной его точки. Ось любого вращающегося тела (маховика дизеля, ротора электродвигателя, шпинделя станка, лопастей вентилятора и т. п.) в процессе движения занимает в пространстве относительно окружающих неподвижных тел одно и то же место.

Движение материальной точки или поступательное движение тела характеризуют в зависимости от времени линейные величины s (путь, расстояние), v (скорость) и а (ускорение) с его составляющими a t и a n .

Вращательное движение тела в зависимости от времени t характеризуют угловые величины : φ (угол поворота в радианах), ω (угловая скорость в рад/сек) и ε (угловое ускорение в рад/сек 2).

Закон вращательного движения тела выражается уравнением
φ = f (t).

Угловая скорость - величина, характеризующая быстроту вращения тела, определяется в общем случае как производная угла поворота по времени
ω = dφ/dt = f" (t).

Угловое ускорение - величина, характеризующая быстроту изменения угловой скорости, определяется как производная угловой скорости
ε = dω/dt = f"" (t).

Приступая к решению задач на вращательное движение тела, необходимо иметь в виду, что в технических расчетах и задачах, как правило, угловое перемещение выражается не в радианах φ, а в оборотах φ об.

Поэтому необходимо уметь переходить от числа оборотов к радианному измерению углового перемещения и наоборот.

Так как один полный оборот соответствует 2π рад, то
φ = 2πφ об и φ об = φ/(2π).

Угловая скорость в технических расчетах очень часто измеряется в оборотах, произведенных в одну минуту (об/мин), поэтому необходимо отчетливо уяснить, что ω рад/сек и n об/мин выражают одно и то же понятие - скорость вращения тела (угловую скорость), но в различных единицах - в рад/сек или в об/мин.

Переход от одних единиц угловой скорости к другим производится по формулам
ω = πn/30 и n = 30ω/π.

При вращательном движении тела все его точки движутся по окружностям, центры которых расположены на одной неподвижной прямой (ось вращающегося тела). Очень важно при решении задач, приведенных в этой главе, ясно представлять зависимость между угловыми величинами φ, ω и ε, характеризующими вращательное движение тела, и линейными величинами s, v, a t и a n , характеризующими движение различных точек этого тела (рис 205).

Если R - расстояние от геометрической оси вращающегося тела до какой-либо точки А (на рис. 205 R=OA), то зависимость между φ - углом поворота тела и s - расстоянием, пройденным точкой тела за то же время, выражается так:
s = φR.

Зависимость между угловой скоростью тела и скоростью точки в каждый данный момент выражается равенством
v = ωR.

Касательное ускорение точки зависит от углового ускорения и определяется формулой
a t = εR.

Нормальное ускорение точки зависит от угловой скорости тела и определяется зависимостью
a n = ω 2 R.

При решении задачи, приведенной в этой главе, необходимо ясно понимать, что вращением называется движение твердого тела, а не точки. Отдельно взятая материальная точка не вращается, а движется по окружности - совершает криволинейное движение.

§ 33. Равномерное вращательное движение

Если угловая скорость ω=const, то вращательное движение называется равномерным.

Уравнение равномерного вращения имеет вид
φ = φ 0 + ωt.

В частном случае, когда начальный угол поворота φ 0 =0,
φ = ωt.

Угловую скорость равномерно вращающегося тела
ω = φ/t
можно выразить и так:
ω = 2π/T,
где T - период вращения тела; φ=2π - угол поворота за один период.

§ 34. Равнопеременное вращательное движение

Вращательное движение с переменной угловой скоростью называется неравномерным (см. ниже § 35). Если же угловое ускорение ε=const, то вращательное движение называется равнопеременным . Таким образом, равнопеременное вращение тела - частный случай неравномерного вращательного движения.

Уравнение равнопеременного вращения
(1) φ = φ 0 + ω 0 t + εt 2 /2
и уравнение, выражающее угловую скорость тела в любой момент времени,
(2) ω = ω 0 + εt
представляют совокупность основных формул вращательного равнопеременного движения тела.

В эти формулы входят всего шесть величин: три постоянных для данной задачи φ 0 , ω 0 и ε и три переменных φ, ω и t. Следовательно, в условии каждой задачи на равнопеременное вращение должно содержаться не менее четырех заданных величин.

Для удобства решения некоторых задач из уравнений (1) и (2) можно получить еще две вспомогательные формулы.

Исключим из (1) и (2) угловое ускорение ε:
(3) φ = φ 0 + (ω + ω 0)t/2.

Исключим из (1) и (2) время t:
(4) φ = φ 0 + (ω 2 - ω 0 2)/(2ε).

В частном случае равноускоренного вращения, начавшегося из состояния покоя, φ 0 =0 и ω 0 =0. Поэтому приведенные выше основные и вспомогательные формулы принимают такой вид:
(5) φ = εt 2 /2;
(6) ω = εt;
(7) φ = ωt/2;
(8) φ = ω 2 /(2ε).

§ 35. Неравномерное вращательное движение

Рассмотрим пример решения задачи, в которой задано неравномерное вращательное движение тела.

Рис. 6.4

Такое движение тела, при котором какие- нибудь две его точки и В на рис. 6.4) остаются неподвижными, называют вращением вокруг неподвижной оси.

Можно показать, что в этом случае неподвижной остаётся любая точка тела, лежащая на прямой, соединяющей точки Aw В.

Ось, проходящую через эти точки, называют осью вращения тела; её положительное направление выбирается произвольно (рис. 6.4).

Любая точка М тела, не лежащая на оси вращения, описывает окружность, центр которой расположен на оси вращения (рис. 6.4).

Положение тела с неподвижной осью вращения z (рис. 6.5) можно описать при помощи всего лишь одного скалярного параметра - угла поворота (р . Это угол между двумя плоскостями проведенными через ось вращения: неподвижной плоскостью N и подвижной - Р, жестко связанной с телом (рис. 6.5). За положительное примем направление отсчета угла противоположное движению часовой стрелки, если смотреть с конца оси z. (указано дуговой стрелкой на рис. 6.5). Единица измерения угла в системе СИ - 1 радиан « 57,3°. Функциональная зависимость угла поворота от времени

полностью определяет вращательное движение тела вокруг неподвижной оси. Поэтому равенство (6.3) называют уравнением вращения твердого тела вокруг неподвижной оси.

Быстроту вращения тела характеризует угловая скорость со тела, которая определяется как производная угла поворота по времени

и имеет размерность рад/с (или с"").

Второй кинематической характеристикой вращательного движения является угловое ускорение - производная угловой скорости тела:

Размерность углового ускорения - рад/с 2 (или с ~ 2).

Замечание. Символами со и? в этой лекции обозначаются алгебраические значения угловой скорости и углового ускорения. Их знаки указывают направление вращения и его характер (ускоренное или замедленное). Например, если со = ф > 0 , то угол со временем увеличивается и, следовательно, тело вращается в направлении отсчета (р.

Скорость и ускорение каждой точки вращающегося тела нетрудно связать с его угловой скоростью и угловым ускорением. Рассмотрим движение произвольной точки М тела (рис. 6.6).

Поскольку её траектория - окружность, то дуговая координата.9 точки М после поворота тела на угол будет

где h - расстояние от точки М до оси вращения (рис. 6.6).

Дифференцируя по времени обе части этого равенства, получим с учетом (5.14) и (6.4):

где г г - проекция скорости точки на касательную г, направленную в сторону отсчета дуги.v и угла

Величина нормального ускорения точки М согласно (5.20) и (6.6) будет

а проекция её касательного ускорения на касательную г согласно (5.19) и (6.5)

Модуль полного ускорения точки М

Направления векторов v, а, а„ , а, для случая, когда ф> 0 и ф > 0, показаны на рис. 6.7.

Пример 1. Механизм передачи состоит из колес / и 2, которые связаны в точке К так, что при их вращении взаимное проскальзывание отсутствует. Уравнение вращения колеса 1:

положительное направление отсчета угла указано дуговой стрелкой на рис. 6.8.

Известны размеры механизма: Г = 4 см, R 2 = 6 см, г 2 = 2 см.

Найти скорость и ускорение точки М колеса 2 для момента времени /| = 2 с.

Решение. При движении механизма колеса 1 и 2 вращаются вокруг неподвижных осей, проходящих через точки 0 и 0 2 перпендикулярно плоскости рис. 6.8. Находим угловую скорость и угловое ускорение колеса I в момент времени / = 2 с, используя данные выше определения (6.4) и (6.5) этих величин:

Их отрицательные знаки указывают на то, что в момент времени t - 2 с колесо / вращается по ходу часовой стрелки (противоположно направлению отсчета угла ) и это вращение ускоренное. Благодаря отсутствию взаимного проскальзывания колес I и 2 векторы скоростей их точек в месте соприкосновения К должны быть равными. Выразим модуль этой скорости через угловые скорости колес, используя (6.6):

Из последнего равенства выражаем модуль угловой скорости колеса 2 и находим его значение для указанного момента времени 6 = 2 с:

Направление скорости к (рис. 6.9) указывает, что колесо 2 вращается против хода часовой стрелки и, следовательно, оь > 0. Из (6.10) и последнего неравенства видно, что угловые скорости колес отличаются на постоянный отрицательный множитель (- г1г 2): со 2 = г { /г 2). Но тогда и производные этих скоростей - угловые ускорения колес должны отличаются на такой же множитель: е 2 =? ] (-г ] /г 1)=-2- (-4/2) = 4с~ 2 .

Находим величины скорости и ускорения точки М ступенчатого колеса 2 при помощи формул (6.6) - (6.9):

Направления векторов v и, а, а д/ показаны на рис. 6.9.

В природе и технике мы часто сталкиваемся с проявлением вращательного движения твердых тел, например, валов и шестерен. Как в физике описывают этот тип движения, какие формулы и уравнения для этого применяются, эти и другие вопросы освещаются в данной статье.

Что такое вращение?

Каждый из нас интуитивно представляет, о каком движении пойдет речь. Вращение - это процесс, при котором тело или материальная точка движется по круговой траектории вокруг некоторой оси. С геометрической точки зрения твердого тела - это прямая, расстояние до которой в процессе перемещения остается неизменным. Это расстояние называют радиусом вращения. Далее будем обозначать его буквой r. Если ось вращения проходит через центр масс тела, то ее называют собственной осью. Примером вращения вокруг собственной оси является соответствующее движение планет Солнечной системы.

Чтобы вращение происходило, должно существовать центростремительное ускорение, которое возникает за счет центростремительной силы. Эта сила направлена от центра масс тела к оси вращения. Природа центростремительной силы может быть самой разной. Так, в космическом масштабе ее роль выполняет гравитация, если тело закреплено нитью, то сила натяжения последней будет центростремительной. Когда тело вращается вокруг собственной оси, роль центростремительной силы играет внутреннее электрохимическое взаимодействие между составляющими тело элементами (молекулами, атомами).

Необходимо понимать, что без присутствия центростремительной силы тело будет двигаться прямолинейно.

Описывающие вращение физические величины

Во-первых, это динамические характеристики. К ним относятся:

  • момент импульса L;
  • момент инерции I;
  • момент силы M.

Во-вторых, это кинематические характеристики. Перечислим их:

  • угол поворота θ;
  • скорость угловая ω;
  • ускорение угловое α.

Кратко опишем каждую из названных величин.

Момент импульса определяется по формуле:

Где p - линейный импульс, m - масса материальной точки, v - ее линейная скорость.

Момент инерции материальной точки рассчитывается с помощью выражения:

Для любого тела сложной формы величина I рассчитывается, как интегральная сумма моментов инерции материальных точек.

Момент силы M вычисляется так:

Здесь F - внешняя сила, d - расстояние от точки ее приложения до оси вращения.

Физический смысл всех величин, в названии которых присутствует слово "момент", аналогично смыслу соответствующих линейных величин. Например, момент силы показывает возможность приложенной силы сообщить системе вращающихся тел.

Кинематические характеристики математически определяются следующими формулами:

Как видно из этих выражений, угловые характеристики аналогичны по своему смыслу линейным (скорости v и ускорению a), только они применимы для круговой траектории.

Динамика вращения

В физике изучение вращательного движения твердого тела осуществляется с помощью двух разделов механики: динамики и кинематики. Начнем с динамики.

Динамика изучает внешние силы, действующие на систему вращающихся тел. Сразу запишем уравнение вращательного движения твердого тела, а затем, разберем его составные части. Итак, это уравнение имеет вид:

Который действует на систему, обладающую моментом инерции I, вызывает появление углового ускорения α. Чем меньше величина I, тем легче с помощью определенного момента M раскрутить систему до больших скоростей за малые промежутки времени. Например, металлический стержень легче вращать вдоль его оси, чем перпендикулярно ей. Однако, тот же стержень легче вращать вокруг оси, перпендикулярной ему, и проходящей через центр масс, чем через его конец.

Закон сохранения величины L

Выше была введена эта величина, она называется моментом импульса. Уравнение вращательного движения твердого тела, представленное в предыдущем пункте, часто записывают в иной форме:

Если момент внешних сил M действует на систему в течение времени dt, то он вызывает изменение момента импульса системы на величину dL. Соответственно, если момент сил равен нулю, тогда L = const. Это и есть закон сохранения величины L. Для нее, используя связь между линейной и угловой скоростью, можно записать:

L = m*v*r = m*ω*r 2 = I*ω.

Таким образом, при отсутствии момента сил произведение угловой скорости и момента инерции является постоянной величиной. Этот физический закон используют фигуристы в своих выступлениях или искусственные спутники, которые необходимо повернуть вокруг собственной оси в открытом космосе.

Центростремительное ускорение

Выше, при изучении вращательного движения твердого тела, уже была описана эта величина. Также была отмечена природа центростремительных сил. Здесь лишь дополним эту информацию и приведем соответствующие формулы для расчета этого ускорения. Обозначим его a c .

Поскольку центростремительная сила направлена перпендикулярно оси и проходит через нее, то момента она не создает. То есть эта сила не оказывает совершенно никакого влияния на кинематические характеристики вращения. Тем не менее, она создает центростремительное ускорение. Приведем две формулы для его определения:

Таким образом, чем больше угловая скорость и радиус, тем большую силу следует приложить, чтобы удержать тело на круговой траектории. Ярким примером этого физического процесса является занос автомобиля во время поворота. Занос возникает, если центростремительная сила, роль которой играет сила трения, становится меньше, чем центробежная сила (инерционная характеристика).

Три основные кинематические характеристики были перечислены выше в статье. твердого тела формулами следующими описывается:

θ = ω*t => ω = const., α = 0;

θ = ω 0 *t + α*t 2 /2 => ω = ω 0 + α*t, α = const.

В первой строке приведены формулы для равномерного вращения, которое предполагает отсутствие внешнего момента сил, действующего на систему. Во второй строке записаны формулы для равноускоренного движения по окружности.

Отметим, что вращение может происходить не только с положительным ускорением, но и с отрицательным. В этом случае в формулах второй строки следует перед вторым слагаемым поставить знак минус.

Пример решения задачи

На металлический вал в течение 10 секунд действовал момент силы 1000 Н*м. Зная, что момент инерции вала равен 50 кг*м 2 , необходимо определить угловую скорость, которую придал валу упомянутый момент силы.

Применяя основное уравнение вращения, вычислим ускорение вала:

Поскольку это угловое ускорение действовало на вал в течение времени t = 10 секунд, то для вычисления угловой скорости применяем формулу равноускоренного движения:

ω = ω 0 + α*t = M/I*t.

Здесь ω 0 = 0 (вал не вращался до действия момента сил M).

Подставляем в равенство численные значения величин, получаем:

ω = 1000/50*10 = 200 рад/с.

Чтобы это число перевести в привычные обороты в секунду, необходимо его поделить на 2*pi. Выполнив это действие, получаем, что вал будет вращаться с частотой 31,8 об./с.

Вращением твёрдого тела вокруг неподвижной оси называется такое его движение, при котором две точки тела остаются неподвижными в течение всего времени движения. При этом также остаются неподвижными все точки тела, расположенные на прямой, проходящей через его неподвижные точки. Эта прямая называется осью вращения тела .

Пусть точки A и B неподвижны. Вдоль оси вращения направим ось . Через ось вращения проведём неподвижную плоскость и подвижную , скреплённую с вращающимся телом (при ).

Положение плоскости и самого тела определяется двугранным углом между плоскостями и . Обозначим его . Угол называется углом поворота тела .

Положение тела относительно выбранной системы отсчета однозначно определяется в любой момент времени, если задано уравнение , где - любая дважды дифференцируемая функция времени. Это уравнение называется уравнением вращения твёрдого тела вокруг неподвижной оси .

У тела, совершающего вращение вокруг неподвижной оси, одна степень свободы, так как его положение определяется заданием только одного параметра - угла .

Угол считается положительным, если он откладывается против часовой стрелки, и отрицательным - в противоположном направлении. Траектории точек тела при его вращении вокруг неподвижной оси являются окружностями, расположенными в плоскостях перпендикулярных оси вращения.

Для характеристики вращательного движения твердого тела вокруг неподвижной оси введём понятия угловой скорости и углового ускорения.

Алгебраической угловой скоростью тела в какой-либо момент времени называется первая производная по времени от угла поворота в этот момент, то есть .

Угловая скорость является положительной величиной при вращении тела против часовой стрелки, так как угол поворота возрастает с течением времени, и отрицательной - при вращении тела по часовой стрелке, потому что угол поворота при этом убывает.

Размерность угловой скорости по определению:

В технике угловая скорость - это частота вращения, выраженная в оборотах в минуту. За одну минуту тело повернётся на угол , где n - число оборотов в минуту. Разделив этот угол на число секунд в минуте, получим

Алгебраическим угловым ускорением тела называется первая производная по времени от угловой скорости, то есть вторая производная от угла поворота т.е.

Размерность углового ускорения по определению:

Введем понятия векторов угловой скорости и углового ускорения тела.

И , где - единичный вектор оси вращения. Векторы и можно изображать в любых точках оси вращения, они являются скользящими векторами.

Алгебраическая угловая скорость это проекция вектора угловой скорости на ось вращения. Алгебраическое угловое ускорение это проекция вектора углового ускорения скорости на ось вращения.


Если при , то алгебраическая угловая скорость возрастает с течением времени и, следовательно, тело вращается ускоренно в рассматриваемый момент времени в положительную сторону. Направление векторов и совпадают, оба они направлены в положительную сторону оси вращения .

При и тело вращается ускоренно в отрицательную сторону. Направление векторов и совпадают, оба они направлены в отрицательную сторону оси вращения .

Движение твердого тела называется вращательным, если во время движения все точки тела, расположенные на некоторой прямой, называемой осью вращения, остаются неподвижными (рис. 2.15).

Положение тела при вращательном движении принято определять углом поворота тела , который измеряется как двугранный угол между неподвижной и подвижной плоскостями, проходящими через ось вращения. Причем, подвижная плоскость связана с вращающимся телом.

Введем в рассмотрение подвижную и неподвижную системы координат, начало которых разместим в произвольной точке О оси вращения. Ось Oz, общую для подвижной и неподвижной систем координат, направим по оси вращения, ось Ох неподвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в неподвижной плоскости, ось Ох 1 подвижной системы координат направим перпендикулярно оси Oz таким образом, чтобы она лежала в подвижной плоскости (рис. 2.15).

Если рассматривать сечение тела плоскостью, перпендикулярной оси вращения, то угол поворота φ можно определять как угол между неподвижной осью Ох и подвижной осью Ох 1 , неизменно связанной с вращающимся телом (рис. 2.16).

Принято направление отсчета угла поворота тела φ против хода часовой стрелки считать положительным, если смотреть с положительного направления оси Oz.

Равенство φ = φ(t) , описывающее изменение угла φ во времени, называется законом или уравнением вращательного движения твердого тела.

Быстрота и направление изменения угла поворота твердого тела характеризуются угловой скоростью. Абсолютное значение угловой скорости принято обозначать буквой греческого алфавита ω (омега). Алгебраическое значение угловой скорости принято обозначать . Алгебраическое значение угловой скорости равно первой производной по времени от угла поворота:

. (2.33)

Единицы измерения угловой скорости равны единицам измерения угла, деленным на единицу измерения времени, например, град/мин, рад/ч. В системе СИ единица измерения угловой скорости рад/с, но чаще наименование этой единицы измерения записывается в виде 1/с.

Если > 0, то тело вращается против хода часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Если < 0, то тело вращается по ходу часовой стрелки, если смотреть с конца оси координат, совмещенной с осью вращения.

Быстрота и направление изменения угловой скорости характеризуются угловым ускорением. Абсолютную величину углового ускорения принято обозначать буквой греческого алфавита e (эпсилон). Алгебраическую величину углового ускорения принято обозначать . Алгебраическая величина углового ускорения равна первой производной по времени от алгебраического значения угловой скорости или второй производной от угла поворота:


Единицы измерения углового ускорения равны единицам измерения угла, деленным на единицу измерения времени в квадрате. Например, град/с 2 , рад/ч 2 . В системе СИ единицей измерения углового ускорения является рад/с 2 , но чаще наименование этой единицы измерения записывается в виде 1/с 2 .

Если алгебраические значения угловой скорости и углового ускорения имеют один знак, то угловая скорость с течением времени увеличивается по модулю, а если разный, то уменьшается.

Если угловая скорость постоянна (ω = const), то принято говорить, что вращение тела равномерное. В этом случае:

φ = · t + φ 0 , (2.35)

где φ 0 - начальный угол поворота.

Если постоянно угловое ускорение (e = const), то принято говорить, что вращение тела равноускоренное (равнозамедленное). В этом случае:

где 0 - начальная угловая скорость.

В остальных случаях для определения зависимости φ от и необходимо интегрировать выражения (2.33), (2.34) при заданных начальных условиях.

На рисунках направление вращения тела иногда показывают изогнутой стрелкой (рис. 2.17).

Часто в механике угловая скорость и угловое ускорение рассматриваются как векторные величины и . Оба эти вектора направляются по оси вращения тела. Причем вектор направляют в одну сторону с ортом, определяющим направление оси координат, совпадающей с осью вращения, если >0, и в противоположную, если
Аналогично выбирают направление вектора (рис. 2.18).

При вращательном движении тела каждая из его точек (кроме точек, расположенных на оси вращения) перемещается по траектории, представляющей собой окружность с радиусом, равным кратчайшему расстоянию от точки до оси вращения (рис. 2.19).

Поскольку для окружности касательная в любой ее точке составляет угол 90° с радиусом, то вектор скорости точки тела, совершающего вращательное движение, будет направлен перпендикулярно радиусу и лежать в плоскости окружности, являющейся траекторией движения точки. Касательная составляющая ускорения будет лежать на одной прямой со скоростью, а нормальная будет направлена по радиусу к центру окружности. Поэтому иногда касательную и нормальную составляющие ускорения при вращательном движении называют соответственно вращательной и центростремительной (осестремительной) составляющими (рис. 2.19)

Алгебраическая величина скорости точки определяется выражением:

, (2.37)

где R = OM - кратчайшее расстояние от точки до оси вращения.

Алгебраическая величина касательной составляющей ускорения определяется выражением:

. (2.38)

Модуль нормальной составляющей ускорения определяется выражением:

. (2.39)

Вектор ускорения точки при вращательном движении определяется по правилу параллелограмма как геометрическая сумма касательной и нормальной составляющих. Соответственно модуль ускорения может быть определен по теореме Пифагора :

Если угловая скорость и угловое ускорение определены как векторные величины , , то векторы скорости, касательной и нормальной составляющих ускорения могут быть определены по формулам:

где - радиус-вектор, проведенный в точку М из произвольной точки оси вращения (рис. 2.20).

Решение задач на вращательное движение одного тела обычно не вызывает никаких трудностей. Используя формулы (2.33)-(2.40), можно легко определить любой неизвестный параметр.

Определенные сложности возникают при решении задач, связанных с исследованием механизмов, состоящих из нескольких взаимосвязанных тел, совершающих как вращательное, так и поступательное движение.

Общий подход к решению подобных задач заключается в том, что движение от одного тела к другому передается через одну точку - точку касания (контакта). Причем у соприкасающихся тел равны скорости и касательные составляющие ускорений в точке контакта. Нормальные составляющие ускорения у соприкасающихся тел в точке контакта различны, они зависят от траектории движения точек тел.

При решении задач такого типа удобно в зависимости от конкретных обстоятельств использовать как формулы, приведенные в разделе 2.3, так и формулы для определения скорости и ускорения точки при задании ее движения естественным (2.7), (2.14) (2.16) или координатным (2.3), (2.4), (2.10), (2.11) способами. При этом если движение тела, к которому принадлежит точка, вращательное, траектория движения точки будет представлять собой окружность. Если движение тела прямолинейное поступательное, то траектория движения точки будет представлять собой прямую линию.

Пример 2.4. Тело вращается вокруг неподвижной оси. Угол поворота тела изменяется по закону φ = π · t 3 рад. Для точки, находящейся на расстоянии OM = R = 0,5 м от оси вращения, определить скорость, касательную, нормальную составляющие ускорения и ускорение в момент времени t 1 = 0,5 с. Показать направление этих векторов на чертеже.

Рассмотрим сечение тела плоскостью, проходящей через точку О перпендикулярно оси вращения (рис. 2.21). На этом рисунке точка О - точка пересечения оси вращения и секущей плоскости, точки М о и M 1 - соответственно начальное и текущее положение точки М. Через точки О и М о проведем неподвижную ось Ох , а через точки О и М 1 - подвижную ось Ох 1 . Угол между этими осями будет равен

Закон изменения угловой скорости тела найдем, продифференцировав закон изменения угла поворота:

В момент t 1 угловая скорость будет равна

Закон изменения углового ускорения тела найдем, продифференцировав закон изменения угловой скорости:

В момент t 1 угловое ускорение будет равно:

1/с 2 ,

Алгебраические величины векторов скорости, касательной составляющей ускорения, модуля нормальной составляющей ускорения и модуля ускорения найдем по формулам (2.37), (2.38), (2.39), (2.40):

М/с 2 ;

м/с 2 .

Так как угол φ 1 >0, то откладывать его от оси Ох будем против хода часовой стрелки. А так как > 0, то векторы будут направлены перпендикулярно радиусу OM 1 таким образом, чтобы мы видели их вращающимися против хода часовой стрелки. Вектор будет направлен по радиусу OM 1 к оси вращения. Вектор построим по правилу параллелограмма на векторах τ и .

Пример 2.5. По заданному уравнению прямолинейного поступательного движения груза 1 х = 0,6t 2 - 0,18 (м) определить скорость, а также касательную, нормальную составляющую ускорения и ускорение точки М механизма в момент времени t 1 , когда путь, пройденный грузом 1, равен s = 0,2 м. При решении задачи будем считать, что проскальзывание в точке контакта тел 2 и 3 отсутствует, R 2 = 1,0 м, r 2 = 0,6 м, R 3 = 0,5 м (рис. 2.22).

Закон прямолинейного поступательного движения груза 1 задан в координатной форме. Определим момент времени t 1 , для которого путь, пройденный грузом 1, будет равен s

s = x(t l)-x(0) ,

откуда получим:

0,2 = 0,18 + 0,6t 1 2 - 0,18.

Следовательно,

Продифференцировав по времени уравнение движения, найдем проекции скорости и ускорения груза 1 на ось Ох:

м/с 2 ;

В момент t = t 1 проекция скорости груза 1 будет равна:

то есть будет больше нуля, как и проекция ускорения груза 1. Следовательно, груз 1 будет в момент t 1 двигаться вниз равноускоренно, соответственно, тело 2 будет вращаться равноускоренно в направлении против хода часовой стрелки, а тело 3 - по ходу часовой стрелки.

Тело 2 приводится во вращение телом 1 через нить, намотанную на малый барабан. Поэтому модули скоростей точек тела 1, нити и поверхности малого барабана тела 2 равны, также равны будут и модули ускорений точек тела 1, нити и касательной составляющей ускорения точек поверхности малого барабана тела 2. Следовательно, модуль угловой скорости тела 2 можно определить как

Модуль углового ускорения тела 2 будет равен:

1/с 2 .

Определим модули скорости и касательной составляющей ускорения для точки К тела 2 - точки контакта тел 2 и 3:

м/с, м/с 2

Так как тела 2 и 3 вращаются без взаимного проскальзывания, модули скорости и касательной составляющей ускорения точки К - точки контакта у этих тел будут равны.

направим перпендикулярно радиусу в сторону вращения тела, так как тело 3 вращается равноускоренно

Читайте также: