В молекулах органических веществ наиболее распространен. Органические вещества. Классы органических веществ. Формулы органических веществ по классам

Существует несколько определений, что такое органические вещества, чем они отличаются от другой группы соединений — неорганических. Одно из наиболее распространенных объяснений вытекает из названия «углеводороды». Действительно, в основе всех органических молекул находятся цепочки атомов углерода, связанные с водородом. Присутствуют и другие элементы, получившие наименование «органогенные».

Органическая химия до открытия мочевины

Издавна люди пользуются многими природнымие веществами и минералами: серой, золотом, железной и медной рудой, поваренной солью. За все время существования науки — с древнейших времен и до первой половины XIX века — ученые не могли доказать связь живой и неживой природы на уровне микроскопического строения (атомов, молекул). Считалось, что своим появлением органические вещества обязаны мифической жизненной силе — витализму. Бытовал миф о возможности вырастить человечка «гомункулуса». Для этого надо было сложить в бочонок разные продукты жизнедеятельности, подождать определенное время, пока зародится жизненная сила.

Сокрушительный удар по витализму нанесли работы Веллера, который синтезировал органическое вещество мочевину из неорганических компонентов. Так было доказано, что никакой жизненной силы нет, природа едина, организмы и неорганические соединения образованы атомами одних и тех же элементов. Состав мочевины был известен и до работ Веллера, изучение этого соединения не составляло в те годы большого труда. Замечательным был сам факт получения вещества, характерного для обмена веществ, вне тела животного или человека.

Теория А. М. Бутлерова

Велика роль русской школы химиков в становлении науки, изучающей органические вещества. С именами Бутлерова, Марковникова, Зелинского, Лебедева связаны целые эпохи в развитии органического синтеза. Основоположником теории строения соединений является А. М. Бутлеров. Знаменитый ученый-химик в 60-х годах XIX века объяснил состав органических веществ, причины многообразия их строения, вскрыл взаимосвязь, существующую между составом, строением и свойствами веществ.

На основе выводов Бутлерова удалось не только систематизировать знания об уже существующих органических соединениях. Появилась возможность предсказать свойства еще не известных науке веществ, создать технологические схемы для их получения в промышленных условиях. В полной мере воплощаются в жизнь многие идеи ведущих химиков-органиков в наши дни.

При окислении углеводородов получаются новые органические вещества — представители других классов (альдегидов, кетонов, спиртов, карбоновых кислот). Например, большие объемы ацетилена идут на производство уксусной кислоты. Часть этого продукта реакции в дальнейшем расходуется для получения синтетических волокон. Раствор кислоты (9% и 6%) есть в каждом доме — это обычный уксус. Окисление органических веществ служит основой для получения очень большого числа соединений, имеющих промышленное, сельскохозяйственное, медицинское значение.

Ароматические углеводороды

Ароматичность в молекулах органических веществ — это присутствие одного или нескольких бензольных ядер. Цепочка из 6 атомов углерода замыкается в кольцо, в нем возникает сопряженная связь, поэтому свойства таких углеводородов не похожи на другие УВ.

Ароматические углеводороды (или арены) имеют огромное практическое значение. Широко применяются многие из них: бензол, толуол, ксилол. Они используются как растворители и сырье для производства лекарств, красителей, каучука, резины и других продуктов органического синтеза.

Кислородосодержащие соединения

В составе большой группы органических веществ присутствуют атомы кислорода. Они входят в наиболее активную часть молекулы, ее функциональную группу. Спирты содержат одну или несколько гидроксильных частиц —ОН. Примеры спиртов: метанол, этанол, глицерин. В карбоновых кислотах присутствует другая функциональная частица — карбоксил (—СОООН).

Другие кислородосодержащие органические соединения — альдегиды и кетоны. Карбоновые кислоты, спирты и альдегиды в больших количествах присутсвуют в составе разных органов растений. Они могут быть источниками для получения натуральных продуктов (уксусной кислоты, этилового спирта, ментола).

Жиры являются соединениями карбоновых кислот и трехатомного спирта глицерина. Кроме спиртов и кислот линейного строения, есть органические соединения с бензольным кольцом и функциональной группой. Примеры ароматических спиртов: фенол, толуол.

Углеводы

Важнейшие органические вещества организма, входящие в состав клеток, — белки, ферменты, нуклеиновые кислоты, углеводы и жиры (липиды). Простые углеводы — моносахариды — встречаются в клетках в виде рибозы, дезоксирибозы, фруктозы и глюкозы. Последний в этом коротком списке углевод — основное вещество обмена веществ в клетках. Рибоза и дезоксирибоза — составные части рибонуклеиновой и дезоксирибонуклеиновой кислот (РНК и ДНК).

При расщеплении молекул глюкозы выделяется энергия, необходимая для жизнедеятельности. Сначала она запасается при образовании своеобразного переонсчика энергии — аденозинтрифосфорной кислоты (АТФ). Это вещество переносится кровью, доставляется в ткани и клетки. При последовательном отщеплении от аденозина трех остатков фосфорной кислоты энергия освобождатеся.

Жиры

Липиды — вещества живых организмов, обладающие специфическими свойствами. Они не растворяются в воде, являются гидрофобными частицами. Особенно богаты веществами этого класса семена и плоды некоторых растений, нервная ткань, печень, почки, кровь животных и человека.

Кожа человека и животных содержит множество мелких сальных желез. Выделяемый ими секрет выводится на поверхность тела, смазывает ее, защищает от потери влаги и проникновения микробов. Слой подкожной жировой клетчатки оберегает от повреждений внутренние органы, служит запасным веществом.

Белки

Протеины составляют более половины всех органических веществ клетки, в некоторых тканях их содержание доходит до 80%. Для всех видов белков характерные высокие молекулярные массы, наличие первичной, вторичной, третичной и четвертичной структур. При нагревании они разрушаются — происходит денатурация. Первичная структура — это огромная для микромира цепочка аминокислот. Под действием особых ферментов в пищеварительной системе животных и человека протеиновая макромолекула распадется на составные части. Они попадают в клетки, где происходит синтез органических веществ — других белков, специфичных для каждого живого существа.

Ферменты и их роль

Реакции в клетке протекают со скоростью, которая в производственных условиях трудно достижима, благодаря катализаторам — ферментам. Различают ферменты, действующие только на белки, — липазы. Гидролиз крахмала происходит с участием амилазы. Для разложения на составные части жиров необходимы липазы. Процессы с участием ферментов идут вов всех живых организмах. Если у человека нет в клетках какого-либо фермента, то это сказывается на обмене веществ, в целом на здоровье.

Нуклеиновые кислоты

Вещества, впервые обнаруженные и выделенные из ядер клеток, выполняют функцию передачи наследственных признаков. Основное количество ДНК содержится в хромосомах, а молекулы РНК расположены в цитоплазме. При редупликации (удвоении) ДНК появляется возможность передать наследственную информацию половым клеткам — гаметам. При их слиянии новый организм получает генетический материал от родителей.

Органическое вещество - это химическое соединение, в составе которого присутствует углерод. Исключения составляют только угольная кислота, карбиды, карбонаты, цианиды и оксиды углерода.

История

Сам термин «органические вещества» появился в обиходе ученых на этапе раннего развития химии. В то время господствовали виталистические мировоззрения. Это было продолжение традиций Аристотеля и Плиния. В этот период ученые мужи были заняты разделением мира на живое и неживое. При этом все без исключения вещества четко подразделялись на минеральные и органические. Считалось, что для синтеза соединений «живых» веществ необходима особая «сила». Она присуща всем живым существам, и без нее образовываться органические элементы не могут.

Это смешное для современной науки утверждение господствовало очень долго, пока в 1828 году Фридрих Велер опытным путем его не опроверг. Он смог из неорганического цианата аммония получить органическую мочевину. Это подтолкнуло химию вперед. Однако деление веществ на органические и неорганические сохранилось и в настоящем времени. Оно лежит в основе классификации. Известно почти 27 миллионов органических соединений.

Почему так много органических соединений?

Органическое вещество - это, за некоторым исключением, углеродное соединение. В действительности это очень любопытный элемент. Углерод способен образовывать из своих атомов цепочки. При этом очень важно, что связь между ними стабильна.

Кроме того, углерод в органических веществах проявляет валентность - IV. Из этого следует, что этот элемент способен образовывать с другими веществами связи не только одинарные, но и двойные и тройные. По мере возрастания их кратности, цепочка, состоящая из атомов, станет короче. При этом стабильность связи только увеличивается.

Также углерод имеет способность образовывать плоские, линейные и объемные структуры. Именно поэтому в природе так много разнообразных органических веществ.

Состав

Как было сказано выше, органическое вещество - это соединения углерода. И это очень важно. возникают при его связи практически с любым элементом периодической таблицы. В природе чаще всего в их состав (помимо углерода) входят кислород, водород, сера, азот и фосфор. Остальные элементы встречаются намного реже.

Свойства

Итак, органическим веществом является углеродное соединение. При этом существуют несколько важных критериев, которым оно должно соответствовать. Все вещества органического происхождения обладают общими свойствами:

1. Существующая между атомами различная типология связей непременно приводит к появлению изомеров. Прежде всего они образуются при соединении молекул углерода. Изомеры - это различные вещества, имеющие одну молекулярную массу и состав, но разные химико-физические свойства. Это явление называется изомерией.

2. Еще один критерий - явление гомологии. Это ряды органических соединений, в них формула соседних веществ отличается от предыдущих на одну группу СН 2 . Это важное свойство применяется в материаловедении.

Какие существуют классы органических веществ?

К органическим соединениям относят несколько классов. Они известны всем. липиды и углеводы. Эти группы можно назвать биологическими полимерами. Они участвуют в метаболизме на клеточном уровне в любом организме. Также в эту группу включают нуклеиновые кислоты. Так что можно сказать, что органическое вещество - это то, что мы ежедневно потребляем в пищу, то, из чего состоим.

Белки

Белки состоят из структурных компонентов - аминокислот. Это их мономеры. Белки также называют протеинами. Известно около 200 видов аминокислот. Все они встречаются в живых организмах. Но лишь двадцать из них являются составляющими белков. Их называют основными. Но в литературе также можно встретить и менее популярные термины - протеиногенные и белокобразующие аминокислоты. Формула органического вещества этого класса содержит аминные (-NH 2) и карбоксильные (-СООН) составляющие. Между собой они связанны все теми же углеродными связями.

Функции белков

Белки в организме растений и животных выполняют множество важных функций. Но главная из них - структурная. Белки являются основными компонентами клеточной мембраны и матрикса органелл в клетках. В нашем организме все стенки артерий, вен и капилляров, сухожилий и хрящей, ногтей и волос состоят преимущественно из разных белков.

Следующая функция - ферментативная. Белки выступают в качестве ферментов. Они катализируют протекание в организме химических реакций. Именно они отвечают за распад питательных компонентов в пищеварительном тракте. У растений ферменты фиксируют положение углерода во время фотосинтеза.

Некоторые переносят в организме различные вещества, например, кислород. Органическое вещество также способно присоединяться к ним. Так осуществляется транспортная функция. Белки разносят по кровеносным сосудам ионы металлов, жирные кислоты, гормоны и, конечно же, углекислый газ и гемоглобин. Транспорт происходит и на межклеточном уровне.

Белковые соединения - иммуноглобулины - отвечают за выполнение защитной функции. Это антитела крови. Например, тромбин и фибриноген активно участвуют в процессе свертываемости. Таким образом, они предотвращают большую кровопотерю.

Белки отвечают и за выполнение сократительной функции. Благодаря тому, что миозиновые и актиновые протофибриллы постоянно выполняют скользящие движения относительно друг друга, происходит сокращение мышечных волокон. Но и у одноклеточных организмов происходят подобные процессы. Движение жгутиков бактерий также напрямую связано со скольжением микротрубочек, которые имеют белковую природу.

Окисление органических веществ высвобождает большое количество энергии. Но, как правило, белки расходуются на энергетические нужды очень редко. Это происходит, когда исчерпаны все запасы. Лучше всего для этого подходят липиды и углеводы. Поэтому белки могут выполнять энергетическую функцию, но только при определенных условиях.

Липиды

Органическим веществом является и жироподобное соединение. Липиды принадлежат к простейшим биологическим молекулам. Они нерастворимы в воде, но при этом распадаются в неполярных растворах, таких как бензин, эфир и хлороформ. Они входят в состав всех живых клеток. В химическом отношении липиды - это спиртов и карбоновых кислот. Самые известные из них - жиры. В организме животных и растений эти вещества выполняют множество важных функций. Многие липиды используются в медицине и промышленности.

Функции липидов

Эти органические химические вещества вместе с белками в клетках образуют биологические мембраны. Но главная их функция - энергетическая. При окислении молекул жиров высвобождается огромное количество энергии. Она идет на образование в клетках АТФ. В форме липидов в организме может накапливаться значительное количество энергетических запасов. Порою их даже больше, чем нужно для осуществления нормальной жизнедеятельности. При патологических изменениях метаболизма «жирных» клеток становится больше. Хотя справедливости ради нужно заметить, что такие чрезмерные запасы просто необходимы животным, впадающим в спячку, и растениям. Многие полагают, что деревья и кустарники в холодный период питаются за счет почв. В действительности же они расходуют запасы масел и жиров, которые сделали за летний период.

В организме человека и животных жиры могут выполнять и защитную функцию. Они откладываются в подкожной клетчатке и вокруг таких органов, как почки и кишечник. Таким образом, они служат хорошей защитой от механических повреждений, то есть ударов.

Кроме этого, жиры обладают низким уровнем теплопроводности, что помогает сохранить тепло. Это очень важно, особенно в условиях холодного климата. У морских животных подкожный жировой слой еще и способствует хорошей плавучести. А вот у птиц липиды выполняют еще и водоотталкивающую и смазывающую функции. Воск покрывает их перья и делает их более эластичными. Такой же налет имеют на листьях некоторые виды растений.

Углеводы

Формула органического вещества C n (H 2 O) m указывает на принадлежность соединения к классу углеводов. Название этих молекул указывает на тот факт, что в них присутствует кислород и водород в том же количестве, что и вода. Кроме этих химических элементов, в соединениях может присутствовать, например, азот.

Углеводы в клетке являются основной группой органических соединений. Это первичные продукты Они представляют собой и исходные продукты синтеза в растениях других веществ, например, спиртов, органических кислот и аминокислот. Также углеводы входят в состав клеток животных и грибов. Обнаруживаются они и среди основных компонентов бактерий и простейших. Так, в животной клетке их от 1 до 2 %, а в растительной их количество может достигать 90 %.

На сегодняшний день выделяют всего три группы углеводов:

Простые сахара (моносахариды);

Олигосахариды, состоящие из нескольких молекул последовательно соединенных простых сахаров;

Полисахариды, в их состав входит более 10 молекул моносахаридов и их производных.

Функции углеводов

Все органические вещества в клетке выполняют определенные функции. Так, например, глюкоза - это основной энергетический источник. Она расщепляется в клетках всех происходит во время клеточного дыхания. Гликоген и крахмал составляют основной запас энергии, причем первое вещество у животных, а второе - у растений.

Углеводы выполняют и структурную функцию. Целлюлоза является основным компонентом клеточной стенки растений. А у членистоногих эту же функцию выполняет хитин. Также он обнаруживается в клетках высших грибов. Если брать в пример олигосахариды, то они входят в состав цитоплазматической мембраны - в виде гликолипидов и гликопротеинов. Также в клетках нередко выявляется гликокаликс. В синтезе нуклеиновых кислот участвуют пентозы. При включена в состав ДНК, а рибоза - в РНК. Также эти компоненты обнаруживаются и в коферментах, например, в ФАД, НАДФ и НАД.

Углеводы также способны выполнять в организме и защитную функцию. У животных вещество гепарин активно препятствует быстрому свертыванию крови. Он образуется во время повреждения ткани и блокирует образование тромбов в сосудах. Гепарин в большом количестве обнаруживается в тучных клетках в гранулах.

Нуклеиновые кислоты

Белки, углеводы и липиды - это не все известные классы органических веществ. Химия относит сюда еще и нуклеиновые кислоты. Это фосфорсодержащие биополимеры. Они, находясь в клеточном ядре и цитоплазме всех живых существ, обеспечивают передачу и хранение генетических данных. Эти вещества были открыты благодаря биохимику Ф. Мишеру, который занимался изучением сперматозоидов лосося. Это было «случайное» открытие. Немного позднее РНК и ДНК были обнаружены и во всех растительных и животных организмах. Также были выделены нуклеиновые кислоты в клетках грибов и бактерий, а также вирусов.

Всего в природе обнаружено два вида нуклеокислот - рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). Различие понятно из названия. дезоксирибоза - пятиуглеродный сахар. А в молекуле РНК обнаруживается рибоза.

Изучением нуклеиновых кислот занимается органическая химия. Темы для исследования диктует также медицина. В кодах ДНК скрывается множество генетических болезней, обнаружить которые ученым еще только предстоит.

В прошлом ученые разделяли все вещества в природе на условно неживые и живые, включая в число последних царство животных и растений. Вещества первой группы получили название минеральных. А те, что вошли во вторую, стали называть органическими веществами.

Что под этим подразумевается? Класс органических веществ наиболее обширный среди всех химических соединений, известных современным ученым. На вопрос, какие вещества органические, можно ответить так – это химические соединения, в состав которых входит углерод.

Обратите внимание, что не все углеродсодержащие соединения относятся к органическим. Например, корбиды и карбонаты, угольная кислота и цианиды, оксиды углерода не входят в их число.

Почему органических веществ так много?

Ответ на этот вопрос кроется в свойствах углерода. Этот элемент любопытен тем, что способен образовывать цепочки из своих атомов. И при этом углеродная связь очень стабильная.

Кроме того, в органических соединениях он проявляет высокую валентность (IV), т.е. способность образовывать химические связи с другими веществами. И не только одинарные, но также двойные и даже тройные (иначе – кратные). По мере возрастания кратности связи цепочка атомов становится короче, а стабильность связи повышается.

А еще углерод наделен способностью образовывать линейные, плоские и объемные структуры.

Именно поэтому органические вещества в природе так разнообразны. Вы легко проверите это сами: встаньте перед зеркалом и внимательно посмотрите на свое отражение. Каждый из нас – ходячее пособие по органической химии. Вдумайтесь: не меньше 30% массы каждой вашей клетки – это органические соединения. Белки, которые построили ваше тело. Углеводы, которые служат «топливом» и источником энергии. Жиры, которые хранят запасы энергии. Гормоны, которые управляют работой органов и даже вашим поведением. Ферменты, запускающие химические реакции внутри вас. И даже «исходный код», цепочки ДНК – все это органические соединения на основе углерода.

Состав органических веществ

Как мы уже говорили в самом начале, основной строительный материал для органических веществ – это углерод. И практические любые элементы, соединяясь с углеродом, могут образовывать органические соединения.

В природе чаще всего в составе органических веществ присутствуют водород, кислород, азот, сера и фосфор.

Строение органических веществ

Многообразие органических веществ на планете и разнообразие их строения можно объяснить характерными особенностями атомов углерода.

Вы помните, что атомы углерода способны образовывать очень прочные связи друг с другом, соединяясь в цепочки. В результате получаются устойчивые молекулы. То, как именно атомы углерода соединяются в цепь (располагаются зигзагом), является одной из ключевых особенностей ее строения. Углерод может объединяться как в открытые цепи, так и в замкнутые (циклические) цепочки.

Важно и то, что строение химических веществ прямо влияет на их химические свойства. Значительную роль играет и то, как атомы и группы атомов в молекуле влияют друг на друга.

Благодаря особенностям строения, счет однотипным соединениям углерода идет на десятки и сотни. Для примера можно рассмотреть водородные соединения углерода: метан, этан, пропан, бутан и т.п.

Например, метан – СН 4 . Такое соединение водорода с углеродом в нормальных условиях пребывает в газообразном агрегатном состоянии. Когда же в составе появляется кислород, образуется жидкость – метиловый спирт СН 3 ОН.

Не только вещества с разным качественным составом (как в примере выше) проявляют разные свойства, но и вещества одинакового качественного состава тоже на такое способны. Примером могут служить различная способность метана СН 4 и этилена С 2 Н 4 реагировать с бромом и хлором. Метан способен на такие реакции только при нагревании или под ультрафиолетом. А этилен реагирует даже без освещения и нагревания.

Рассмотрим и такой вариант: качественный состав химических соединений одинаков, количественный – отличается. Тогда и химические свойства соединений различны. Как в случае с ацетиленом С 2 Н 2 и бензолом С 6 Н 6 .

Не последнюю роль в этом многообразии играют такие свойства органических веществ, «завязанные» на их строении, как изомерия и гомология.

Представьте, что у вас есть два на первый взгляд идентичных вещества – одинаковый состав и одна и та же молекулярная формула, чтобы описать их. Но строение этих веществ принципиально различно, откуда вытекает и различие химических и физических свойств. К примеру, молекулярной формулой С 4 Н 10 можно записать два различных вещества: бутан и изобутан.

Речь идет об изомерах – соединениях, которые имеют одинаковый состав и молекулярную массу. Но атомы в их молекулах расположены в различном порядке (разветвленное и неразветвленное строение).

Что касается гомологии – это характеристика такой углеродной цепи, в которой каждый следующий член может быть получен прибавлением к предыдущему одной группы СН 2 . Каждый гомологический ряд можно выразить одной общей формулой. А зная формулу, несложно определить состав любого из членов ряда. Например, гомологи метана описываются формулой C n H 2n+2 .

По мере прибавления «гомологической разницы» СН 2 , усиливается связь между атомами вещества. Возьмем гомологический ряд метана: четыре первых его члена – газы (метан, этан, пропан, бутан), следующие шесть – жидкости (пентан, гексан, гептан, октан, нонан, декан), а дальше следуют вещества в твердом агрегатном состоянии (пентадекан, эйкозан и т.д.). И чем прочнее связь между атомами углерода, тем выше молекулярный вес, температуры кипения и плавления веществ.

Какие классы органических веществ существуют?

К органическим веществам биологического происхождения относятся:

  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • липиды.

Три первых пункта можно еще назвать биологическими полимерами.

Более подробная классификация органических химических веществ охватывает вещества не только биологического происхождения.

К углеводородам относятся:

Есть также иные классы органических соединений, в составе которых углерод соединяется с другими веществами, кроме водорода:

    • спирты и фенолы;
    • альдегиды и кетоны;
    • карбоновые кислоты;
    • сложные эфиры;
    • липиды;
    • углеводы:
      • моносахариды;
      • олигосахариды;
      • полисахариды.
      • мукополисахариды.
    • амины;
    • аминокислоты;
    • белки;
    • нуклеиновые кислоты.

Формулы органических веществ по классам

Примеры органических веществ

Как вы помните, в человеческом организме различного рода органические вещества – основа основ. Это наши ткани и жидкости, гормоны и пигменты, ферменты и АТФ, а также многое другое.

В телах людей и животных приоритет за белками и жирами (половина сухой массы клетки животных это белки). У растений (примерно 80% сухой массы клетки) – за углеводами, в первую очередь сложными – полисахаридами. В том числе за целлюлозой (без которой не было бы бумаги), крахмалом.

Давайте поговорим про некоторые из них подробнее.

Например, про углеводы . Если бы можно было взять и измерить массы всех органических веществ на планете, именно углеводы победили бы в этом соревновании.

Они служат в организме источником энергии, являются строительными материалами для клеток, а также осуществляют запас веществ. Растениям для этой цели служит крахмал, животным – гликоген.

Кроме того, углеводы очень разнообразны. Например, простые углеводы. Самые распространенные в природе моносахариды – это пентозы (в том числе входящая в состав ДНК дезоксирибоза) и гексозы (хорошо знакомая вам глюкоза).

Как из кирпичиков, на большой стройке природы выстраиваются из тысяч и тысяч моносахаридов полисахариды. Без них, точнее, без целлюлозы, крахмала, не было бы растений. Да и животным без гликогена, лактозы и хитина пришлось бы трудно.

Посмотрим внимательно и на белки . Природа самый великий мастер мозаик и пазлов: всего из 20 аминокислот в человеческом организме образуется 5 миллионов типов белков. На белках тоже лежит немало жизненно важных функций. Например, строительство, регуляция процессов в организме, свертывание крови (для этого существуют отдельные белки), движение, транспорт некоторых веществ в организме, они также являются источником энергии, в виде ферментов выступают катализатором реакций, обеспечивают защиту. В деле защиты организма от негативных внешних воздействий важную роль играют антитела. И если в тонкой настройке организма происходит разлад, антитела вместо уничтожения внешних врагов могут выступать агрессорами к собственным органам и тканям организма.

Белки также делятся на простые (протеины) и сложные (протеиды). И обладают присущими только им свойствами: денатурацией (разрушением, которое вы не раз замечали, когда варили яйцо вкрутую) и ренатурацией (это свойство нашло широкое применение в изготовлении антибиотиков, пищевых концентратов и др.).

Не обойдем вниманием и липиды (жиры). В нашем организме они служат запасным источником энергии. В качестве растворителей помогают протеканию биохимических реакций. Участвуют в строительстве организма – например, в формировании клеточных мембран.

И еще пару слов о таких любопытных органических соединениях, как гормоны . Они участвуют в биохимических реакциях и обмене веществ. Такие маленькие, гормоны делают мужчин мужчинами (тестостерон) и женщин женщинами (эстроген). Заставляют нас радоваться или печалиться (не последнюю роль в перепадах настроения играют гормоны щитовидной железы, а эндорфин дарит ощущение счастья). И даже определяют, «совы» мы или «жаворонки». Готовы вы учиться допоздна или предпочитаете встать пораньше и сделать домашнюю работу перед школой, решает не только ваш распорядок дня, но и некоторые гормоны надпочечников.

Заключение

Мир органических веществ по-настоящему удивительный. Достаточно углубиться в его изучение лишь немного, чтобы у вас захватило дух от ощущения родства со всем живым на Земле. Две ноги, четыре или корни вместо ног – всех нас объединяет волшебство химической лаборатории матушки-природы. Оно заставляет атомы углерода объединяться в цепочки, вступать в реакции и создавать тысячи таких разнообразных химических соединений.

Теперь у вас есть краткий путеводитель по органической химии. Конечно, здесь представлена далеко не вся возможная информация. Какие-то моменты вам, быть может, придется уточнить самостоятельно. Но вы всегда можете использовать намеченный нами маршрут для своих самостоятельных изысканий.

Вы также можете использовать приведенное в статье определение органического вещества, классификацию и общие формулы органических соединений и общие сведения о них, чтобы подготовиться к урокам химии в школе.

Расскажите нам в комментариях, какой раздел химии (органическая или неорганическая) нравится вам больше и почему. Не забудьте «расшарить» статью в социальных сетях, чтобы ваши одноклассники тоже смогли ею воспользоваться.

Пожалуйста, сообщите, если обнаружите в статье какую-то неточность или ошибку. Все мы люди и все мы иногда ошибаемся.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Классификация органических веществ

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

  • ациклические и циклические.
  • предельные (насыщенные) и непредельные (ненасыщенные).
  • карбоциклические и гетероциклические.
  • алициклические и ароматические.

Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения - химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как C n H 2n+2 , где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов C n H 2n ,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов C n H 2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов C n H 2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу C n H 2n .

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:

Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу C n H m , тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид C n H m- X Hal X . Таким образом, монохлорпроизводные алканов имеют формулу C n H 2n+1 Cl , дихлорпроизводные C n H 2n Cl 2 и т.д.

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными , с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов C n H 2n+1 OH или C n H 2n+2 O. Общая формула предельных многоатомных спиртов C n H 2n+2 O x , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

бензиловый спирт

Общая формула таких одноатомных ароматических спиртов C n H 2n-6 O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы . Например, это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу C n H 2n-6 O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH 2 , называют первичными аминами .

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами . Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами . В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид C n H 2 n +3 N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу C n H 2 n -5 N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

Например:

пропанон бутанон

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид C n H 2 n O

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой .

Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую молекулярную формулу вида C n H 2 n O 2

Ароматические монокарбоновые кислоты имеют общую формулу C n H 2 n -8 O 2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

Например:

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. C n H 2 n +1 OH или C n H 2 n +2 О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

Например:

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO 2 .

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу C n H 2 n +1 NO 2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например,

NH 2 -CH 2 -COOH

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу C n H 2 n +1 NO 2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме .

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная .

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Количество атомов С в главной углеродной цепи

Корень названия

проп-

пент-

гекс-

гепт-

дек(ц)-

Вторая важная составляющая, учитываемая при составлении названий, — наличие/отсутствие кратных связей или функциональной группы, которые перечислены в таблице выше.

Попробуем дать название веществу, имеющему структурную формулу:

1. В главной (и единственной) углеродной цепи данной молекулы содержится 4 атома углерода, поэтому название будет содержать корень бут-;

2. В углеродном скелете отсутствуют кратные связи, следовательно, суффикс, который нужно использовать после корня слова будет -ан, как и у соответствующих предельных ациклических углеводородов (алканов);

3. Наличие функциональной группы –OH при условии, что нет более старших функциональных групп добавляет после корня и суффикса из п.2. еще один суффикс – «ол»;

4. В молекулах содержащих кратные связи или функциональные группы, нумерация атомов углерода главной цепи начинается с той стороны молекулы, к которой они ближе.

Рассмотрим еще один пример:

Наличие в главной углеродной цепи четырех атомов углерода говорит нам о том, что основой названия является корень «бут-», а отсутствие кратных связей говорит о суффиксе «-ан», который будет следовать сразу после корня. Старшая группа в данном соединении – карбоксильная, она и определяет принадлежность этого вещества к классу карбоновых кислот. Следовательно, окончание у названия будет «-овая кислота». При втором атоме углерода находится аминогруппа NH 2 — , поэтому данное вещество относится к аминокислотам. Также при третьем атоме углерода мы видим углеводородный радикал метил (CH 3 — ). Поэтому по систематической номенклатуре данное соединение называется 2-амино-3-метилбутановая кислота.

Тривиальная номенклатура, в отличие от систематической, как правило, не имеет связи со строением вещества, а обусловлена по большей части его происхождением, а также химическими или физическими свойствами.

Формула Название по систематической номенклатуре Тривиальное название
Углеводороды
CH 4 метан болотный газ
CH 2 =CH 2 этен этилен
CH 2 =CH-CH 3 пропен пропилен
CH≡CH этин ацетилен
CH 2 =CH-CH= CH 2 бутадиен-1,3 дивинил
2-метилбутадиен-1,3 изопрен
метилбензол толуол
1,2-диметилбензол орто -ксилол
(о -ксилол)
1,3-диметилбензол мета -ксилол
(м -ксилол)
1,4-диметилбензол пара -ксилол
(п -ксилол)
винилбензол стирол
Спирты
CH 3 OH метанол метиловый спирт,
древесный спирт
CH 3 CH 2 OH этанол этиловый спирт
CH 2 =CH-CH 2 -OH пропен-2-ол-1 аллиловый спирт
этандиол-1,2 этиленгликоль
пропантриол-1,2,3 глицерин
фенол
(гидроксибензол)
карболовая кислота
1-гидрокси-2-метилбензол орто -крезол
-крезол)
1-гидрокси-3-метилбензол мета -крезол
-крезол)
1-гидрокси-4-метилбензол пара -крезол
(п -крезол)
фенилметанол бензиловый спирт
Альдегиды и кетоны
метаналь формальдегид
этаналь уксусный альдегид, ацетальдегид
пропеналь акриловый альдегид, акролеин
бензальдегид бензойный альдегид
пропанон ацетон
Карбоновые кислоты
(HCOOH) метановая кислота муравьиная кислота
(соли и сложные эфиры — формиаты)
(CH 3 COOH) этановая кислота уксусная кислота

(соли и сложные эфиры — ацетаты)

(CH 3 CH 2 COOH) пропановая кислота пропионовая кислота
(соли и сложные эфиры — пропионаты)
C 15 H 31 COOH гексадекановая кислота пальмитиновая кислота
(соли и сложные эфиры — пальмитаты)
C 17 H 35 COOH октадекановая кислота стеариновая кислота
(соли и сложные эфиры — стеараты)
пропеновая кислота акриловая кислота
(соли и сложные эфиры — акрилаты)
HOOC-COOH этандиовая кислота щавелевая кислота
(соли и сложные эфиры — оксалаты)
1,4-бензолдикарбоновая кислота терефталевая кислота
Сложные эфиры
HCOOCH 3 метилметаноат метилформиат,
метиловый эфир мурвьиной кислоты
CH 3 COOCH 3 метилэтаноат метилацетат,
метиловый эфир уксусной кислоты
CH 3 COOC 2 H 5 этилэтаноат этилацетат,
этиловый эфир уксусной кислоты
CH 2 =CH-COOCH 3 метилпропеноат метилакрилат,
метиловый эфир акриловый кислоты
Азотсодержащие соединения
аминобензол,
фениламин
анилин
NH 2 -CH 2 -COOH аминоэтановая кислота глицин,
аминоуксусная кислота
2-аминопропионовая кислота аланин


Читайте также: