Предводитель холодных миров. Дорогие полярные ночи

Сайгушкин Руслан

Данный материал- исследовательская работа ученика 2 класса МБОУ "Лицей №3", члена общества НОУ учащихся. В своей работе Руслан исследует самую загадочную планету Солнечной системы Плутон и пытается разгадать все ее загадки.

Скачать:

Предварительный просмотр:

Введение……………………………………………..…………………..2

I. История открытия………………………………………….……..…...3

II. Физические характеристики………………...……………..…….3 - 4

III. Загадки Плутона………………………………………………….4 – 7

  1. Загадка первая. Размеры и масса.

  2. Загадка вторая. Внутреннее строение планеты

  3. Загадка третья. Поверхность Плутона

  4. Загадка пятая. Спутники.

IV. Заключение………………………………………………………………8

Информационные ресурсы……………………………………………...…...9

I. ВВЕДЕНИЕ

С давних времен небо притягивало взгляд человека. Ведь на небе таится еще столько неразгаданных тайн! Я очень люблю смотреть на звездное небо. Особенно, если рядом мама или папа. Поэтому, когда на уроке по окружающему миру мы стали изучать планеты, я очень обрадовался. Но на странице учебника «Окружающий мир» (автор А.А. Вахрушев) я обнаружил противоречие. (Приложение №1 ) В тексте учебника было написано: «Вокруг нашего Солнца обращаются девять планет». А рядом на рисунке Солнечной системы были изображены только восемь планет. Не хватало Плутона. Учитель предложила мне самостоятельно разобраться в этом противоречии. Оказалось, что Плутон - самая загадочная планета солнечной системы. Я подумал, что загадки Плутона будут интересны не только мне, но и многим другим любознательным ребятам. Я решил разгадать их.

Перед выполнением работы я поставила перед собой цель : изучить загадки, связанные с историей открытия и исследования Плутона.

Для достижения поставленной цели необходимо выполнить следующие задачи :

  1. найти и изучить материал по открытию и исследованию Плутона;
  2. разгадать загадки, связанные с историей открытия и исследования Плутона;
  3. найти на них ответы на уровне современных знаний.

II. ИСТОРИЯ ОТКРЫТИЯ

Еще в начале XIX века английские ученые предположили, что есть еще одна планета Солнечной системы. Существование Плутона предсказал американский астроном Персиваль Ловелл . Ученые бросили все силы на поиск девятой планеты и дали ей название «Планета Икс». Но доказать существование небесного тела ученые смогли лишь 90 лет спустя. (Приложение №2) Американский ученый Клайд Томбо целый год делал снимки ночного неба. Он работая по 14 часов в сутки и сумел доказать, что планета Икс существует. Родился Клайд в семье бедного. Когда ему было 12 лет, он впервые посмотрел в телескоп на Луну. И с этого момента началось его увлечение астрономией. Когда Клайд окончил школу, его одноклассники записали в книгу выпускников пророческую фразу: «Он откроет новый мир». Дальше он учиться не смог. У родителей не было денег. Но он решил сам изучать астрономию и самостоятельно сделал телескоп.

После открытия новой планеты стал вопрос: как ее назвать? Предложения стали поступать со всего мира. Но все ученые проголосовали за предложение маленькой девочки Венеции Берни. (Приложение №3) Венеция интересовалась не только астрономией, но и мифологией. Она решила, что это имя очень подходит для такого тёмного и холодного мира, так как Плутон в греческой мифологии - это бог подземного мира, бог ада.

III. ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛАНЕТЫ

Оказывается, Плутон действительно состоит в основном из камня и льда. Лед на поверхности Плутона состоит из замершего метана и азота с примесями углеводорода.

Общие сведения:

  1. Macca: 1,3*1022кг. (0,0022 массы Земли)
  2. Диаметр: 2324 км.
  3. Плотность: 2 г/см3
  4. Температура: -230oC
  5. Длина суток: 6,4 земных суток
  6. Расстояние от Cолнца(среднее): между 29,65 (минимальное) и 49,28 (максимальное) (39,4 а.е.)а.е.,на сильно вытянутой элептической орбите.
  7. Период обращения по орбите(год): 247,7 лет
  8. Скорость вращения по орбите: 4,7 км/c

Иногда на Плутоне теплеет до минус 170 градусов, однако большую часть года там держится температура минус 230 по Цельсию. Оборот вокруг Солнца тянется на Плутоне 248 лет. Ещe одно уникальное свойство планеты - атмосфера там то появляется, то вдруг полностью исчезает.

IV. ЗАГАДКИ ПЛУТОНА

Плутон - единственная планета, до которой ещe не добрались земные аппараты. Слишком сложная миссия. По прямой - 6 млрд. км. А это десятилетия пути в ледяном вакууме.

Плутон до настоящего времени остается загадочным объектом. Плутон при открытии имел блеск звезды 15-й звездной величины. Наблюдать его можно только в сильные телескопы, а исследовать – только из космоса. Какие же загадки хранить планета икс?

  1. Загадка первая. Размеры и масса. (Приложение №4)

Длительное время считали, что размеры и масса Плутона близки к земным.

В 1955 году предположили, что радиус Плутона 7200 км, масса – 0,9 массы Земли. В 1965 году подсчеты ученных остановились на 0,11 массы Земли. В 1978 году масса Плутона уже составляет всего-навсего 0,002 массы Земли, то есть в 6 раз меньше массы Луны. Так постепенно Плутон превратился в «карликовую планету»

  1. Загадка вторая. Внутреннее строение планеты. (Приложение №5)

О внутреннем строении планеты пока можно судить только по величине ее средней плотности, которая составляет 1,7 г/см 3 , что вдвое меньше, чем у Луны, и втрое, чем у Земли. Такая плотность указывает, что Плутон состоит на 1/3 из каменных горных пород и на 2/3 из водного льда. Ученные только предполагают, что у Плутона должно быть большое каменное ядро диаметром 1 600 км, окруженное слоем водного льда толщиной 400 км. На поверхности планеты – кора изо льдов различного химического состава. Предполагают, что между каменным ядром и его ледяной оболочкой существует слой жидкой воды – глубинный океан. Но это только предположения.

  1. Загадка третья. Поверхность Плутона. (Приложение №6)

Знания о поверхности Плутона пока тоже только догадки. Ученные считают, что Плутон отличается от других планет я самыми сильными холодами – на его поверхности постоянно очень низкая температура: от -220 до -240°С. В таких условиях затвердевает даже азот. По мнению ученных, «если когда-нибудь космический путешественник ступит на поверхность Плутона, то перед ним должен открыться пейзаж, напоминающий Антарктиду во время полярной ночи, освещенную лунным светом». Здесь днем в 900 раз темнее, чем на Земле в ясный полдень, но в 600 раз светлее, чем в полнолуние ночью, поэтому в полдень на Плутоне намного темнее, чем в облачные дождливые сумерки на Земле. Отсутствие облаков позволяет видеть на небе тысячи звезд даже в дневное время, а само небо всегда черное, поскольку атмосфера крайне разреженная. Вся поверхность планеты покрыта льдом, который совсем не похож на земной. Это не привычный для нас водный лед, а замороженный азот, который образует крупные прозрачные кристаллы, имеющие несколько сантиметров в поперечнике – этакое ледяное сказочное царство. В целом поверхность планеты имеет желтовато-розоватый оттенок. Поверхность Плутона очень яркая и отражает 60% падающего на нее солнечного. При этом на Плутоне встречаются наиболее сильные перепады яркости. Здесь можно встретить районы темнее, чем уголь, и районы белее снега.

  1. Загадка четвертая. Атмосфера. Атмосферу вокруг Плутона обнаружили совсем недавно – в 1988 году. Она очень разряжена. Слабое гравитационное поле планеты малютки не в состоянии удерживать атмосферу, и она постоянно улетучивается в космос, а на место улетевших молекул приходят новые, испаряющиеся с ледяной поверхности. Таким образом, атмосфера Плутона постоянно обновляется. Ни на одной из планет такого не происходит.

Сейчас на Плутоне «летний» период. А в 2020 на планете наступит ледниковый период. Атмосфера на длительное время исчезнет.

  1. Загадка пятая. Спутники. (Приложение №7)

В 1978 году был случайно обнаружен спутник Плутона Харон. Спутник имеет голубоватый цвет. Предполагают, что он состоит каменных пород и водного льда. В мае 2005 года на снимках Плутона ученные обнаружили две крошечные тусклые точки, которые не были ни звездами, ни астероидами. Они двигались вокруг Плутона, каждая на своем расстоянии. Радость исследователей не имела границ - у Плутона есть еще два спутника! Но самое интересное было впереди. Оказалось, что Харон совершает один оборот, один из спутников – в точности два, а второй – три.

  1. Загадка шестая. Статус Плутона.

Плутон был официально признан планетой Международным астрономическим союзом в мае 1930 года. Тогда считалось, что он значительно больше по размеру.

В конце XX века появились сомнения, имеет ли смысл относить Плутон к большим планетам. Приводились три причины:

  1. Все внешние планеты являются газовыми гигантами, а Плутон – нет.
  2. Плутон намного меньше по массе любой из планет Солнечной системы.
  3. Орбита Плутона очень вытянута и даже пересекает орбиту другой планеты – Нептуна. (Приложение №8)

В августе 2006 года было принято решение впредь называть Плутон не "планетой", а " карликовой планетой ".

Теперь по новой классификации в Солнечной системе будут существовать четыре планеты земной группы (Меркурий, Венера, Земля и Марс), столько же планет-гигантов (Юпитер, Сатурн, Нептун и Уран) и неограниченное количество планет-карликов.

Мнения ученных по этому поводу разделились. Многие посчитали это решение несправедливым. Жители штата Нью-Мексико , например, объявили, что в честь Клайда Томбо (он многие годы жил в этом штате и работал в университете) Плутон всегда будет считаться планетой и с 13 марта 2006 года каждый год в штате проходит «день планеты Плутон».

Некоторые российские ученые также не согласны с лишением Плутона статуса планеты.

IV. ЗАКЛЮЧЕНИЕ

Учeнные ожидали найти очень крупную планету, а нашли крошечный шарик из смеси льда и азота. Плутон – единственная планета, которую спутники с Земли пока не достигли. Но скоро это случится. Так выглядит американская межпланетная станция «Новые горизонты». (Приложение № 9) Она стартовала в 2006 году. А максимальное сближение с Плутоном произойдет 14 июля в 2015 году. Я надеюсь, что уже через 3 года люди разгадают все загадки планеты Икс. Я очень надеюсь, что ученные вернут Плутону статус планеты.

ИНТЕРНЕТРЕСУРСЫ

  1. http://www.cnews.ru/news/top/index.shtml?2005/02/15/174632
  2. http://itw66.ru/blog/space/541.html
  3. http://vvv2010.livejournal.com/599322.html
  4. http://www.scilog.ru/viewtopic.php?pid=9735
Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:

Допустим, Земле конец. Солнце готово вот-вот взорваться, к планете приближается астероид размером с Техас. Крупные города населены зомби, а в сельской местности фермеры усиленно сажают кукурузу, потому что другие посевы гибнут. Нужно срочно покидать планету, но вот беда - в районе Сатурна никаких червоточин не обнаружено, а сверхсветовых двигателей из далёкой-далёкой галактики не завезли. До ближайшей звезды - больше четырёх световых лет. Сможет ли человечество достичь её, располагая современными технологиями? Ответ не столь очевиден.

Вряд ли кто-то станет утверждать, что глобальная экологическая катастрофа, которая поставит под угрозу существование всей жизни на Земле, может случиться лишь в кино. На нашей планете не раз происходили массовые вымирания, во время которых гибло до 90% существующих видов. Земля переживала периоды глобального оледенения, сталкивалась с астероидами, проходила через всплески вулканической активности.

Конечно, даже во время самых страшных катастроф жизнь никогда не исчезала полностью. Но того же не скажешь о господствовавших на тот момент видах, которые вымирали, освобождая дорогу другим. А кто сейчас господствующий вид? Вот-вот.

Вполне вероятно, что возможность покинуть родной дом и отправиться к звёздам в поисках нового сможет когда-нибудь спасти человечество. Однако вряд ли стоит уповать, что какие-нибудь космические благодетели откроют нам дорогу к звёздам. Стоит прикинуть, каковы наши теоретические возможности добраться до звёзд своими силами.

Космический ковчег

В первую очередь на ум приходят традиционные двигатели на химической тяге. В настоящий момент четырём земным аппаратам (все они были запущены ещё в 1970-х) удалось развить третью космическую скорость, достаточную для того, чтобы навсегда покинуть Солнечную систему.

Наиболее быстрый из них, «Вояджер-1», за прошедшие с момента запуска 37 лет удалился от Земли на расстояние в 130 а.е. (астрономических единиц, то есть 130 расстояний от Земли до Солнца). Каждый год аппарат преодолевает примерно 3,5 а.е. Расстояние до Альфы Центавра - 4,36 световых лет, или 275 725 а.е. С такой скоростью аппарату потребуется почти 79 тысяч лет, чтобы добраться до соседней звезды. Мягко говоря, ждать придётся долго.

Фото Земли (над стрелочкой) с расстояния 6 миллиардов километров, сделанное «Вояджером-1». Это расстояние космический аппарат прошёл за 13 лет.

Можно найти способ лететь быстрее, а можно просто смириться и лететь несколько тысяч лет. Тогда конечной точки достигнут лишь далёкие потомки тех, кто отправился в путешествие. Именно в этом заключается идея так называемого корабля поколений - космического ковчега, представляющего собой рассчитанную на длительное путешествие замкнутую экосистему.

В фантастике есть множество различных сюжетов о кораблях поколений. О них писали Гарри Гаррисон («Пленённая Вселенная»), Клиффорд Саймак («Поколение, достигшее цели»), Брайан Олдисс («Без остановки»), из более современных писателей - Бернард Вербер («Звёздная бабочка»). Довольно часто далёкие потомки первых обитателей вообще забывают о том, откуда они вылетели и в чём цель их путешествия. Или даже начинают считать, что весь существующий мир сводится к кораблю, как, например, рассказывается в романе Роберта Хайнлайна «Пасынки Вселенной». Другой интересный сюжет показан в восьмом эпизоде третьего сезона классического «Звёздного пути», где экипаж «Энтерпрайза» пытается предотвратить столкновение корабля поколений, чьи обитатели забыли о своей миссии, и обитаемой планеты, к которой он направлялся.

Плюс корабля поколений заключается в том, что этот вариант не потребует принципиально новых двигателей. Однако нужно будет разработать самодостаточную экосистему, которая сможет существовать без поставок извне в течение многих тысяч лет. И не стоит забывать о том, что люди могут попросту поубивать друг друга.

Проведённый в начале 1990-х под замкнутым куполом эксперимент «Биосфера-2» продемонстрировал ряд опасностей, которые могут подстерегать людей при таких путешествиях. Это и быстрое разделение коллектива на несколько группировок, враждебно настроенных друг к другу, и неконтролируемое размножение вредителей, которое вызвало недостаток кислорода в воздухе. Даже обычный ветер, как оказалось, играет важнейшую роль - без регулярного раскачивания деревья становятся хрупкими и ломаются.

Решить многие проблемы длительного полёта поможет технология, погружающая людей в длительный анабиоз. Тогда ни конфликты не страшны, ни скука, да и система жизнеобеспечения потребуется минимальная. Главное - обеспечить её энергией на длительный срок. Например, с помощью ядерного реактора.

С темой корабля поколений связан весьма интересный парадокс под названием Wait Calculation («Расчётное ожидание»), описанный учёным Эндрю Кеннеди. Согласно этому парадоксу, в течение некоторого времени после отправки первого корабля поколений на Земле могут быть открыты новые, более быстрые способы передвижения, что позволит стартующим позже кораблям обогнать первоначальных поселенцев. Так что не исключено, что к моменту прибытия пункт назначения уже будет перенаселён далёкими потомками колонизаторов, которые отправились позднее.

Установки для анабиоза в фильме «Чужой».

Верхом на ядерной бомбе

Предположим, нас не устраивает, что до звёзд долетят потомки наших потомков, и мы хотим сами подставить лицо лучам чужого солнца. В этом случае не обойтись без космического корабля, способного разогнаться до скоростей, которые доставят его к соседней звезде за время меньше одной человеческой жизни. И тут поможет старая добрая ядерная бомба.

Идея подобного корабля появилась ещё в конце 1950-х. Космический аппарат предназначался для полётов внутри Солнечной системы, однако его вполне можно было бы использовать и для межзвёздных путешествий. Принцип его работы таков: за кормой устанавливают мощную бронированную плиту. Из космического аппарата в направлении, противоположном полёту, равномерно выбрасываются маломощные ядерные заряды, которые подрываются на небольшом (до 100 метров) расстоянии.

Заряды сконструированы таким образом, чтобы большая часть продуктов взрыва направлена в хвост космического корабля. Отражающая плита принимает на себя импульс и передаёт его кораблю через систему амортизаторов (без неё перегрузки будут губительны для экипажа). От повреждения световой вспышкой, потоками гамма-излучения и высокотемпературной плазмой отражающую плиту защищает покрытие из графитовой смазки, которое заново распыляется после каждого подрыва.

Проект NERVA - пример ядерного ракетного двигателя.

На первый взгляд подобная схема кажется безумной, но она вполне жизнеспособна. Во время одного из ядерных испытаний на атолле Эниветок в 9 метрах от центра взрыва были размещены покрытые графитом стальные сферы. После испытания они были найдены неповреждёнными, что доказывает эффективность графитовой защиты для корабля. Но подписанный в 1963 году «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой» поставил крест на этой идее.

Артур Кларк хотел оснастить космический корабль Discovery One из фильма «Космическая одиссея 2001 года» чем-то вроде ядерно-взрывного двигателя. Однако Стэнли Кубрик попросил его отказаться от идеи, испугавшись, что зрители сочтут это пародией на его фильм «Доктор Стрейнджлав, или Как я перестал бояться и полюбил атомную бомбу».

Какую же скорость можно развить с помощью серии ядерных взрывов? Больше всего сведений существует о проекте взрыволёта «Орион», который разрабатывался в конце 1950-х в США при участии учёных Теодора Тейлора и Фримена Дайсона. 400 000-тонный корабль планировалось разогнать до 3,3% скорости света - тогда полёт до системы Альфы Центавра продлился бы 133 года. Однако, согласно нынешним оценкам, подобным способом можно разогнать корабль до 10% скорости света. В таком случае полёт продлится примерно 45 лет, что позволит экипажу дожить до прибытия в пункт назначения.

Конечно, постройка такого корабля - весьма недешёвое дело. По оценке Дайсона, на создание «Ориона» потребовалось бы примерно 3 триллиона долларов в современных ценах. Но если мы узнаем, что нашей планете будет грозить глобальная катастрофа, то, вероятно, именно корабль с ядерно-импульсным двигателем станет последним шансом человечества на выживание.

Газовый гигант

Дальнейшим развитием идей «Ориона» стал проект беспилотного корабля «Дедал», который разрабатывался в 1970-х годах группой учёных из Британского межпланетного общества. Исследователи задались целью спроектировать беспилотный космический аппарат, способный в течение человеческой жизни достичь одной из ближайших звёзд, провести научные исследования и передать на Землю полученную информацию. Главным условием исследования было использование в проекте либо существующих, либо предвидимых в ближайшее время технологий.

Целью полёта была выбрана находящаяся от нас на расстоянии 5,91 светового года звезда Барнарда - в 1970-е годы считалось, что вокруг этой звезды вращается несколько планет. Сейчас мы знаем, что в данной системе нет планет. Разработчики «Дедала» нацелились на создание двигателя, который мог бы доставить корабль до пункта назначения за время, не превышающее 50 лет. В итоге они пришли к идее двухступенчатого аппарата.

Необходимое ускорение обеспечивала серия маломощных ядерных взрывов, происходящих внутри специальной двигательной установки. В качестве топлива использовались микроскопические гранулы из смеси дейтерия с гелием-3, облучаемые потоком высокоэнергетических электронов. Согласно проекту, в двигателе должно было происходить до 250 взрывов в секунду. Соплом служило мощное магнитное поле, создаваемое силовыми установками корабля.

По плану первая ступень корабля работала в течение двух лет, разгоняя корабль до 7% скорости света. После этого «Дедал» сбрасывал отработанную двигательную установку, избавляясь от большей части своей массы, и запускал вторую ступень, которая позволяла ему разогнаться до окончательной скорости в 12,2% световой. Это позволило бы достичь звезды Барнарда через 49 лет после запуска. Ещё 6 лет ушло бы на передачу сигнала на Землю.

Полная масса «Дедала» составляла 54 тысячи тонн, из которых 50 тысяч приходилось на термоядерное горючее. Однако предполагаемый гелий-3 чрезвычайно редко встречается на Земле - зато его полно в атмосферах газовых гигантов. Поэтому авторы проекта предполагали добыть гелий-3 на Юпитере с помощью «плавающего» в его атмосфере автоматизированного завода; на весь процесс добычи ушло бы примерно 20 лет. На той же орбите Юпитера предполагалось осуществить окончательную сборку корабля, который бы затем стартовал к другой звёздной системе.

Самым сложным элементом во всей концепции «Дедала» была именно добыча гелия-3 из атмосферы Юпитера. Для этого нужно было долететь до Юпитера (что тоже не так-то легко и быстро), основать базу на одном из спутников, построить завод, где-то хранить топливо… И это уже не говоря о мощных радиационных поясах вокруг газового гиганта, которые дополнительно усложнили бы жизнь технике и инженерам.

Ещё одна проблема состояла в том, что «Дедал» не имел возможности погасить скорость и выйти на орбиту звезды Барнарда. Корабль и выпущенные им зонды просто бы прошли мимо звезды по пролётной траектории, преодолев всю систему за несколько дней.

Сейчас международная группа из двадцати учёных и инженеров, действующая под эгидой Британского межпланетного сообщества, работает над проектом корабля «Икар». «Икар» - своеобразный «римейк» Дедала, учитывающий накопленные за последние 30 лет знания и технологии. Одно из основных направлений работы - поиск других видов топлива, которое можно было бы добыть и на Земле.

Со скоростью света

Можно ли разогнать космический корабль до скорости света? Эту задачу можно решить несколькими способами. Наиболее перспективный из них - аннигиляционный двигатель на антиматерии. Принцип его действия заключается в следующем: антиматерия подаётся в рабочую камеру, где она входит в соприкосновение с обычным веществом, порождая управляемый взрыв. Ионы, возникшие в процессе взрыва, выбрасываются через сопло двигателя, создавая тягу. Из всех возможных двигателей аннигиляционный теоретически позволяет достичь наибольших скоростей. Взаимодействие материи и антиматерии высвобождает колоссальное количество энергии, а скорость истечения образующихся в ходе этого процесса частиц близка к световой.

Но тут встаёт вопрос добычи топлива. Само по себе антивещество уже давно перестало быть фантастикой - учёным впервые удалось синтезировать антиводород ещё в 1995 году. Но добыть его в достаточных количествах невозможно. В настоящее время антиматерию можно получить лишь с помощью ускорителей частиц. При этом количество создаваемого ими вещества измеряется мизерными долями граммов, а его стоимость составляет астрономические суммы. На одну миллиардную грамма антивещества учёным из Европейского центра ядерных исследований (того самого, где создали Большой адронный коллайдер) пришлось потратить несколько сотен миллионов швейцарских франков. С другой стороны, стоимость производства будет постепенно уменьшаться и в будущем может достичь куда более приемлемых значений.

Кроме того, придётся придумать способ, позволяющий хранить антивещество - ведь при соприкосновении с обычной материей оно мгновенно аннигилируется. Одно из решений - охлаждать антивещество до сверхнизких температур и использовать магнитные ловушки, не позволяющие ему соприкасаться со стенками бака. На данный момент рекордное время хранения антивещества составляет 1000 секунд. Не годы, конечно, но с учётом того, что в первый раз антивещество удалось удержать лишь на 172 миллисекунды, прогресс есть.

И даже быстрее

Многочисленные фантастические фильмы приучили нас к тому, что добраться до других звёздных систем можно куда быстрее, чем за несколько лет. Достаточно включить варп-двигатель или гиперпространственный привод, откинуться поудобнее в кресле - и уже через несколько минут оказаться на другом краю галактики. Теория относительности запрещает путешествия со скоростями, превышающими скорость света, но в то же время оставляет лазейки, позволяющие обойти эти ограничения. Если бы могли разорвать или растянуть пространство-время, то смогли бы путешествовать быстрее света, не нарушая никаких законов.

Разрыв пространства более известен как кротовая нора, или червоточина. Физически она представляет собой тоннель, связывающий две удалённые области пространства-времени. Почему бы не использовать такой тоннель для путешествия в дальний космос? Дело в том, что создание подобной кротовый норы требует наличия в разных точках вселенной двух сингулярностей (это то, что находится за горизонтом событий чёрных дыр, - фактически гравитация в чистом виде), которые смогут разорвать пространство-время, создав тоннель, позволяющий путешественникам «срезать» путь через гиперпространство.

Кроме того, для поддержания подобного тоннеля в устойчивом состоянии необходимо, чтобы он был заполнен экзотической материей с отрицательной энергией, - а существование подобной материи до сих пор не доказано. В любом случае, создать кротовую нору по силам лишь сверхцивилизации, которая на много тысяч лет будет опережать нынешнюю в развитии и чьи технологии с нашей точки зрения будут похожи на волшебство.

Второй, более доступный вариант - «растягивание» пространства. В 1994 году мексиканский физик-теоретик Мигель Алькубьерре предположил, что можно изменить его геометрию, создав волну, сжимающую пространство впереди корабля и расширяющую его сзади. Таким образом звездолёт окажется в «пузыре» искривлённого пространства, которое само будет двигаться быстрее света, благодаря чему корабль не нарушит фундаментальных физических принципов. По словам самого Алькубьерре, .

Правда, сам учёный счёл, что реализовать подобную технологию на практике будет невозможно, так как для этого потребуется колоссальное количестве массы-энергии. Первые вычисления давали значения, превышающие массу всей существующей Вселенной, последующие уточнения уменьшили её до «всего лишь» юпитерианской.

Но в 2011 году Гарольд Уайт, возглавляющий исследовательскую группу Eagleworks при NASA, провёл расчёты, которые показали, что если изменить некоторые параметры, то для создания пузыря Алькубьерре может потребоваться куда меньше энергии, чем считалось ранее, и перерабатывать целую планету уже не потребуется. Сейчас группа Уайта прорабатывает возможность «пузыря Алькубьерре» на практике.

Если у экспериментов будут результаты, то это станет первым маленьким шажком к тому, чтобы создать двигатель, позволяющий путешествовать в 10 раз быстрее скорости света. Разумеется, космический аппарат, использующий пузырь Алькубьерре, отправится в путешествие через много десятков, а то и сотен лет. Но сама перспектива того, что такое действительно возможно, уже захватывает дух.

Полёт «Валькирии»

Практически все предлагаемые проекты звездолётов имеют один существенный недостаток: они весят десятки тысяч тонн, и их создание требует огромного количество запусков и сборочных операций на орбите, что увеличивает стоимость постройки на порядок. Но если человечество всё же научится получать большое количество антиматерии, у него появится альтернатива этим громоздким конструкциям.

В 1990-х годах писатель Чарльз Пелегрино и физик Джим Пауэлл предложили проект звездолёта, известный как «Валькирия». Его можно описать как нечто вроде космического тягача. Корабль представляет собой связку из двух аннигиляционных двигателей, соединённых между собой сверхпрочным тросом длиной 20 километров. В центре связки находятся несколько отсеков для экипажа. Корабль использует первый двигатель, чтобы набрать скорость, близкую к световой, а второй - чтобы погасить её при выходе на орбиту вокруг звезды. Благодаря использованию троса вместо жёсткой конструкции масса корабля составляет всего 2100 тонн (для сравнения, масса МКС - 400 тонн), из которых 2000 тонн приходятся на двигатели. Теоретически такой корабль может разогнаться до скорости в 92% от скорости света.

Модифицированный вариант данного корабля, названный Venture Star, показан в фильме «Аватар» (2011), одним из научных консультантов которого был как раз Чарльз Пелегрино. Venture Star отправляется в путешествие, разгоняясь при помощи лазеров и 16-километрового солнечного паруса, после чего тормозит у Альфы Центавра с помощью двигателя на антиматерии. На обратном пути последовательность меняется. Корабль способен разогнаться до 70% скорость света и долететь до Альфа Центавра менее чем за 7 лет.

Без топлива

Как существующие, так и перспективные ракетные двигатели имеют одну проблему - топливо всегда составляет большую часть их массы на старте. Однако есть проекты звездолётов, которым вообще не нужно будет брать с собой топливо.

В 1960 году физик Роберт Бассард предложил концепцию двигателя, который использовал бы находящийся в межзвёздном пространстве водород в качестве горючего для термоядерного двигателя. К сожалению, несмотря на всю привлекательность идеи (водород - самый распространённый элемент во Вселенной), у неё есть ряд теоретических проблем, начиная от способа сбора водорода и заканчивая расчётной максимальной скоростью, которая вряд ли превысит 12% световой. А значит, до системы Альфа Центавра придётся лететь минимум полвека.

Другая интересная концепция - применение солнечного паруса. Если построить на земной орбите или на Луне огромный сверхмощный лазер, то его энергию можно было бы использовать, чтобы разогнать оснащённый гигантским солнечным парусом звездолёт до достаточно больших скоростей. Правда, по расчётам инженеров, чтобы придать пилотируемому кораблю массой 78 500 тонн скорость в половину световой, потребуется солнечный парус диаметром в 1000 километров.

Ещё одна очевидная проблема звездолёта с солнечным парусом заключается в том, что его нужно как-то затормозить. Одно из её решений - при подлёте к цели выпустить позади звездолёта второй, меньший по размерам парус. Основной же отсоединится от корабля и продолжит самостоятельное путешествие.

***

Межзвёздное путешествие - очень сложное и дорогостоящее предприятие. Создать корабль, способный за относительно небольшой срок покрыть космическое расстояние, - одна из самых грандиозных задач, стоящих перед человечеством в будущем. Конечно, это потребует усилий нескольких государств, если не всей планеты. Сейчас это кажется утопией - у правительств слишком много забот и слишком много способов потратить деньги. Полёт на Марс в миллионы раз проще полёта к Альфе Центавра - и тем не менее вряд ли сейчас кто-то рискнёт назвать год, когда он всё же состоится.

Оживить работы в этом направлении может или глобальная опасность, грозящая всей планете, или же создание единой планетарной цивилизации, которая сможет преодолеть внутренние склоки и захочет покинуть свою колыбель. Время для этого ещё не пришло - но это не значит, что оно не придёт никогда.

Новая планета получила свое имя 1 мая 1930 года. Из множества вариантов астрономы Лоуэлловской обсерватории выбрали предложенное 11-летней английской девочкой из Оксфорда имя бога подземного мира, в котором так же темно, как и на самой дальней из планет. В греческой и римской мифологиях Плутон считается братом Зевса-Юпитера и Посейдона-Нептуна, сыном Кроноса-Сатурна, так что рядом с соседними планетами это имя оказалось вполне в «своем кругу» (и к тому же перекликается с инициалами Персиваля Лоуэлла). Впоследствии выяснилось, что еще в 1919 году французский астроном Рейно предлагал назвать еще не открытую в то время девятую планету Плутоном, но к 1930 году о его предложении забыли. Несмотря на громкое имя, новичок выглядел в компании планет-гигантов чужеродным телом. Размер Плутона был явно меньше, чем у Земли, и в десятки раз меньше, чем у четырех крупных газово-ледяных планет, расположенных, как и Плутон, во внешней части Солнечной системы. Сейчас диаметр Плутона определен довольно точно, он равен 2 390 км, что составляет 2/3 диаметра Луны. Это не только самая дальняя, но и самая маленькая из планет. Даже среди спутников других планет Плутон оказался лишь на восьмом месте после Ганимеда, Титана, Каллисто, Ио, Луны, Европы и Тритона. Правда, он в 2,5 раза больше Цереры - самого крупного объекта из главного пояса астероидов, расположенного между Марсом и Юпитером. Площадь поверхности Плутона 17,9 млн. км 2 , что сравнимо с территорией России. Необычной оказалась и орбита Плутона - она очень сильно вытянута, поэтому расстояние от Плутона до Солнца изменяется почти в два раза - от 30 до 50 астрономических единиц (1 а. е. равна расстоянию от Земли до Солнца, примерно 150 млн. км), тогда как у остальных восьми планет орбиты почти круговые. Кроме того, орбита Плутона расположена под значительным углом (17°) к плоскости орбит остальных планет. Получается, что девятая планета ни по каким параметрам не вписывается в довольно стройную картину остальной части Солнечной системы, поэтому Плутон даже предлагают считать не планетой, а астероидом. Сутки на Плутоне в 6,4 раза длиннее земных, а сила тяжести в 15 раз меньше, чем на Земле. Масса этой планеты-крошки в 480 раз меньше массы Земли.

Ландшафты из азотного льда.

Чем Плутон отличается от других планет, так это самыми сильными холодами - на его поверхности постоянно чрезвычайно низкая температура: от –220 до –240°С. В таких условиях затвердевает даже азот. Если когда-нибудь космический путешественник ступит на поверхность Плутона, то перед ним должен открыться пейзаж, напоминающий Антарктиду во время полярной ночи, освещенную лунным светом. Однако на Плутоне такому мраку соответствует дневное время суток. Солнце выглядит на небе как большая звезда с еле заметным диском, в 20 млн. раз более яркая, чем Сириус. Здесь днем в 900 раз темнее, чем на Земле в ясный полдень, тем не менее в 600 раз светлее, чем в полнолуние ночью, поэтому в полдень на Плутоне намного темнее, чем в облачные дождливые сумерки на Земле. Отсутствие облаков позволяет видеть на небе тысячи звезд даже в дневное время, а само небо всегда черное, поскольку атмосфера крайне разреженная. Вся поверхность планеты покрыта льдом, который совсем не похож на земной. Это не привычный нам водный лед, а замороженный азот, который образует крупные прозрачные кристаллы, имеющие несколько сантиметров в поперечнике - этакое ледяное сказочное царство. Внутри этих кристаллов заморожено в виде некоего «твердого раствора» небольшое количество метана (обычно его называют природным газом - это тот газ, который вместе с пропаном и бутаном горит у нас на кухне). В некоторых районах Плутона на поверхность выходит водный лед и даже немного льда монооксида углерода (угарного газа). В целом поверхность планеты имеет желтовато-розоватый оттенок, который придают ей оседающие из атмосферы частички сложных органических соединений, образующиеся из атомов углерода, азота, водорода и кислорода под воздействием солнечного света.

Поверхность Плутона очень яркая и отражает 60% падающего на нее солнечного света, поэтому первые оценки его диаметра оказались завышенными. При этом на Плутоне встречаются наиболее сильные перепады яркости. Здесь можно встретить районы темнее, чем уголь, и районы белее снега. О внутреннем строении планеты пока можно судить только по величине ее средней плотности, которая составляет 1,7 г/см 3 , что вдвое меньше, чем у Луны, и втрое, чем у Земли. Такая плотность указывает, что Плутон состоит на 1/3 из каменных горных пород и на 2/3 из водного льда. Если материал разделен на оболочки (что наиболее вероятно), то у Плутона должно быть большое каменное ядро диаметром 1 600 км, окруженное слоем водного льда толщиной 400 км. На поверхности планеты - кора из льдов различного химического состава, главная роль в которой отведена азотному льду. Не исключено, что между каменным ядром и его ледяной оболочкой существует слой жидкой воды - глубинный океан, подобный тем, которые вероятнее всего имеются на трех больших спутниках Юпитера - Европе, Ганимеде и Каллисто.

Вопрос: расставьте предложения таким образом,чтобы получился текст.и определите к какому стилю речи он относится 1.здесь же,на самой отдаленной планете Солнечной системы,он вместе с замороженным азотом и другими химическими соединениями образует царство льда и холода. 2.дело в том,что эта планета отличается от других планет Солнечной системы тем,что на её поверхности чрезвычайно низкая температура от -220 до -240 градусов 3.если когда-нибудь космический путешественник ступит на поверхность Плутона,то перед ним должен открыться пейзаж, напоминающий Антарктиду во время полярной ночи. 4.это тот самый газ, который вместе с пропаном и бутаном горит у нас на кухне 5.внутри этих кристаллов заморожено в виде некоего твердого раствора небольшое количество метана 6.в таких условиях атмосферный газ охлаждается и конденсируется на поверхности в виде инея:затвердевает даже азот,который образует крупные прозрачные кристаллы,имеющие несколько сантиметров в поперечнике

расставьте предложения таким образом,чтобы получился текст.и определите к какому стилю речи он относится 1.здесь же,на самой отдаленной планете Солнечной системы,он вместе с замороженным азотом и другими химическими соединениями образует царство льда и холода. 2.дело в том,что эта планета отличается от других планет Солнечной системы тем,что на её поверхности чрезвычайно низкая температура от -220 до -240 градусов 3.если когда-нибудь космический путешественник ступит на поверхность Плутона,то перед ним должен открыться пейзаж, напоминающий Антарктиду во время полярной ночи. 4.это тот самый газ, который вместе с пропаном и бутаном горит у нас на кухне 5.внутри этих кристаллов заморожено в виде некоего твердого раствора небольшое количество метана 6.в таких условиях атмосферный газ охлаждается и конденсируется на поверхности в виде инея:затвердевает даже азот,который образует крупные прозрачные кристаллы,имеющие несколько сантиметров в поперечнике

Ответы:

3, 2, 6, 5, 4 1, научный

Похожие вопросы

  • 1)В прямоугольной трапеции ABCD (угол D-прямой) образует с основанием AD угол, равный 45 градусам. Высота трапеции равна ее меньшему основанию. Найдите основание AD, если основание BC равно 7 см. 2) В прямоугольной трапеции ABCD (угол D-прямой) острый угол равен 30 градусам. Найдите угол AQN, образованный биссектрисами углов A и C 3) В трапеции ABCD стороны AB, BC, CD равны. Основание AD в два раза больше основания BC. Найдите угол CDA
  • Каков угол между осями атомов углерода, если они образуют: sp^{2} гибридные орбитали sp гибридные связи sp гибридные и не гибридные p орбитали негибридные p орбитали sp^{3} гибридные орбитали
  • Почему Одиссея называют богоравным?
  • 1)3 последующих натуральных числа за числом b 2)3 предыдущих числа до числа a 3)3 последующих не четных числа начиная с нечетного числа a
  • Сделайте плиз))) 1.Слообразовательный разбор слова и разбор по составу Слов: длинных, глазками 2. Морфологический разбор слова Слова: положение

В 1992 году 86-летний профессор астрономии Клайд Томбо с нескрываемым волнением читал письмо, полученное им из Национального управления США по аэронавтике и космосу. Этот листок бумаги оказался весомее любых научных наград. Ведь с заданным в нем вопросом нельзя было обратиться ни к какому другому человеку в мире. NASA спрашивала разрешения на посещение Плутона — планеты, которую открыл Томбо. Это произошло еще в 1930 году, когда он был 24-летним лаборантом в Лоуэлловской обсерватории во Флагстаффе, на горном плато штата Аризона. Читая письмо, старый астроном явственно ощутил, что речь идет, не просто об одной из планет, а именно о его планете, которая стала известна людям благодаря его трудам. Письмо было, конечно, лишь данью уважения к сделанному им научному открытию. Тем не менее, поддерживая игру, Томбо дал согласие, и NASA приступила к проектированию полета автоматической станции к самой далекой из планет Солнечной системы.

Открытие лаборанта Томбо

Девятую планету Солнечной системы искали четверть века и обнаружили только в 1930 году. Возникла некая закономерность — каждый век открывается по одной планете: в XVIII веке был обнаружен Уран, в XIX — Нептун, а в XX — Плутон. На сей раз судьба оказалась благосклонной к молодому человеку без астрономического образования, который успел проработать в обсерватории лишь несколько месяцев. Правда, это были месяцы напряженного труда — каждую ночь он фотографировал небо через телескоп, участок за участком, повторяя съемку с интервалом в несколько суток. Днем же он тщательно просматривал сотни звезд на полученных фотопластинках, пытаясь отыскать среди них новую планету. Эта чудовищно однообразная работа успешно завершилась во второй половине дня 18 февраля 1930 года, когда 24-летний лаборант Клайд Томбо вошел в кабинет директора Лоуэлловской обсерватории Весто Слайфера и сказал: «По-моему, я нашел вашу планету Икс». Много лет спустя Томбо, ставший всемирно известным астрономом и профессором университета, вспоминал, что при этом он страшно волновался и пот прямо-таки стекал с его ладоней.

Слайфер и другие опытные астрономы тут же начали проверять находку, сделанную по фотоснимкам ночного неба. Они бросились к блинк-компаратору, за которым в последние месяцы работал Томбо, и стали сличать снимки, сделанные им в разные дни. Этот прибор позволял сравнивать два снимка, попеременно наблюдая то один, то другой. Быстро перебрасывая с помощью рычажка зеркальную заслонку, астрономы как бы совмещали два кадра, отыскивая изображение планеты, прыгающее из-за ее движения, на фоне неподвижных звезд. В тот день хлопанье заслонки и щелканье рычажка не затихали под куполом обсерватории до глубокой ночи. Проверка шла долго, новую планету обнаружили еще на нескольких фотопластинках, причем некоторые из них были получены еще в 1915 году! Наконец 13 марта было сделано официальное объявление о ее открытии. Дату выбрали намеренно — день рождения Персиваля Лоуэлла, который основал эту обсерваторию на высокогорном плато в штате Аризона близ города Флагстаффа. В 1905 году Лоуэлл приступил к систематическим поискам «планеты Икс», как он называл неизвестную планету, расположенную дальше, чем Нептун. Сам он не дожил до ее обнаружения, но его инициалы — PL стали навсегда с ней связаны, поскольку совмещением этих букв образован астрономический знак для обозначения Плутона. За свое открытие Клайд Томбо в 1931 году был награжден лондонским Королевским астрономическим обществом медалью и премией в 25 фунтов стерлингов (по покупательной способности сейчас это примерно 1 500 долларов). Он также получил от штата Канзас стипендию для обучения в местном университете. Незадолго до открытия новой планеты Томбо окончил сельскую школу в Канзасе, а затем уехал в Аризону работать в обсерватории. Видно, не зря название Канзас на местном наречии означает «Большое небо».

Необычная орбита

Новая планета получила свое имя 1 мая 1930 года. Из множества вариантов астрономы Лоуэлловской обсерватории выбрали предложенное 11-летней английской девочкой из Оксфорда имя бога подземного мира, в котором так же темно, как и на самой дальней из планет. В греческой и римской мифологиях Плутон считается братом Зевса-Юпитера и Посейдона-Нептуна, сыном Кроноса-Сатурна, так что рядом с соседними планетами это имя оказалось вполне в «своем кругу» (и к тому же перекликается с инициалами Персиваля Лоуэлла). Впоследствии выяснилось, что еще в 1919 году французский астроном Рейно предлагал назвать еще не открытую в то время девятую планету Плутоном, но к 1930 году о его предложении забыли. Несмотря на громкое имя, новичок выглядел в компании планет-гигантов чужеродным телом. Размер Плутона был явно меньше, чем у Земли, и в десятки раз меньше, чем у четырех крупных газово-ледяных планет, расположенных, как и Плутон, во внешней части Солнечной системы. Сейчас диаметр Плутона определен довольно точно, он равен 2 390 км, что составляет 2/3 диаметра Луны. Это не только самая дальняя, но и самая маленькая из планет. Даже среди спутников других планет Плутон оказался лишь на восьмом месте после Ганимеда, Титана, Каллисто, Ио, Луны, Европы и Тритона. Правда, он в 2,5 раза больше Цереры — самого крупного объекта из главного пояса астероидов, расположенного между Марсом и Юпитером. Площадь поверхности Плутона 17,9 млн. км 2 , что сравнимо с территорией России. Необычной оказалась и орбита Плутона — она очень сильно вытянута, поэтому расстояние от Плутона до Солнца изменяется почти в два раза — от 30 до 50 астрономических единиц (1 а. е. равна расстоянию от Земли до Солнца, примерно 150 млн. км), тогда как у остальных восьми планет орбиты почти круговые. Кроме того, орбита Плутона расположена под значительным углом (17°) к плоскости орбит остальных планет. Получается, что девятая планета ни по каким параметрам не вписывается в довольно стройную картину остальной части Солнечной системы, поэтому Плутон даже предлагают считать не планетой, а астероидом. Сутки на Плутоне в 6,4 раза длиннее земных, а сила тяжести в 15 раз меньше, чем на Земле. Масса этой планеты-крошки в 480 раз меньше массы Земли.

Ландшафты из азотного льда

Чем Плутон отличается от других планет, так это самыми сильными холодами — на его поверхности постоянно чрезвычайно низкая температура: от –220 до –240°С. В таких условиях затвердевает даже азот. Если когда-нибудь космический путешественник ступит на поверхность Плутона, то перед ним должен открыться пейзаж, напоминающий Антарктиду во время полярной ночи, освещенную лунным светом. Однако на Плутоне такому мраку соответствует дневное время суток. Солнце выглядит на небе как большая звезда с еле заметным диском, в 20 млн. раз более яркая, чем Сириус. Здесь днем в 900 раз темнее, чем на Земле в ясный полдень, тем не менее в 600 раз светлее, чем в полнолуние ночью, поэтому в полдень на Плутоне намного темнее, чем в облачные дождливые сумерки на Земле. Отсутствие облаков позволяет видеть на небе тысячи звезд даже в дневное время, а само небо всегда черное, поскольку атмосфера крайне разреженная. Вся поверхность планеты покрыта льдом, который совсем не похож на земной. Это не привычный нам водный лед, а замороженный азот, который образует крупные прозрачные кристаллы, имеющие несколько сантиметров в поперечнике — этакое ледяное сказочное царство. Внутри этих кристаллов заморожено в виде некоего «твердого раствора» небольшое количество метана (обычно его называют природным газом — это тот газ, который вместе с пропаном и бутаном горит у нас на кухне). В некоторых районах Плутона на поверхность выходит водный лед и даже немного льда монооксида углерода (угарного газа). В целом поверхность планеты имеет желтовато-розоватый оттенок, который придают ей оседающие из атмосферы частички сложных органических соединений, образующиеся из атомов углерода, азота, водорода и кислорода под воздействием солнечного света.

Поверхность Плутона очень яркая и отражает 60% падающего на нее солнечного света, поэтому первые оценки его диаметра оказались завышенными. При этом на Плутоне встречаются наиболее сильные перепады яркости. Здесь можно встретить районы темнее, чем уголь, и районы белее снега. О внутреннем строении планеты пока можно судить только по величине ее средней плотности, которая составляет 1,7 г/см 3 , что вдвое меньше, чем у Луны, и втрое, чем у Земли. Такая плотность указывает, что Плутон состоит на 1/3 из каменных горных пород и на 2/3 из водного льда. Если материал разделен на оболочки (что наиболее вероятно), то у Плутона должно быть большое каменное ядро диаметром 1 600 км, окруженное слоем водного льда толщиной 400 км. На поверхности планеты — кора из льдов различного химического состава, главная роль в которой отведена азотному льду. Не исключено, что между каменным ядром и его ледяной оболочкой существует слой жидкой воды — глубинный океан, подобный тем, которые вероятнее всего имеются на трех больших спутниках Юпитера — Европе, Ганимеде и Каллисто.

Газовая вуаль планеты

Атмосферу вокруг Плутона обнаружили сравнительно недавно — в 1988 году, когда планета в процессе своего движения закрыла одну из далеких звезд и заслонила собой идущий от нее свет. Атмосферное давление на Плутоне ничтожное — 0,3 паскаля, что в три сотни тысяч раз меньше, чем на Земле. Тем не менее даже в такой разреженной атмосфере могут дуть ветры, возникать дымки и происходить химические реакции. Не исключено, что имеется и ионосфера — слой электрически заряженных частиц в верхней части атмосферы. Предполагается, что газовая оболочка Плутона состоит из азота с примесью метана и угарного газа, поскольку льды этих веществ обнаружены на поверхности планеты путем спектроскопических наблюдений. Слабое гравитационное поле планеты-малютки не в состоянии удерживать атмосферу, и она постоянно улетучивается в космос, а на место улетевших молекул приходят новые, испаряющиеся с ледяной поверхности. Таким образом, атмосфера Плутона напоминает кометную, которая «убегает» от ядра кометы. Ни на одной из планет такого не происходит, во всяком случае, в столь значимых масштабах, как на Плутоне, где атмосфера, по сути, постоянно обновляется.

На Плутоне очень холодно, средняя температура там –230°С. На ночной стороне планеты существенно холоднее, чем на дневной, поэтому атмосферный газ там охлаждается и конденсируется на поверхности в виде инея. Самые же крупные изменения атмосферы Плутона происходят при смене времен года. Увеличение температуры азотного льда на поверхности планеты всего на два градуса приводит к возрастанию массы атмосферы в два раза. Сейчас на Плутоне как раз «летний» период: планета прошла наиболее близкую к Солнцу точку своей орбиты в 1989 году и все еще находится в «теплой» части орбиты. Правда, из-за удаленности и большого коэффициента отражения Плутон получает на единицу поверхности в 1 500 раз меньше солнечного тепла, чем Земля. Когда же Плутон передвинется по своей сильно вытянутой орбите на более далекое расстояние, то нагрев Солнцем уменьшится почти в три раза, температура существенно упадет и наступит глобальная зима, сезонный ледниковый период. Газы сконденсируются и выпадут на поверхность Плутона в виде кристаллов льда. Атмосфера на длительное время исчезнет. Такое не происходит больше ни на одной из планет. В 2015 году, во время пролета автоматической станции New Horizons, на планете по плутоновым меркам все еще будет тепло. В Южном полушарии наступит полярный день, а половина Северного полушария погрузится во тьму полярной ночи. Поэтому можно ожидать, что атмосфера еще не вымерзнет и космическому аппарату будет что изучать не только на поверхности Плутона, но и в его газовой оболочке.

Дорогие полярные ночи

Сезонные изменения на Плутоне происходят за весьма большие промежутки времени. Один оборот вокруг Солнца длится 248 земных лет — таков плутонов год. Длинные на этой планете и сутки — один оборот вокруг оси происходит за 6,4 земных суток. Поэтому в плутоновом году примерно 14 160 плутоновых суток. Со времени открытия планеты по ее календарю прошла всего треть года, а по земному счету набежало почти 76 лет. Каждое из времен года длится на Плутоне по 62 земных года. В отличие от всех планет, кроме Урана, ось вращения Плутона отклонена от положения, перпендикулярного плоскости орбиты, на 60°, поэтому его движение похоже на перекатывание колобка с боку на бок, тогда как все планеты движутся как волчки, вращаясь вокруг оси, почти перпендикулярной плоскости движения. Столь сильный наклон Плутона приводит к тому, что полярная ночь и полярный день там не ограничиваются, как на Земле, лишь районами около полюсов, а простираются почти наполовину каждого полушария — от полюса до 30-го градуса соответствующей широты. На Земле это привело бы к смещению полярного круга с северных окраин Европы и Азии на Мексику, Флориду, Канарские острова и Египет, а полярная ночь охватила бы всю Европу, Россию, Японию, США и Канаду.

Подсказки Харона

За первые 48 лет после открытия Плутона о нем удалось узнать очень мало. Даже его размер и масса были определены весьма неуверенно — данные о диаметре различались в пять раз. Положение резко изменилось в 1978 году, когда обнаружилось, что у Плутона есть спутник. Его открыл астроном Джеймс Кристи, проводя наблюдения на станции Военно-морской обсерватории США, расположенной во Флагстаффе — в том же городе, где в 1930 году был открыт и сам Плутон. Для «компаньона» девятой планеты Кристи предложил имя Харон — так в греческой мифологии называли перевозчика, который доставляет души умерших через реку, текущую вокруг подземного царства Плутона. С открытием спутника появились данные, необходимые для точного вычисления массы Плутона.

Диаметр спутника — 1 205 км, а его плотность — 1,7 г/см 3 — точно такая же, как у Плутона. Если расположить Харон и Плутон рядом бок о бок, то их совместный диаметр окажется практически совпадающим с диаметром Луны. Атмосфера у Харона отсутствует. Спутник имеет голубоватый цвет, чем резко отличается от желтоватого Плутона. Особенности спектра отражаемого света приводят к заключению, что Харон покрыт водным льдом, а не метаново-азотным, как Плутон. В целом же Харон, исходя из его плотности, должен состоять на 1/3 из каменных пород и на 2/3 из водного льда. Эти компоненты могут быть распределены двумя способами: в виде довольно однородной смеси (шар из каменно-ледяной «каши», покрытый тонкой ледяной корой) или же в виде отдельных оболочек (каменное ядро диаметром 800 км, окруженное слоем льда толщиной 200 км). Масса Харона составляет 1/5 массы Плутона, что уникально — ни у одной планеты нет спутника со столь большой относительной массой. Плутон и Харон даже называют двойной планетой, массы компонентов которой сопоставимы по величине.

Полная синхронизация

Расстояние от Харона до планеты небольшое — 19 600 км, поэтому воображаемый космический путешественник увидел бы с поверхности Плутона спутник-великан, занимающий в 7 раз больше места, чем Луна на земном небосводе. А с Харона будет казаться, что Плутон, нависающий над горизонтом, вот-вот рухнет на свой спутник — ведь по диаметру Плутон в небе над Хароном в 14 раз больше, чем Луна на нашем небе. Однако любоваться такими картинами можно только с одного полушария — как на Плутоне, так и на его спутнике. Дело в том, что эти два небесных объекта находятся в полном гравитационном резонансе — Харон всегда расположен в плоскости экватора Плутона и делает один оборот вокруг планеты за 6,4 земных суток, точно за такое же время, как и Плутон вокруг своей оси. Поэтому Харон виден только с одного полушария Плутона, причем сам он тоже повернут к планете всегда одним полушарием и постоянно расположен в одной и той же точке на небосводе, никуда не сдвигаясь. Наша Луна тоже всегда обращена к Земле только одной стороной, но в отличие от Харона она движется по небосводу: появляется из-за горизонта, а затем заходит за него. С точки на экваторе Плутона, находящейся строго под Хароном, спутник виден в зените и постепенно опускается к горизонту, по мере ухода наблюдателя в полушарие, лишенное возможности видеть Харон, а с полюсов он всегда виден у самого горизонта. За время плутоновых суток картина на небе мало меняется — оно постоянно черное, в отличие от поверхности планеты, которая днем немного светлее благодаря скупому солнечному освещению. Самая изменчивая деталь на небе Плутона — это Харон, который в течение плутоновых суток освещается с разных сторон, приобретая облик то полной луны, то полумесяца. Эта переменчивость напоминает фазы нашей Луны с той лишь разницей, что «луна» над Плутоном никогда не покидает своего места. Все сказанное относится и к виду Плутона с поверхности Харона: планета постоянно маячит в одной и той же точке неба над Хароном и обращена к нему только одним полушарием. Меридиан, проходящий через центр этого полушария, принят за «плутонов Гринвич» — нулевой меридиан, от которого ведется отсчет долготы. С противоположного полушария Плутона его спутник никогда не виден, так же как невозможно увидеть и сам Плутон с дальнего от него полушария Харона.

Спутники-лилипуты

Крупное астрономическое открытие, связанное с Плутоном, произошло в конце 2005 года, когда автоматическая станция New Horizons уже находилась на космодроме в ожидании старта к этой планете. 31 октября Международный астрономический союз разместил в сети Интернет сообщение об открытии, сделанном группой американских астрономов, которые обнаружили у Плутона сразу два новых спутника. В преддверии полета к Плутону участники предстоящих исследований тщательно анализировали все снимки этой планеты, сделанные космическим телескопом «Хаббл», находящимся на орбите вокруг Земли. И сам Плутон, и его крупный спутник Харон выглядят на них маленькими точками, тем не менее ученым удалось распознать на одном из снимков, сделанном еще в мае 2005 года, две совсем крошечные тусклые точки, которые не были ни звездами, ни какими-либо из астероидов транснептунового пояса. Какова же была радость исследователей, когда они обнаружили еще один снимок, сделанный через три дня после первого, где эти точки были уже в ином расположении. Характер их перемещения показал, что они движутся вокруг Плутона, каждая на своем расстоянии. При последовавшей после этого ревизии более старых снимков был найден еще один, сделанный в 2002 году, который подтвердил находку. Правда, на старом снимке эти спутники видны как очень слабые пятна. Чтобы окончательно удостовериться в том, что обнаруженные объекты действительно представляют собой спутники Плутона, намечено провести в феврале 2006 года с помощью телескопа «Хаббл» серию наблюдений, специально посвященных этим крошечным спутникам. По нынешним данным, они имеют в диаметре от 110 до 160 км и расположены на расстояниях 50 и 65 тыс. км от планеты — намного дальше, чем Харон. В результате этой находки Плутон еще раз показал свою уникальность, став единственным среди транснептуновых объектов обладателем более чем одного спутника. Возможно, что этой троицей дело не закончится, поскольку программа станции New Horizons предусматривает поиск еще меньших спутников Плутона — диаметром вплоть до 1 км.

На краю Ойкумены

Плутон расположен от Земли в 40 раз дальше, чем Солнце. Это единственная планета, к которой до сих пор не была направлена ни одна космическая станция. Подготовка полета к Плутону началась еще в 1989 году, но одна за другой пять программ были отменены NASA на самых ранних стадиях, когда еще не успевали разработать даже эскиз космического аппарата. Наконец в 2001 году на очередном проекте все-таки остановились и довели его до воплощения. Автоматическая станция New Horizons («Новые горизонты») должна отправиться к Плутону в середине января 2006 года. Ее название хорошо отражает задачи полета: исследовать наименее изученную область на окраине Солнечной системы, где находится самая дальняя планета. Намечено изучить и три спутника Плутона — крупный Харон и пару маленьких, только что открытых и пока безымянных, а также несколько совсем небольших объектов, расположенных еще дальше, чем Плутон, — во внешнем поясе астероидов (поясе Койпера). Станция имеет вид плоской треугольной коробки размером 3х3х2 м, к одной из сторон которой прикреплена антенна-тарелка диаметром 2,1 метра. Посылку радиосигнала на Землю с расстояния в 5 млрд. км будет осуществлять передатчик мощностью 200 ватт, то есть всего в 100 раз больше, чем у сотового телефона. Посланные со скоростью света радиоволны достигнут Земли только через четыре с половиной часа. Чтобы представить, насколько далеко расположен Плутон, вспомним, что свет от Солнца долетает до нашей планеты всего лишь за 8 минут. Радиосигналы, приходящие со станции New Horizons на Землю, будут очень слабыми, и для их приема воспользуются тремя высокочувствительными параболическими антеннами — огромными «тарелками» диаметром по 70 метров каждая, находящимися в США (Калифорния), Испании и Австралии. Пункты дальней космической связи расположены равномерно по поверхности Земли, и это обеспечит круглосуточную радиосвязь со станцией.

Запуск автоматической станции New Horizons с космодрома на мысе Канаверал в американском штате Флорида планируется на январь—февраль 2006 года. Ракета-носитель Atlas-V еще в августе 2005 года была доставлена туда с завода в Денвере грузовым самолетом АН-124-100 «Руслан» авиакомпании «Волга — Днепр», мирового лидера перевозок крупногабаритных грузов. При запуске в середине января траектория полета пойдет таким образом, что примерно через год, в феврале 2007 года, станция приблизится к планете-гиганту Юпитеру и под воздействием его гравитационного поля получит добавку к скорости полета. Это поможет ей достичь Плутона в 2015 году. Если же старт отложится на конец января, то прибытие к Плутону отодвинется на 1—2 года, поскольку пролет у Юпитера будет на большем расстоянии и гравитационный маневр получится слабее. При самом неблагоприятном времени старта — в первой половине февраля — полет будет проходить без помощи Юпитера, поэтому добраться до Плутона станция сможет лишь к 2019 году, а то и позже. После 15 февраля стартовать будет бессмысленно — взаимное расположение Земли и Плутона изменится настолько, что перелет окажется невозможным.

На борту New Horizons — семь научных приборов, с помощью которых предстоит узнать, из каких газов состоит атмосфера Плутона и что за процессы в ней происходят, какие геологические структуры присутствуют на Плутоне и Хароне и каков химический состав материала поверхности планеты и ее спутника, как поток заряженных частиц, выброшенных Солнцем (солнечный ветер), взаимодействует с атмосферой Плутона и с какой скоростью атмосферные газы улетучиваются в космос. Приборы сконструированы таким образом, что получаемые ими данные отчасти дублируются, давая страховку на случай отказа какого-либо из них. В ходе межпланетного перелета намечено раз в год выполнять проверку всех приборов, а затем снова переводить их в «спящий» режим. Солнечные батареи, обычно применяемые на космических станциях, в данном полете бесполезны, поскольку в районе Плутона поступающей от Солнца энергии будет явно недостаточно для работы станции. Получать электроэнергию приборы будут от термоэлектрического генератора, работающего на радиоактивном изотопе плутония. Этот химический элемент был открыт в США в 1940 году и назван в честь планеты Плутон, подобно тому, как ранее имена планет получили его предшественники по таблице Менделеева — уран и нептуний.

Спустя три месяца после пролета вблизи Плутона и Харона станция начнет передавать полученные сведения, зафиксированные в ее электронной памяти. Из-за большого расстояния до Земли радиопередача будет вестись медленно, чтобы слабые сигналы можно было выделить на фоне космических и земных шумов и расшифровать. Процесс передачи растянется на целых девять месяцев. В это время станция будет продолжать полет, все дальше уходя от Солнца. Ее новой целью будет взглянуть с близкого расстояния на некоторые из недавно обнаруженных малых планет, находящихся во внешнем поясе астероидов, так называемом поясе Койпера, который лежит за орбитой Плутона. Этот пояс состоит из множества небольших космических тел — ледяных астероидов, считающихся остатками древнейшего материала, сохранившегося со времени образования планет Солнечной системы. Полет через пояс Койпера может занять еще от трех до шести лет. Получаемые со станции данные будут обрабатываться в двух оперативных научных центрах — имени Томбо в Боулдере (Колорадо) и имени Кристи в Лореле (Мэриленд), названных в честь первооткрывателей Плутона и его спутника Харона. Свидетельства о присвоении имен вручены вдове Клайда Томбо и астроному Джеймсу Кристи. Стоимость этого проекта, включая ракету-носитель и обслуживание дальней космической связью, — примерно 650 млн. долларов, что соответствует сумме в 20 центов с каждого жителя США ежегодно в течение 10 лет полета станции.

Георгий Бурба, кандидат географических наук



Читайте также: