Периодическая система менделеева таблица в хорошем качестве. Структура периодической системы. Современная формулировка периодического закона такова

Четыре способа присоединения нуклонов
Механизмы присоединения нуклонов можно разбить на четыре типа, S, P, D и F. Эти типы присоединения отражает цветовой фон в представленном нами варианте таблицы Д.И. Менделеева.
Первый тип присоединения, это S схема, когда нуклоны присоединяются к ядру по вертикальной оси. Отображение присоединенных нуклонов этого типа, в межъядерном пространстве, ныне идентифицируется, как S электроны, хотя никаких S электронов в этой зоне нет, а есть только сферические области объемного пространственного заряда, которые обеспечивают молекулярное взаимодействие.
Второй тип присоединения - это P схема, когда нуклоны присоединяются к ядру в горизонтальной плоскости. Отображение этих нуклонов в межъядерном пространстве идентифицировано, как P электроны, хотя это тоже, всего лишь области пространственного заряда, генерируемые ядром в межъядерном пространстве.
Третий тип присоединения - это D схема, когда нуклоны присоединяются к нейтронам в горизонтальной плоскости, и наконец, четвертый тип присоединения - это F схема, когда нуклоны присоединяются к нейтронам по вертикальной оси. Каждый тип присоединения придает атому свойства, характерные для этого типа связи, поэтому в составе периодов таблицы Д.И. Менделеева давно выделены подгруппы, по типу S, P, D и F связи.
Поскольку при присоединении каждого последующего нуклона образуется изотоп или предшествующего или последующего элемента, то точное расположение нуклонов по типу S, P, D и F связи можно показать только при помощи Таблицы известных изотопов (нуклидов), вариантом которой (из Википедии) мы воспользовались.
Эту таблицу мы разбили на периоды (см. Таблицы заполнения периодов), а в каждом периоде указали, по какой схеме присоединяется каждый нуклон. Поскольку в соответствии с микроквантовой теорией каждый нуклон может присоединиться к ядру только в строго определенном месте, то количество и схемы присоединения нуклонов в каждом периоде отличаются, но во всех периодах таблицы Д.И. Менделеева законы присоединения нуклонов исполняются ЕДИНООБРАЗНО для всех нуклонов без исключения.
Как вы видите, во II и III периоде присоединение нуклонов идет только по S и P схемам, в IV и V периодах – по S, P и D схемам, а в VI и VII периодах – по S, P, D и F схемам. При этом оказалось, что законы присоединения нуклонов исполняются настолько точно, что нам не составило большого труда рассчитать состав ядра конечных элементов VII периода, которые в таблице Д.И. Менделеева имеют номера 113, 114, 115, 116 и 118.
По нашим расчетам, последний элемент VII периода, который мы назвали Rs («Россий» от «Россия»), состоит из 314 нуклонов и имеет изотопы 314, 315, 316, 317 и 318. Предшествующий ему элемент Nr («Новороссий» от «Новороссия») состоит из 313 нуклонов. Мы будем весьма благодарны всем, кто сможет подтвердить или опровергнуть наши расчеты.
Честно говоря, мы сами поражены, насколько точно работает Вселенский Конструктор, который обеспечивает присоединение каждого последующего нуклона только на свое, единственно правильное место, а если нуклон встал неправильно, то Конструктор обеспечивает распад атома, и из его запчастей собирает новый атом. В своих фильмах мы показали только главные законы работы Вселенского Конструктора, но в его работе столько нюансов, что, чтобы разобраться в них, потребуются усилия многих поколений ученых.
Но в законах работы Вселенского Конструктора человечеству разобраться необходимо, если оно заинтересовано в технологическом прогрессе, поскольку знание принципов работы Вселенского Конструктора открывает совершенно новые перспективы во всех областях человеческой деятельности – от создания уникальных конструкционных материалов до сборки живых организмов.

Заполнение второго периода таблицы химических элементов

Заполнение третьего периода таблицы химических элементов

Заполнение четвертого периода таблицы химических элементов

Заполнение пятого периода таблицы химических элементов

Заполнение шестого периода таблицы химических элементов

Заполнение седьмого периода таблицы химических элементов

Периодическая система - упорядоченное множество химических элементов, их естественная классификация, которая является графическим (табличным) выражением периодического закона химических элементов. Структура её, во многом сходная с современной, разработана Д. И. Менделеевым на основе периодического закона в 1869–1871 гг.

Прообразом периодической системы был «Опыт системы элементов, основанной на их атомном весе и химическом сходстве», составленный Д. И. Менделеевым 1 марта 1869 г. На протяжении двух с половиной лет ученый непрерывно совершенствовал «Опыт системы», ввел представление о группах, рядах и периодах элементов. В результате структура периодической системы приобрела во многом современные очертания.

Важным для её эволюции стало понятие о месте элемента в системе, определяемом номерами группы и периода. Опираясь на это понятие, Менделеев пришел к выводу, что необходимо изменить атомные массы некоторых элементов: урана, индия, церия и его спутников. Это было первое практическое применение периодической системы. Менделеев также впервые предсказал существование и свойства нескольких неизвестных элементов. Ученый подробно описал важнейшие свойства экаалюминия (будущего галлия), экабора (скандия) и экасилиция (германия). Кроме того, он предсказал существование аналогов марганца (будущих технеция и рения), теллура (полония), иода (астата), цезия (франция), бария (радия), тантала (протактиния). Прогнозы ученого в отношении данных элементов носили общий характер, поскольку эти элементы располагались в малоизученных областях периодической системы.

Первые варианты периодической системы во многом представляли лишь эмпирическое обобщение. Ведь был неясен физический смысл периодического закона, отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания атомных масс. В связи с этим оставались нерешенными многие проблемы. Есть ли границы периодической системы? Можно ли определить точное количество существующих элементов? Оставалась неясной структура шестого периода - каково точное количество редкоземельных элементов? Было неизвестно, существуют ли еще элементы между водородом и литием, какова структура первого периода. Поэтому вплоть до физического обоснования периодического закона и разработки теории периодической системы перед ней не раз возникали серьезные трудности. Неожиданным было открытие в 1894–1898 гг. пяти инертных газов, которым, казалось, не находилось места в периодической системе. Эта трудность была устранена благодаря идее включить в структуру периодической системы самостоятельную нулевую группу. Массовое открытие радиоэлементов на стыке XIX и XX вв. (к 1910 г. их число составило около 40) привело к резкому противоречию между необходимостью их размещения в периодической системе и её сложившейся структурой. Для них было только 7 вакантных мест в шестом и седьмом периодах. Эта проблема была решена в результате установления правил сдвига и открытия изотопов.

Одна из главных причин невозможности объяснить физический смысл периодического закона и структуру периодической системы состояла в том, что было неизвестно, как устроен атом (см. Атом). Важнейшей вехой на пути развития периодической системы явилось создание атомной модели Э. Резерфордом (1911). На её основе голландский ученый А. Ван ден Брук (1913) высказал предположение, что порядковый номер элемента в периодической системе численно равен заряду ядра его атома (Z). Это экспериментально подтвердил английский ученый Г. Мозли (1913). Периодический закон получил физическое обоснование: периодичность изменения свойств элементов стала рассматриваться в зависимости от Z - заряда ядра атома элемента, а не от атомной массы (см. Периодический закон химических элементов).

В результате структура периодической системы значительно упрочилась. Была определена нижняя граница системы. Это водород - элемент с минимальным Z = 1. Стало возможным точно оценить количество элементов между водородом и ураном. Были определены «пробелы» в периодической системе, соответствующие неизвестным элементам с Z = 43, 61, 72, 75, 85, 87. Однако оставались неясными вопросы о точном количестве редкоземельных элементов и, что особенно важно, не были вскрыты причины периодичности изменения свойств элементов в зависимости от Z.

Опираясь на сложившуюся структуру периодической системы и результаты изучения атомных спектров, датский ученый Н. Бор в 1918–1921 гг. развил представления о последовательности построения электронных оболочек и подоболочек в атомах. Ученый пришел к выводу, что сходные типы электронных конфигураций внешних оболочек атомов периодически повторяются. Таким образом, было показано, что периодичность изменения свойств химических элементов объясняется существованием периодичности в построении электронных оболочек и подоболочек атомов.

Периодическая система охватывает более 100 элементов. Из них все трансурановые элементы (Z = 93–110), а также элементы с Z = 43 (технеций), 61 (прометий), 85 (астат), 87 (франций) получены искусственно. За всю историю существования периодической системы было предложено очень большое количество (>500) вариантов её графического изображения, преимущественно в виде таблиц, а также в виде различных геометрических фигур (пространственных и плоскостных), аналитических кривых (спиралей и пр.) и т. д. Наибольшее распространение получили короткая, полудлинная, длинная и лестничная формы таблиц. В настоящее время предпочтение отдается короткой форме.

Фундаментальным принципом построения периодической системы является её подразделение на группы и периоды. Менделеевское понятие рядов элементов ныне не употребляется, поскольку лишено физического смысла. Группы, в свою очередь, подразделяются на главную (а) и побочную (Ь) подгруппы. В каждой подгруппе содержатся элементы - химические аналоги. Элементы a‑ и b‑подгрупп в большинстве групп также обнаруживают между собой определенное сходство, главным образом в высших степенях окисления, которые, как правило, равны номеру группы. Периодом называется совокупность элементов, которая начинается щелочным металлом и заканчивается инертным газом (особый случай - первый период). Каждый период содержит строго определенное количество элементов. Периодическая система состоит из восьми групп и семи периодов, причем седьмой период пока не завершен.

Особенность первого периода заключается в том, что он содержит всего 2 газообразных в свободном виде элемента: водород и гелий. Место водорода в системе неоднозначно. Поскольку он проявляет свойства, общие со щелочными металлами и с галогенами, то его помещают либо в 1a‑, либо в Vlla‑подгруппу, либо в обе одновременно, заключая в одной из подгрупп символ в скобки. Гелий - первый представитель VIIIa‑подгруппы. Долгое время гелий и все инертные газы выделяли в самостоятельную нулевую группу. Это положение потребовало пересмотра после синтеза химических соединений криптона, ксенона и радона. В результате инертные газы и элементы бывшей VIII группы (железо, кобальт, никель и платиновые металлы) были объединены в рамках одной группы.

Второй период содержит 8 элементов. Он начинается щелочным металлом литием, единственная степень окисления которого +1. Далее следует бериллий (металл, степень окисления +2). Бор проявляет уже слабо выраженный металлический характер и является неметаллом (степень окисления +3). Следующий за бором углерод - типичный неметалл, который проявляет степени окисления как +4, так и −4. Азот, кислород, фтор и неон - все неметаллы, причем у азота высшая степень окисления +5 соответствует номеру группы. Кислород и фтор относятся к самым активным неметаллам. Инертный газ неон завершает период.

Третий период (натрий - аргон) также содержит 8 элементов. Характер изменения их свойств во многом аналогичен тому, который наблюдался для элементов второго периода. Но здесь есть и своя специфика. Так, магний в отличие от бериллия более металличен, так же как и алюминий по сравнению с бором. Кремний, фосфор, сера, хлор, аргон - все это типичные неметаллы. И все они, кроме аргона, проявляют высшие степени окисления, равные номеру группы.

Как видим, в обоих периодах по мере увеличения Z наблюдается отчетливое ослабление металлических и усиление неметаллических свойств элементов. Д. И. Менделеев называл элементы второго и третьего периодов (по его словам, малых) типическими. Элементы малых периодов принадлежат к числу самых распространенных в природе. Углерод, азот и кислород (наряду с водородом) - органогены, т. е. основные элементы органической материи.

Все элементы первого - третьего периодов размещаются в a‑подгруппах.

Четвертый период (калий - криптон) содержит 18 элементов. По Менделееву, это первый большой период. После щелочного металла калия и щелочноземельного металла кальция следует ряд элементов, состоящий из 10 так называемых переходных металлов (скандий - цинк). Все они входят в b‑подгруппы. Большинство переходных металлов проявляют высшие степени окисления, равные номеру группы, кроме железа, кобальта и никеля. Элементы, начиная с галлия и кончая криптоном, принадлежат к а-подгруппам. Для криптона известен ряд химических соединений.

Пятый период (рубидий - ксенон) по своему построению аналогичен четвертому. В нем также содержится вставка из 10 переходных металлов (иттрий - кадмий). У элементов этого периода есть свои особенности. В триаде рутений - родий - палладий для рутения известны соединения, где он проявляет степень окисления +8. Все элементы a‑подгрупп проявляют высшие степени окисления, равные номеру группы. Особенности изменения свойств у элементов четвертого и пятого периодов по мере роста Z имеют по сравнению со вторым и третьим периодами более сложный характер.

Шестой период (цезий - радон) включает 32 элемента. В этом периоде кроме 10 переходных металлов (лантан, гафний - ртуть) содержится еще и совокупность из 14 лантаноидов - от церия до лютеция. Элементы от церия до лютеция химически очень похожи, и на этом основании их давно включают в семейство редкоземельных элементов. В короткой форме периодической системы ряд лантаноидов включают в клетку лантана и расшифровку этого ряда дают внизу таблицы (см. Лантаноиды).

В чем состоит специфика элементов шестого периода? В триаде осмий - иридий - платина для осмия известна степень окисления +8. Астат имеет достаточно выраженный металлический характер. Радон обладает наибольшей реакционной способностью из всех инертных газов. К сожалению, из‑за того, что он сильно радиоактивен, его химия мало изучена (см. Радиоактивные элементы).

Седьмой период начинается с франция. Подобно шестому, он также должен содержать 32 элемента, но из них пока известны 24. Франций и радий соответственно являются элементами Ia‑ и IIa‑подгрупп, актиний принадлежит к IIIb‑подгруппе. Далее следует семейство актиноидов, которое включает элементы от тория до лоуренсия и размещается аналогично лантаноидам. Расшифровка этого ряда элементов также дается внизу таблицы.

Теперь посмотрим, как изменяются свойства химических элементов в подгруппах периодической системы. Основная закономерность этого изменения заключается в усилении металлического характера элементов по мере роста Z. Особенно отчетливо эта закономерность проявляется в IIIa–VIIa‑подгруппах. Для металлов Ia–IIIa‑подгрупп наблюдается рост химической активности. У элементов IVa–VIIa‑подгрупп по мере увеличения Z наблюдается ослабление химической активности элементов. У элементов b‑подгрупп характер изменения химической активности более сложен.

Теория периодической системы была разработана Н. Бором и другими учеными в 20‑х гг. XX в. и основана на реальной схеме формирования электронных конфигураций атомов (см. Атом). Согласно этой теории, по мере роста Z заполнение электронных оболочек и подоболочек в атомах элементов, входящих в периоды периодической системы, происходит в следующей последовательности:

Номера периодов
1 2 3 4 5 6 7
1s 2s2p 3s3p 4s3d4p 5s4d5p 6s4f5d6p 7s5f6d7p

На основании теории периодической системы можно дать следующее определение периода: период есть совокупность элементов, начинающаяся элементом со значением n, равным номеру периода, и l = 0 (s‑элементы) и заканчивающаяся элементом с тем же значением n и l = 1 (p‑элементы) (см. Атом). Исключение составляет первый период, содержащий только 1s‑элементы. Из теории периодической системы следуют числа элементов в периодах: 2, 8, 8, 18, 18, 32…

В таблице символы элементов каждого типа (s‑, p‑, d‑ и f‑элементы) изображены на определенном цветовом фоне: s‑элементы - на красном, p‑элементы - на оранжевом, d‑элементы - на синем, f‑элементы - на зеленом. В каждой клетке приведены порядковые номера и атомные массы элементов, а также электронные конфигурации внешних электронных оболочек.

Из теории периодической системы следует, что к a‑подгруппам принадлежат элементы с n, равным номеру периода, и l = 0 и 1. К b‑подгруппам относятся те элементы, в атомах которых происходит достройка оболочек, ранее остававшихся незавершенными. Именно поэтому первый, второй и третий периоды не содержат элементов b‑подгрупп.

Структура периодической системы элементов тесно связана со строением атомов химических элементов. По мере роста Z периодически повторяются сходные типы конфигурации внешних электронных оболочек. А именно они определяют основные особенности химического поведения элементов. Эти особенности по‑разному проявляются для элементов a‑подгрупп (s‑ и р‑элементы), для элементов b‑подгрупп (переходные d‑элементы) и элементов f‑семейств - лантаноидов и актиноидов. Особый случай представляют элементы первого периода - водород и гелий. Для водорода характерна высокая химическая активность, потому что его единственный 1s‑электрон легко отщепляется. В то же время конфигурация гелия (1s 2) весьма устойчива, что обусловливает его химическую бездеятельность.

У элементов а-подгрупп происходит заполнение внешних электронных оболочек атомов (с n, равным номеру периода), поэтому свойства этих элементов заметно изменяются по мере роста Z. Так, во втором периоде литий (конфигурация 2s) - активный металл, легко теряющий единственный валентный электрон; бериллий (2s 2) - также металл, но менее активный вследствие того, что его внешние электроны более прочно связаны с ядром. Далее, бор (2s 2 p) имеет слабо выраженный металлический характер, а все последующие элементы второго периода, у которых происходит построение 2p‑подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внешней электронной оболочки неона (2s 2 p 6) - инертного газа - очень прочна.

Химические свойства элементов второго периода объясняются стремлением их атомов приобрести электронную конфигурацию ближайшего инертного газа (конфигурацию гелия - для элементов от лития до углерода или конфигурацию неона - для элементов от углерода до фтора). Вот почему, например, кислород не может проявлять высшей степени окисления, равной номеру группы: ведь ему легче достичь конфигурации неона путем приобретения дополнительных электронов. Такой же характер изменения свойств проявляется у элементов третьего периода и у s‑ и p‑элементов всех последующих периодов. В то же время ослабление прочности связи внешних электронов с ядром в a‑подгруппах по мере роста Z проявляется в свойствах соответствующих элементов. Так, для s‑элементов отмечается заметный рост химической активности по мере роста Z, а для p‑элементов - нарастание металлических свойств.

В атомах переходных d‑элементов достраиваются не завершенные ранее оболочки со значением главного квантового числа n, на единицу меньшим номера периода. За отдельными исключениями, конфигурация внешних электронных оболочек атомов переходных элементов - ns 2 . Поэтому все d‑элементы являются металлами, и именно поэтому изменения свойств d‑элементов по мере роста Z не так резки, как это наблюдается у s‑ и p‑элементов. В высших степенях окисления d‑элементы проявляют определенное сходство с p‑элементами соответствующих групп периодической системы.

Особенности свойств элементов триад (VIIIb‑подгруппа) объясняются тем, что b‑подоболочки близки к завершению. Вот почему железо, кобальт, никель и платиновые металлы, как правило, не склонны давать соединения высших степеней окисления. Исключение составляют лишь рутений и осмий, дающие оксиды RuO 4 и OsO 4 . У элементов Ib‑ и IIb‑подгрупп d‑подоболочка фактически оказывается завершенной. Поэтому они проявляют степени окисления, равные номеру группы.

В атомах лантаноидов и актиноидов (все они металлы) происходит достройка ранее не завершенных электронных оболочек со значением главного квантового числа n на две единицы меньше номера периода. В атомах этих элементов конфигурация внешней электронной оболочки (ns 2) сохраняется неизменной, а заполняется третья снаружи N‑оболочка 4f‑электронами. Вот почему лантаноиды так сходны.

У актиноидов дело обстоит сложнее. В атомах элементов с Z = 90–95 электроны 6d и 5f могут принимать участие в химических взаимодействиях. Поэтому актиноиды имеют гораздо больше степеней окисления. Например, для нептуния, плутония и америция известны соединения, где эти элементы выступают в семивалентном состоянии. Только у элементов, начиная с кюрия (Z = 96), становится устойчивым трехвалентное состояние, но и здесь есть свои особенности. Таким образом, свойства актиноидов значительно отличаются от свойств лантаноидов, и оба семейства поэтому нельзя считать подобными.

Семейство актиноидов заканчивается элементом с Z = 103 (лоуренсий). Оценка химических свойств курчатовия (Z = 104) и нильсбория (Z = 105) показывает, что эти элементы должны быть аналогами соответственно гафния и тантала. Поэтому ученые полагают, что после семейства актиноидов в атомах начинается систематическое заполнение 6d‑подоболочки. Оценка химической природы элементов с Z = 106–110 экспериментально не проводилась.

Конечное число элементов, которое охватывает периодическая система, неизвестно. Проблема её верхней границы - это, пожалуй, основная загадка периодической системы. Наиболее тяжелый элемент, который удалось обнаружить в природе,- это плутоний (Z = 94). Достигнутый предел искусственного ядерного синтеза - элемент с порядковым номером 110. Остается открытым вопрос: удастся ли получить элементы с большими порядковыми номерами, какие и сколько? На него нельзя пока ответить сколь‑либо определенно.

С помощью сложнейших расчетов, выполненных на электронных вычислительных машинах, ученые попытались определить строение атомов и оценить важнейшие свойства «сверхэлементов», вплоть до огромных порядковых номеров (Z = 172 и даже Z = 184). Полученные результаты оказались весьма неожиданными. Например, в атоме элемента с Z = 121 предполагается появление 8p‑электрона; это после того, как в атомах с Z = 119 и 120 завершилось формирование 8s‑подоболочки. А ведь появление p‑электронов вслед за s‑электронами наблюдается только в атомах элементов второго и третьего периодов. Расчеты показывают также, что у элементов гипотетического восьмого периода заполнение электронных оболочек и под-оболочек атомов происходит в очень сложной и своеобразной последовательности. Поэтому оценить свойства соответствующих элементов - проблема весьма сложная. Казалось бы, восьмой период должен содержать 50 элементов (Z = 119–168), но, согласно расчетам, он должен завершаться у элемента с Z = 164, т. е. на 4 порядковых номера раньше. А «экзотический» девятый период, оказывается, должен состоять из 8 элементов. Вот его «электронная» запись: 9s 2 8p 4 9p 2 . Иными словами, он содержал бы всего 8 элементов, как второй и третий периоды.

Трудно сказать, насколько соответствовали бы истине расчеты, проделанные с помощью компьютера. Однако если бы они были подтверждены, то пришлось бы серьезно пересмотреть закономерности, лежащие в основе периодической системы элементов и её структуры.

Периодическая система сыграла и продолжает играть огромную роль в развитии различных областей естествознания. Она явилась важнейшим достижением атомно-молекулярного учения, способствовала появлению современного понятия «химический элемент» и уточнению понятий о простых веществах и соединениях.

Закономерности, вскрытые периодической системой, оказали существенное влияние на разработку теории строения атомов, открытие изотопов, появление представлений о ядерной периодичности. С периодической системой связана строго научная постановка проблемы прогнозирования в химии. Это проявилось в предсказании существования и свойств неизвестных элементов и новых особенностей химического поведения элементов уже открытых. Ныне периодическая система представляет фундамент химии, в первую очередь неорганической, существенно помогая решению задачи химического синтеза веществ с заранее заданными свойствами, разработке новых полупроводниковых материалов, подбору специфических катализаторов для различных химических процессов и т. д. И наконец, периодическая система лежит в основе преподавания химии.

Периоди ческая систе ма элеме нтов Д. И. Менделеева, естественная , являющаяся табличным (или др. графическим) выражением . Периодическая система элементов разработана Д. И. Менделеевым в 1869-1871.

История периодической системы элементов. Попытки систематизации предпринимались различными учёными в , Англии, США с 30-х годов 19 в. Менделеева - И. Дёберейнер, Ж. Дюма, французский химик А. Шанкуртуа, англ. химики У. Одлинг, Дж. Ньюлендс и др. установили существование групп элементов, сходных по химическим свойствам, так называемых «естественных групп» (например, «триады» Дёберейнера). Однако эти учёные не шли дальше установления частных закономерностей внутри групп. В 1864 Л. Мейер на данных об предложил таблицу, показывающую соотношение для нескольких характерных групп элементов. Теоретических сообщений из своей таблицы Мейер не сделал.

Прообразом научной периодической системы элементов явилась таблица «Опыт системы элементов, основанной на их и химическом сходстве», составленная Менделеевым 1 марта 1869 (рис. 1 ). На протяжении последующих двух лет автор совершенствовал эту таблицу, ввёл представления о группах, рядах и периодах элементов; сделал попытку оценить ёмкость малых и больших периодов, содержащих, по его мнению, соответственно по 7 и 17 элементов. В 1870 он назвал свою систему естественной, а в 1871 - периодической. Уже тогда структура периодической системы элементов приобрела во многом современные очертания (рис. 2 ).

Периодическая система элементов не сразу завоевала признание как фундаментальное научное обобщение; положение существенно изменилось лишь после открытия Ga, Sc, Ge и установления двухвалентности Be (он долгое время считался трёхвалентным). Тем не менее периодическая система элементов во многом представляла эмпирическое обобщение фактов, поскольку был неясен физический смысл периодического закона и отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания . Поэтому вплоть до физического обоснования периодического закона и разработки теории периодической системы элементов многие факты не удавалось объяснить. Так, неожиданным явилось открытие в конце 19 в. , которые, казалось, не находили места в периодической системе элементов; эта трудность была устранена благодаря включению в периодическую систему элементов самостоятельной нулевой группы (впоследствии VIIIa-подгруппы). Открытие многих «радиоэлементов» в начале 20 в. привело к противоречию между необходимостью их размещения в периодической системе элементов и её структурой (для более чем 30 таких элементов было 7 «вакантных» мест в шестом и седьмом периодах). Это противоречие было преодолено в результате открытия . Наконец, величина () как параметра, определяющего свойства элементов, постепенно утрачивала своё значение.

Одна из главных причин невозможности объяснения физического смысла периодического закона и периодической системы элементов состояла в отсутствии теории строения (см. , Атомная физика). Поэтому важнейшей вехой на пути развития периодической системы элементов явилась планетарная модель , предложенная Э. Резерфордом (1911). На её основе голландский учёный А. ван ден Брук высказал предположение (1913), что элемента в периодической системе элементов ( Z) численно равен заряду ядра (в единицах элементарного заряда). Это было экспериментально подтверждено Г. Мозли (1913-14, см. Мозли закон). Так удалось установить, что периодичность изменения свойств элементов зависит от , а не от . В результате на научной основе была определена нижняя граница периодической системы элементов ( как элемент с минимальным Z = 1); точно оценено число элементов между и ; установлено, что «пробелы» в периодической системе элементов соответствуют неизвестным элементам с Z = 43, 61, 72, 75, 85, 87.

Оставался, однако, неясным вопрос о точном числе , и (что особенно важно) не были вскрыты причины периодического изменения свойств элементов в зависимости от Z. Эти причины были найдены в ходе дальнейшей разработки теории периодической системы элементов на основе квантовых представлений о строении (см. далее). Физическое обоснование периодического закона и открытие явления изотонии позволили научно определить понятие « » (« »). Прилагаемая периодическая система (см. илл. ) содержит современные значения элементов по углеродной шкале в соответствии с Международной таблицей 1973. В квадратных скобках приведены наиболее долгоживущих . Вместо наиболее устойчивых 99 Tc, 226 Ra, 231 Pa и 237 Np указаны этих , принятые (1969) Международной комиссией по .

Структура периодической системы элементов . Современная (1975) периодическая система элементов охватывает 106 ; из них все трансурановые (Z = 93-106), а также элементы с Z = 43 (Tc), 61 (Pm), 85 (At) и 87 (Fr) получены искусственно. За всю историю периодической системы элементов было предложено большое количество (нескольких сотен) вариантов её графического изображения, преимущественно в виде таблиц; известны изображения и в виде различных геометрических фигур (пространственных и плоскостных), аналитических кривых (например, ) и т.д. Наибольшее распространение получили три формы периодической системы элементов: короткая, предложенная Менделеевым (рис. 2 ) и получившая всеобщее признание (в современном виде она дана на илл. ); длинная (рис. 3 ); лестничная (рис. 4 ). Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А. Вернером. Лестничная форма предложена английским учёным Т. Бейли (1882), датским учёным Ю. Томсеном (1895) и усовершенствована Н. (1921). Каждая из трёх форм имеет достоинства и недостатки. Фундаментальным принципом построения периодической системы элементов является разделение всех на группы и периоды. Каждая группа в свою очередь подразделяется на главную (а) и побочную (б) подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших , которые, как правило, соответствуют номеру группы. Периодом называется совокупность элементов, начинающаяся и заканчивающаяся (особый случай - первый период); каждый период содержит строго определённое число элементов. Периодическая система элементов состоит из 8 групп и 7 периодов (седьмой пока не завершен).

Специфика первого периода в том, что он содержит всего 2 элемента: H и He. Место H в системе неоднозначно: поскольку он проявляет свойства, общие со и с , его помещают либо в Ia-, либо (предпочтительнее) в VIIa-подгруппу. - первый представитель VIIa-подгруппы (однако долгое время Не и все объединяли в самостоятельную нулевую группу).

Второй период (Li - Ne) содержит 8 элементов. Он начинается Li, единственная которого равна I. Затем идёт Be - , II. Металлический характер следующего элемента В выражен слабо ( III). Идущий за ним C - типичный , может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, O, F и Ne - , причём только у N высшая V соответствует номеру группы; лишь в редких случаях проявляет положительную , а для F известна VI. Завершает период Ne.

Третий период (Na - Ar) также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща . Si, Р, S, Cl, Ar - типичные , но все они (кроме Ar) проявляют высшие , равные номеру группы. Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов (малых, по его терминологии) типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и O являются наряду с H основными элементами органической материи (органогенами). Все элементы первых трёх периодов входят в подгруппы а.

По современной терминологии (см. далее), элементы этих периодов относятся к s-элементам (щелочные и щёлочноземельные ), составляющим Ia- и IIa-подгруппы (выделены на цветной таблице красным цветом), и р-элементам (В - Ne, At - Ar), входящим в IIIa - VIIIa-подгруппы (их символы выделены оранжевым цветом). Для элементов малых периодов с возрастанием сначала наблюдается уменьшение , а затем, когда число в наружной оболочке уже значительно возрастает, их взаимное отталкивание приводит к увеличению . Очередной максимум достигается в начале следующего периода на щелочном элементе. Примерно такая же закономерность характерна для .

Четвёртый период (K - Kr) содержит 18 элементов (первый большой период, по Менделееву). После K и щёлочноземельного Ca (s-элементы) следует ряд из десяти так называемых (Sc - Zn), или d-элементов (символы даны синим цветом), которые входят в подгруппы 6 соответствующих групп периодической системы элементов. Большинство (все они ) проявляет высшие , равные номеру группы. Исключение - триада Fe - Co - Ni, где два последних элемента максимально положительно трёхвалентны, а в определённых условиях известно в VI. Элементы, начиная с Ga и кончая Kr (р-элементы), принадлежат к подгруппам а, и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Kr способен образовывать (главным образом с F), но VIII для него неизвестна.

Пятый период (Rb - Xe) построен аналогично четвёртому; в нём также имеется вставка из 10 (Y - Cd), d-элементов. Специфические особенности периода: 1) в триаде Ru - Rh - Pd только проявляет VIII; 2) все элементы подгрупп а проявляют высшие , равные номеру группы, включая и Xe; 3) у I отмечаются слабые металлические свойства. Таким образом, характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлические свойства сохраняются в большом интервале .

Шестой период (Cs - Rn) включает 32 элемента. В нём помимо 10 d-элементов (La, Hf - Hg) содержится совокупность из 14 f-элементов, от Ce до Lu (символы чёрного цвета). Элементы от La до Lu химически весьма сходны. В короткой форме периодической системы элементов включаются в La (поскольку их преобладающая III) и записываются отдельной строкой внизу таблицы. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы периодической системы элементов, хорошо отражающие специфику на фоне целостной структуры периодической системы элементов. Особенности периода: 1) в триаде Os - Ir - Pt только проявляет VIII; 2) At имеет более выраженный (по сравнению с 1) металлический характер; 3) Rn, по-видимому (его мало изучена), должен быть наиболее реакционноспособным из .

Седьмой период, начинающийся с Fr (Z = 87), также должен содержать 32 элемента, из которых пока известно 20 (до элемента с Z = 106). Fr и Ra - элементы соответственно Ia- и IIa -подгрупп (s-элементы), Ac - аналог элементов IIIб -подгруппы (d-элемент). Следующие 14 элементов, f-элементы (с Z от 90 до 103), составляют семейство . В короткой форме периодической системы элементов они занимают Ac и записываются отдельной строкой внизу таблицы, подобно , в отличие от которых характеризуются значительным разнообразием . В связи с этим в химическом отношении ряды и обнаруживают заметные различия. Изучение химической природы элементов с Z = 104 и Z = 105 показало, что эти элементы являются аналогами и соответственно, то есть d-элементами, и должны размещаться в IVб- и Vб-подгруппах. Членами б-подгрупп должны быть и последующие элементы до Z = 112, а далее (Z = 113-118) появятся р-элементы (IIIa - VIlla-подгруппы).

Теория периодической системы элементов. В основе теории периодической системы элементов лежит представление о специфических закономерностях построения электронных оболочек (слоев, уровней) и подоболочек (оболочек, подуровней) в по мере роста Z (см. , Атомная физика). Это представление было развито в 1913-21 с учётом характера изменения свойств в периодической системе элементов и результатов изучения их . выявил три существенные особенности формирования электронных конфигураций : 1) заполнение электронных оболочек (кроме оболочек, отвечающих значениям главного квантового числа n = 1 и 2) происходит не монотонно до полной их ёмкости, а прерывается появлением совокупностей , относящихся к оболочкам с большими значениями n; 2) сходные типы электронных конфигураций периодически повторяются; 3) границы периодов периодической системы элементов (за исключением первого и второго) не совпадают с границами последовательных электронных оболочек.

В обозначениях, принятых в атомной физике, реальная схема формирования электронных конфигураций по мере роста Z может быть в общем виде записана следующим образом:

Вертикальными чертами разделены периоды периодической системы элементов (их номера обозначены цифрами наверху); жирным шрифтом выделены подоболочки, которыми завершается построение оболочек с данным n. Под обозначениями подоболочек проставлены значения главного (n) и орбитального (l) квантовых чисел, характеризующие последовательно заполняющиеся подоболочки. В соответствии с ёмкость каждой электронной оболочки равна 2n 2 , а ёмкость каждой подоболочки - 2(2l + 1). Из вышеприведённой схемы легко определяются ёмкости последовательных периодов: 2, 8, 8, 18, 18, 32, 32... Каждый период начинается элементом, в которого появляется с новым значением n. Таким образом, периоды можно характеризовать как совокупности элементов, начинающиеся элементом со значением n, равным номеру периода, и l = 0 (ns 1 -элементы), и завершающиеся элементом с тем же n и l = 1 (np 6 -элементы); исключение - первый период, содержащий только ls-элементы. При этом к а-подгруппам принадлежат элементы, для которых n равно номеру периода, а l = 0 или 1, то есть происходит построение электронной оболочки с данным n. К б-подгруппам принадлежат элементы, в которых происходит достройка оболочек, остававшихся незавершёнными (в данном случае n меньше номера периода, а l = 2 или 3). Первый - третий периоды периодической системы элементов содержат только элементы а-подгрупп.

Приведённая реальная схема формирования электронных конфигураций не является безупречной, поскольку в ряде случаев чёткие границы между последовательно заполняющимися подоболочками нарушаются (например, после заполнения в Cs и Ba 6s-подоболочки в появляется не 4f-, а 5d-электрон, имеется 5d-электрон в Gd и т.д.). Кроме того, первоначально реальная схема не могла быть выведена из каких-либо фундаментальных физических представлений; такой вывод стал возможным благодаря применению к проблеме строения .

Типы конфигураций внешних электронных оболочек (на илл. конфигурации указаны) определяют основные особенности химического поведения элементов. Эти особенности являются специфическими для элементов а-подгрупп (s-и р-элементы), б-подгрупп (d-элементы) и f-семейств ( и ). Особый случай представляют собой элементы первого периода (H и He). Высокая химическая атомарного объясняется лёгкостью отщепления единственного ls-электрона, тогда как конфигурация (1s 2) является весьма прочной, что обусловливает его химическую инертность.

Поскольку у элементов а-подгрупп происходит заполнение внешних электронных оболочек (с n, равным номеру периода), то свойства элементов заметно меняются по мере роста Z. Так, во втором периоде Li (конфигурация 2s 1) - химически активный , легко теряющий валентный , a Be (2s 2) - также , но менее активный. Металлический характер следующего элемента B (2s 2 p) выражен слабо, а все последующие элементы второго периода, у которых происходит застройка 2р-подоболочки, являются уже . Восьмиэлектронная конфигурация внешней электронной оболочки Ne (2s 2 p 6) чрезвычайно прочна, поэтому - . Аналогичный характер изменения свойств наблюдается у элементов третьего периода и у s-и р-элементов всех последующих периодов, однако ослабление связи внешних с ядром в а-подгруппах по мере роста Z определённым образом сказывается на их свойствах. Так, у s-элементов отмечается заметный рост химической , а у р-элементов - нарастание металлических свойств. В VIIIa-подгруппе ослабляется устойчивость конфигурации ns 2 np 6 , вследствие чего уже Kr (четвёртый период) приобретает способность вступать в . Специфика р-элементов 4-6-го периодов связана также с тем, что они отделены от s-элементов совокупностями элементов, в которых происходит застройка предшествующих электронных оболочек.

У переходных d-элементов б-подгрупп достраиваются незавершённые оболочки с n, на единицу меньшим номера периода. Конфигурация внешних оболочек у них, как правило, ns 2 . Поэтому все d-элементы являются . Аналогичная структура внешней оболочки d-элементов в каждом периоде приводит к тому, что изменение свойств d-элементов по мере роста Z не является резким и чёткое различие обнаруживается лишь в высших , в которых d-элементы проявляют определённое сходство с р-элементами соответствующих групп периодической системы элементов. Специфика элементов VIIIб-подгруппы объясняется тем, что их d-подоболочки близки к завершению, в связи с чем эти элементы не склонны (за исключением Ru и Os) проявлять высшие . У элементов Iб-подгруппы (Cu, Ag, Au) d-подоболочка фактически оказывается завершенной, но ещё недостаточно стабилизированной, эти элементы проявляют и более высокие (до III в случае Au).

Значение периодической системы элементов . Периодическая система элементов сыграла и продолжает играть огромную роль в развитии естествознания. Она явилась важнейшим достижением атомно-молекулярного учения, позволила дать современное определение понятия « » и уточнить понятия о и соединениях. Закономерности, вскрытые периодической системой элементов, оказали существенное влияние на разработку теории строения , способствовали объяснению явления изотонии. С периодической системой элементов связана строго научная постановка проблемы прогнозирования в , что проявилось как в предсказании существования неизвестных элементов и их свойств, так и в предсказании новых особенностей химического поведения уже открытых элементов. Периодическая система элементов - фундамент , в первую очередь неорганической; она существенно помогает решению задач синтеза с заранее заданными свойствами, разработке новых материалов, в частности полупроводниковых, подбору специфических для различных химических процессов и т.д. Периодическая система элементов- также научная основа преподавания .

Лит.: Менделеев Д. И., Периодический закон. Основные статьи, М., 1958; Кедров Б. М., Три аспекта атомистики. ч. 3. Закон Менделеева, М., 1969; Рабинович Е., Тило Э., Периодическая система элементов. История и теория, М.- Л., 1933; Карапетьянц М. Х., Дракин С. И., Строение , М., 1967; Астахов К. В., Современное состояние периодической системы Д. И. Менделеева, М., 1969; Кедров Б. М., Трифонов Д. Н., Закон периодичности и . Открытия и хронология, М., 1969; Сто лет периодического закона . Сборник статей, М., 1969; Сто лет периодического закона . Доклады на пленарных заседаниях, М., 1971; Spronsen J. W. van, The periodic system of chemical elements. A history of the first hundred years, Amst.- L.- N. Y., 1969; Клечковский В. М., Распределение атомных и правило последовательного заполнения (n + l)-групп, М., 1968; Трифонов Д. Н., О количественной интерпретации периодичности, М., 1971; Некрасов Б. В., Основы , т. 1-2, 3 изд., М., 1973; Кедров Б. М., Трифонов Д. Н., О современных проблемах периодической системы, М., 1974.

Д. Н. Трифонов.


Рис. 1. Таблица «Опыт системы элементов», основанной на их и химическом сходстве, составленная Д. И. Менделеевым 1 марта 1869.



Рис. 3. Длинная форма периодической системы элементов (современный вариант).



Рис. 4. Лестничная форма периодической системы элементов (по Н. , 1921).



Рис. 2. «Естественная система элементов» Д. И. Менделеева (короткая форма), опубликованная во 2-й части 1-го издания Основ в 1871.



Периодическая система элементов Д. И. Менделеева.

Эфир в таблице Менделеева

Мировой эфир есть субстанция ВСЯКОГО химического элемента и значит - ВСЯКОГО вещества, есть Абсолютная истинная материя как Всемирная элементообразующая Сущность. Мировой эфир - это исток и венец всей подлинной Таблицы Менделеева, её начало и конец, - альфа и омега Периодической системы элементов Дмитрия Ивановича Менделеева.


В античной философии эфир (aithér-греч) наряду с землей, водой, воздухом и огнем - один из пяти элементов бытия (по Аристотелю) - пятая сущность (quinta essentia -лат.), понимаемая как тончайшая всепроникающая материя. В конце XIX века в ученых кругах получила широкое хождение гипотеза о мировом эфире (МЭ), заполняющем все мировое пространство. Он понимался как невесомая и упругая жидкость, которая пронизывает все тела. Существованием эфира пытались объяснить многие физические явления и свойства.


Предисловие.
У Менделеева было два фундаментальных научных открытия:
1 - Открытие Периодического закона в субстанции химии,
2 - Открытие взаимосвязи субстанции химии и субстанции Эфира, а именно: частицы Эфира формирует молекулы, ядра, электроны и т.д., но в химических реакциях не участвуют.
Эфир - частицы вещества размером ~ 10-100 метра (фактически - «первокирпичики» материи).

Факты. В подлинной таблице Менделеева был Эфир. Ячейка для Эфира располагалась в нулевой группе с инертными газами и в нулевом ряду как главный системообразующий фактор для построения Системы химических элементов. После смерти Менделеева таблицу исказили, убрав из неё Эфир и отменив нулевую группу, тем самым, скрыв фундаментальное открытие концептуального значения.
В современных таблицах Эфира: 1 - не видно, 2 - и не угадывается (из-за отсутствия нулевой группы).

Такой целенаправленный подлог сдерживает развитие прогресса цивилизации.
Техногенные катастрофы (напр. Чернобыль и Фукусима) были бы исключены, если бы в развитие подлинной таблицы Менделеева своевременно были вложены адекватные ресурсы. Сокрытие концептуальных знаний идёт на глобальном уровне для «опускания» цивилизации.

Результат. В школах и ВУЗах преподают обрезанную таблицу Менделеева.
Оценка ситуации. Таблица Менделеева без Эфира - то же самое, что человечество без детей - прожить можно, но развития и будущего не будет.
Резюме. Если враги человечества знания скрывают, то наша задача - эти знания раскрывать.
Вывод. В старой таблице Менделеева элементов меньше, а форсайта больше, чем в современной.
Заключение. Новый уровень возможен только при изменении информационного состояния общества.

Итог. Возврат к истинной таблице Менделеева - это уже вопрос не научный, а вопрос политический.


В чем же был основной политический смысл эйнштейновского учения? Он состоял в том, чтобы любыми путями перекрыть человечеству доступ к неисчерпаемым естественным источникам энергии, которые открывало изучение свойств мирового эфира . В случае успеха на этом пути, мировая финансовая олигархия теряла власть в этом мире, особенно в свете ретроспективы тех лет: Рокфеллеры сделали немыслимое состояние, превосходящее бюджет Соединенных Штатов, на нефтяных спекуляциях, и утрата той роли нефти, которую заняло «черное золото» в этом мире - роль крови мировой экономики - их не вдохновляла.

Не вдохновляло это и прочих олигархов - угольных и стальных королей. Так финансовый магнат Морган моментально прекратил финансирование экспериментов Николы Теслы, когда тот вплотную подошел к беспроводной передаче энергии и извлечению энергии «из ниоткуда» - из мирового эфира. После этого обладателю огромного количества воплощенных в практику технических решений не оказывал финансовой помощи никто - солидарность у финансовых воротил как у воров в законе и феноменальный нюх на то, откуда исходит опасность. Вот поэтому против человечества и была произведена диверсия под названием «Специальная Теория Относительности».

Один из первых ударов пришелся на таблицу Дмитрия Менделеева, в которой эфир стоял первым номером, именно размышления об эфире породили гениальное прозрение Менделеева - его периодическую таблицу элементов.


Глава из статьи: В.Г. Родионов. Место и роль мирового эфира в истинной таблице Д.И. Менделеева

6. Argumentum ad rem

То, что сейчас преподносят в школах и университетах под названием «Периодическая система химических элементов Д.И. Менделеева»,- откровенная ф а л ь ш и в к а.

Последний раз в неискажённом виде настоящая Таблица Менделеева увидела свет в 1906 году в Санкт-Петербурге (учебник «Основы химии», VIII издание). И только спустя 96 лет забвения подлинная Таблица Менделеева впервые восстаёт из пепла благодаря публикации диссертации в журнале ЖРФМ Русского Физического Общества.

После скоропостижной смерти Д. И. Менделеева и ухода из жизни его верных научных коллег по Русскому Физико-Химическому Обществу, впервые поднял руку на бессмертное творение Менделеева — сын друга и соратника Д. И. Менделеева по Обществу — Борис Николаевич Меншуткин. Конечно, Меншуткин действовал не в одиночку, — он лишь выполнял заказ. Ведь, новая парадигма релятивизма требовала отказа от идеи мирового эфира; и потому это требование было возведено в ранг догмы, а труд Д. И. Менделеева был фальсифицирован.

Главное искажение Таблицы — перенос «нулевой группы» Таблицы в её конец, вправо, и введение т.н. «периодов». Подчёркиваем, что такая (лишь на первый взгляд — безобидная) манипуляция логически объяснима только как сознательное устранение главного методологического звена в открытии Менделеева: периодическая система элементов в своём начале, истоке, т.е. в верхнем левом углу Таблицы, должна иметь нулевую группу и нулевой ряд, где располагается элемент «Х» (по Менделееву — «Ньютоний»),- т.е. мировой эфир.
Более того, являясь единственным системообразующим элементом всей Таблицы производных элементов, этот элемент «Х» есть аргумент всей Таблицы Менделеева. Перенос же нулевой группы Таблицы в её конец уничтожает саму идею этой первоосновы всей системы элементов по Менделееву.

Для подтверждения вышесказанного, предоставим слово самому Д. И. Менделееву.

«… Если же аналоги аргона вовсе не дают соединений, то очевидно, что нельзя включать ни одну из групп ранее известных элементов, и для них должно открыть особую группу нулевую … Это положение аргоновых аналогов в нулевой группе составляет строго логическое следствие понимания периодического закона, а потому (помещение в группе VIII явно не верно) принято не только мною, но и Браизнером, Пиччини и другими … Теперь же, когда стало не подлежать ни малейшему сомнению, что перед той I группой, в которой должно помещать водород, существует нулевая группа, представители которой имеют веса атомов меньше, чем у элементов I группы, мне кажется невозможным отрицать существование элементов более лёгких, чем водород.


Из них обратим внимание сперва на элемент первого ряда 1-й группы. Его означим через «y». Ему, очевидно, будут принадлежать коренные свойства аргоновых газов … «Короний», плотностью порядка 0,2 по отношению к водороду; и он не может быть ни коим образом мировым эфиром.

Этот элемент «у», однако, необходим для того, чтобы умственно подобраться к тому наиглавнейшему, а потому и наиболее быстро движущемуся элементу «х», который, по моему разумению, можно считать эфиром. Мне бы хотелось предварительно назвать его «Ньютонием» — в честь бессмертного Ньютона … Задачу тяготения и задачи всей энергетики (!!! — В.Родионов) нельзя представить реально решёнными без реального понимания эфира, как мировой среды, передающей энергию на расстояния. Реального же понимания эфира нельзя достичь, игнорируя его химизм и не считая его элементарным веществом; элементарные же вещества ныне немыслимы без подчинения их периодической законности» («Попытка химического понимания мирового эфира». 1905 г., стр. 27).

«Эти элементы, по величине их атомных весов, заняли точное место между галлоидами и щелочными металлами, как показал Рамзай в 1900 году. Из этих элементов необходимо образовать особую нулевую группу, которую прежде всех в 1900 году признал Еррере в Бельгии. Считаю здесь полезным присовокупить, что прямо судя по неспособности к соединениям элементов нулевой группы, аналогов аргона должно поставить раньше элементов 1 группы и по духу периодической системы ждать для них меньшего атомного веса, чем для щелочных металлов.

Это так и оказалось. А если так, то это обстоятельство, с одной стороны, служит подтверждением правильности периодических начал, а с другой стороны, ясно показывает отношение аналогов аргона к другим, ранее известным, элементам. Вследствие этого можно разбираемые начала прилагать ещё шире, чем ранее, и ждать элементов нулевого ряда с атомными весами гораздо меньшими, чем у водорода.

Таким образом, можно показать, что в первом ряду первым перед водородом существует элемент нулевой группы с атомным весом 0,4 (быть может, это короний Ионга), а в ряду нулевом, в нулевой группе — предельный элемент с ничтожно малым атомным весом, не способным к химическим взаимодействиям и обладающий вследствие того чрезвычайно быстрым собственным частичным (газовым) движением.

Эти свойства, быть может, должно приписать атомам всепроникающего (!!! — В.Родионов) мирового эфира. Мысль об этом указана мною в предисловии к этому изданию и в русской журнальной статье 1902 года …» («Основы химии». VIII изд., 1906 г., стр. 613 и след.)
1 , , ,

Из комментариев:

Для химии современной периодической таблицы элементов достаточно.

Роль эфира может быть полезна в ядерных реакциях, но и это слишком не значительно.
Учёт влияния эфира наиболее близко в явлениях распада изотопов. Однако учёт этот чрезвычайно сложен и наличие закономерностей принимаются не всеми учёными.

Самое простое доказательство наличия эфира: Явление аннигиляции позитрон-электронной пары и возникновение этой пары из вакуума, а также невозможность поймать электрон в состоянии покоя. Так же электромагнитное поле и полная аналогия между фотонами в вакууме и звуковыми волнами - фононами в кристаллах.

Эфир - это дифференцированная материя, так сказать, атомы в разобранном состоянии или правильней сказать, элементарные частицы, из которых формируются будущие атомы. Поэтому ему нет места в таблице Менделеева, так как логика построения данной системы не предполагает включать в её состав не целостные структуры,которыми являются сами атомы. В противном случае, так можно и для кварков найти место, где-нибудь в минус первом периоде.
Сам эфир имеет более сложную многоуровневую структуру проявления в мировом бытии, нежели об этом знает современная наука. Как только она раскроет первые тайны этого неуловимого эфира, тогда и будут изобретены новые двигатели для всевозможных машин на абсолютно новых принципах.
Действительно,Тесла едва ли не единственный, кто был близок к разгадке тайны, так называемого эфира,но ему сознательно мешали осуществить свои замыслы. Вот так до сегодняшнего дня ещё не родился тот гений, который продолжит дело великого изобретателя и расскажет всем нам, что же на самом деле представляет из себя таинственный эфир и на какой пьедестал его можно будет поставить.

Он опирался на труды Роберта Бойле и Антуана Лавузье. Первый ученый ратовал за поиск неразложимых химических элементов. 15 из таковых Бойле перечислил еще в 1668-ом году.

Лавузье прибавил к ним еще 13, но спустя век. Поиски растянулись, поскольку не было стройной теории связи между элементами. Наконец, в «игру» вступил Дмитрий Менделеев. Он решил, что есть связь между атомной массой веществ и их местом в системе.

Эта теория позволила ученому открыть десятки элементов, не обнаруживая их на практике, а природе. Это было возложено на плечи потомков. Но, сейчас не о них. Посвятим статью великому русскому ученому и его таблице.

История создания таблицы Менделеева

Таблица Менделеева началась с книги «Соотношение свойств с атомным весом элементов». Труд выпущен в 1870-ых. Тогда же русский ученый выступил перед химическим обществом страны и разослал первый вариант таблицы коллегам из-за рубежа.

До Менделеева разными учеными были открыты 63 элемента. Наш соотечественник начал со сравнения их свойств. В первую очередь, работал с калием и хлором. Потом, взялся за группу металлов щелочной группы.

Химик обзавелся специальным столом и карточками элементов, чтобы раскладывать их, как пасьянс, ища нужные совпадения и комбинации. В итоге, пришло прозрение: — свойства компонентов зависят от массы их атомов. Так, элементы таблицы Менделеева выстроились в ряды.

Находкой маэстро химии стало решение оставить в этих рядах пустоты. Периодичность перепада между атомными массами заставила ученого предположить, что человечеству известны еще не все элементы. Промежутки в весе между некоторыми «соседями» были слишком велики.

Поэтому, периодическая таблица Менделеева стала похожа на шахматное поле, с обилием «белых» клеток. Время показало, что они, действительно, ждали своих «постояльцев». Ими, к примеру, стали инертные газы. Гелий, неон, аргон, криптон, радиоакт и ксенон открыты лишь в 30-ых годах 20-го века.

Теперь о мифах. Распространено мнение, что химическая таблица Менделеева явилась ему во сне. Это происки университетских педагогов, точнее, одного из них – Александра Иностранцева. Это русский геолог, читавший лекции в Петербургском университете горного дела.

Иностранцев был знаком с Менделеевым, бывал у него в гостях. Однажды, изможденный поисками Дмитрий заснул прямо при Александе. Тот дождался, пока химик проснется и увидел, как Менделеев хватается за листок и записывает окончательный вариант таблицы.

По сути, ученый просто не успел сделать это до того, как его захватил Морфей. Однако, Иностранцеву хотелось позабавить своих студентов. На основе виденного геолог придумал байку, которую благодарные слушатели быстро распространили в массы.

Особенности таблицы Менделеева

С момента первой версии 1969-го года порядковая таблица Менделеева не раз дорабатывалась. Так, с открытием в 1930-ых благородных газов удалось вывести новую зависимость элементов, — от их порядковых номеров, а не массы, как заявлял автор системы.

Понятие «атомный вес» заменили на «атомный номер». Удалось изучить число протонов в ядрах атомов. Эта цифра и есть порядковый номер элемента.

Ученые 20-го века изучили и электронное строение атомов. Оно тоже влияет на периодичность элементов и отражено в поздних редакциях таблицы Менделеева. Фото списка демонстрирует, что вещества в нем расставлены по мере роста атомного веса.

Первооснову менять не стали. Масса увеличивается слева направо. При этом, таблица не едина, а поделена на 7 периоды. Отсюда и название списка. Период – горизонтальный ряд. Его начало – типичные металлы, конец – элементы с неметаллическими свойствами. Убывание постепенное.

Есть большие и малые периоды. Первые находятся в начале таблицы, их 3. Открывает список период из 2-х элементов. Следом идут две колонки, в которых по 8 наименований. Оставшиеся 4 периода большие. Наиболее протяжен 6-ой, в нем 32 элемента. В 4-ом и 5-ом их по 18, а в 7-ом – 24.

Можно сосчитать, сколько элементов в таблице Менделеева. Всего 112 наименований. Именно наименований. Клеток же 118, а есть вариации списка и со 126-ю полями. Все еще остаются пустые клетки для неоткрытых элементов, не имеющих имен.

Не все периоды умещаются в одну строку. Большие периоды состоят из 2-х рядов. Количество металлов в них перевешивает. Поэтому, им полностью посвящены нижние строки. Постепенное убывание от металлов к инертным веществам соблюдается в верхних рядах.

Картинки таблицы Менделеева поделены и вертикально. Это группы в таблице Менделеева , их 8. Вертикально скомпонованы элементы, схожие по химическим свойствам. Они поделены на главную и побочную подгруппы. Последние начинаются только с 4-го периода. В главные подгруппы входят и элементы малых периодов.

Суть таблицы Менделеева

Названия элементов в таблице Менделеева – это 112 позиций. Суть их компоновки в единый список – систематизация первоэлементов. Над этим начали биться еще в античные времена.

Одним из первых понять, из чего составлено все сущее попытался Аристотель. Он взял за основу свойства веществ – холод и тепло. Эмпидокл выделил 4-ре первоосновы по стихиям: воду, землю, огонь и воздух.

Металлы в таблице Менделеева , как и другие элементы, — те самые первоосновы, но с современной точки зрения. Российскому химику удалось открыть большинство составляющих нашего мира и предположить существование еще неизвестных первоэлементов.

Получается, что произношение таблицы Менделеева – озвучивание некой модели нашей реальности, раскладывание ее на составляющие. Однако, выучить их не так-то просто. Попробуем облегчить задачу, описав пару эффективных методов.

Как выучить таблицу Менделеева

Начнем с современного метода. Компьютерщиками разработан ряд флеш-игр, помогающих запомнить список Менделеева. Участникам проекта предлагают находить элементы по разным опциям, например, названию, атомной массе, буквенному обозначению.

Игрок имеет право выбрать поле деятельности – лишь часть таблицы, или ее всю. В нашей воле, так же, исключить имена элементов, другие параметры. Это усложняет поиск. Для продвинутых предусмотрен и таймер, то есть тренировка ведется на скорость.

Игровые условия делают изучение номеров элементов в таблице Менднлеева не нудным, а занятным. Просыпается азарт, и систематизировать знания в голове становится проще. Те же, кто не приемлет компьютерных флеш-проектов, предлагают более традиционный способ заучивания списка.

Его делят на 8 групп, или 18 (в соответствии с редакцией 1989-го года). Для удобства запоминания, лучше создать несколько отдельных таблиц, а не работать по цельному варианту. Помогают и зрительные образы, подобранные к каждому из элементов. Опираться следует на собственные ассоциации.

Так, железо в мозгу может соотноситься, к примеру, с гвоздем, а ртуть – с градусником. Название элемента незнакомо? Пользуемся методом наводящих ассоциаций. , например, составим из начал слов «ириска» и «динамик».

Характеристика таблицы Менделеева не учиться в один присест. Рекомендованы занятия по 10-20 минут в день. Начинать рекомендована с запоминания лишь основных характеристик: названия элемента, его обозначения, атомной массы и порядкового номера.

Школьники предпочитают вешать таблицу Менделеева над рабочим столом, или на стене, на которую часто смотрят. Метод хорош для людей с преобладанием зрительной памяти. Данные из списка невольно запоминаются даже без зубрежки.

Это учитывают и педагоги. Как правило, они не заставляют заучивать список, разрешают смотреть в него даже на контрольных. Постоянное заглядывание в таблицу равнозначно эффекту распечатки на стене, или написанию шпаргалок до экзаменов.

Приступая к изучению, вспомним, что и Менделеев не сразу запомнил свой список. Однажды, когда ученого спросили, как он открыл таблицу, последовал ответ: — «Я над ней, может, 20 лет думал, а вы считаете: сидел и, вдруг, готово». Периодическая система – кропотливый труд, который не осилить в сжатые сроки.

Наука не терпит спешки, ведь она приводит к заблуждениям и досадным ошибкам. Так, одновременно с Менделеевым таблицу составил и Лотар Мейер. Однако, немец немного недоработал список и не был убедителен при доказательстве своей точки зрения. Поэтому, общественность признала труд русского ученого, а не его коллеги-химика из Германии.



Читайте также: