Духовные практики к адаптации холода и жары. Адаптация к действию низкой температуры. Условия проведения исследований, контроль теплового состояния испытуемых

Белгородская региональная общественная организация

МБОУДОД «Центр детского-юношеского туризма и экскурсий»

Г. Белгорода

Методическая разработка

Тема: «Физиологически основы адаптации организма спортсмена к новым климатическим условиям»

тренер-преподаватель ЦДЮТЭ

г. Белгород, 2014

1. Понятие адаптации

2. Адаптация и гомеостаз

3. Адаптация к холоду

4. Акклиматизация. Горная болезнь

5. Развитие специфической выносливости как фактор, способствующий высотной акклиматизации

1. Понятие адаптации

Адаптация - это процесс приспособления, который формируется в течение жизни человека. Благодаря адаптационным процессам человек приспосабливается к непривычным условиям или нового уровня активности, т. е. повышается устойчивость его организма против действия различных факторов. Организм человека может адаптироваться к высокой и низкой температурам, эмоциональным раздражениям (страх, боль и т. д.), к низкому атмосферному давлению или даже некоторым патогенным факторам.

Например, адаптированный к недостатку кислорода альпинист может подняться на горную вершину высотой 8000 м и более, где парциальное давление кислорода приближается к 50 мм рт. ст. (6,7 кПа). Атмосфера на такой высоте столь разрежена, что нетренированный человек погибает за несколько минут (из-за нехватки кислорода) даже в состоянии покоя.

Люди, живущие в северных или южных широтах, в горах или на равнине, во влажных тропиках или в пустыне по многим показателям гомеостаза отличаются друг от друга. Поэтому ряд показателей нормы для отдельных регионов земного шара может отличаться.

Можно сказать, что жизнь человека в реальных условиях является постоянным адаптационным процессом. Организм его адаптируется к воздействию различных климатогеографических, природных (атмосферное давление и газовый состав воздуха, продолжительность и интенсивность инсоляции, температура и влажность воздуха, сезонные и суточные ритмы, географическая долгота и широта, горы и равнина и др.) и социальных факторов, условий цивилизации. Как правило, организм адаптируется к действию комплекса различных факторов. Потребность в стимулировании механизмов, приводящих в действие процесс адаптации, возникает по мере нарастания силы или продолжительности воздействия ряда внешних факторов. Например, в естественных условиях жизни такие процессы развиваются осенью и весной, когда организм постепенно перестраивается, адаптируясь к похолоданию, или при потеплении.

Адаптация развивается и тогда, когда человек изменяет уровень активности и начинает заниматься физкультурой или каким-либо нехарактерным видом трудовой деятельности, т. е. нарастает активность двигательного аппарата. В современных условиях в связи с развитием скоростного транспорта человек часто меняет не только климатогеографические условия, но и часовые пояса. Это накладывает свой отпечаток на биоритмы, что также сопровождается развитием адаптационных процессов.

2. Адаптация и гомеостаз

Человек вынужден постоянно приспосабливаться к изменяющимся условиям окружающей среды, сохраняя свой организм от разрушения под действием внешних факторов. Сохранение организма возможно благодаря гомеостазу - универсальному свойству сохранять и поддерживать стабильность работы различных систем организма в ответ на воздействия, нарушающих эту стабильность.

Гомеостаз - относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма. Любые физиологические, физические, химические или эмоциональные воздействия, будь то температура воздуха, изменение атмосферного давления или волнение, радость, печаль, могут быть поводом к выходу организма из состояния динамического равновесия. Автоматически, при помощи гуморальных и нервных механизмов регуляции осуществляется саморегуляция физиологических функций, обеспечивающая поддержание жизнедеятельности организма на постоянном уровне. Гуморальная регуляция осуществляется через жидкую внутреннюю среду организма с помощью молекул химических веществ, выделяемых клетками или определенными тканями и органами (гормонов, ферментов и т. д.). Нервная регуляция обеспечивает быструю и направленную передачу сигналов в виде нервных импульсов, поступающих к объекту регуляции.

Важным свойством живого организма, влияющим на эффективность механизмов регуляции, является реактивность. Реактивность - это способность организма отвечать (реагировать) изменениями обмена веществ и функции на раздражители внешней и внутренней среды. Компенсация изменений факторов среды обитания оказывается возможной благодаря активации систем, ответственных за адаптацию (приспособление) организма к внешним условиям.

Гомеостаз и адаптация - два конечных результата, организующих функциональные системы. Вмешательство внешних факторов в состояние гомеостаза приводит к адаптивной перестройке организма, в результате которой одна или несколько функциональных систем компенсируют возможные нарушения и восстанавливают равновесие.

3. Адаптация к холоду

В высокогорье в условиях повышенных физических нагрузок наиболее существенны процессы акклиматизации – адаптации к холоду.

Оптимальная микроклиматическая зона соответствует диапазону температур 15...21 °С; она обеспечивает хорошее самочувствие человека и не вызывает сдвигов со стороны систем терморегуляции;

Допустимая микроклиматическая зона соответствует диапазону температур от минус 5,0 до плюс 14,9°С и 21,7...27,0°С; обеспечивает сохранение здоровья человека в течение длительного времени воздействия, но вызывает неприятные ощущения, а также функциональные сдвиги, не выходящие за пределы его физиологических приспособительных возможностей. При нахождении в этой зоне организм человека способен сохранять температурный баланс за счет изменения кожного кровотока и потоотделения длительное время без ухудшения состояния здоровья;

Предельно допустимая микроклиматическая зона, эффективные температуры от 4.0 до минус 4,9°С и от 27,1 до 32,0°С. Поддержание относительно нормального функционального состояния в течение 1-2 ч достигается за счет напряжения сердечно - сосудистой системы и системы терморегуляции. Нормализация функционального состояния происходит через 1,0-1,5 ч пребывания в условиях оптимальной среды. Частые повторные воздействия приводят к нарушению объемных процессов, истощению защитных сил организма, снижению его неспецифической сопротивляемости;

Предельно переносимая микроклиматическая зона, эффективные температуры от минус 4,9 до минус 15,0 ºС и от 32,1 до 38,0°С.

Выполнение нагрузки при температурах в указанных диапазонах приводит через 30-60 мин. к выраженному изменению функционального состояния: при низких температурах в меховой одежде прохладно, руки в меховых перчатках мерзнут: при высоких температурах теплоощущение «жарко», «очень жарко», появляется вялость, нежелание работать, головная боль, тошнота, повышенная раздражительность; пот, обильно стекаемый со лба, попадает в глаза, мешает; при нарастании симптомов перегревания нарушается зрение.

Опасная микроклиматическая зона ниже минус 15 и выше 38°С, характеризуется такими условиями, которые уже через 10-30 мин. Могут привести к ухудшению состояния здоровья.

Время сохранения работоспособности

при выполнении нагрузки в неблагоприятных микроклиматических условиях

Микроклиматическая зона

Ниже оптимальных температур

Выше оптимальных температур

Эффективная температура, С

Время, мин.

Эффективная температура, С

Время, мин.

Допустимая

5,0…14,9

60 – 120

21,7…27,0

30 – 60

Предельно допустимая

От 4,9 до минус 4.9

30 – 60

27,1…32,0

20 – 30

Предельно переносимая

Минус 4,9…15,0

10 – 30

32,1…38,0

10 – 20

Опасная

Ниже минус 15,1

5 – 10

Выше 38,1

5 – 10

4 . Акклиматизация. Горная болезнь

С подъемом на высоту падает давление воздуха. Соответственно, падает давление всех составных частей воздуха и том числе кислорода. Это значит, что количество кислорода попадающего в легкие при вдохе меньше. И молекулы кислорода менее интенсивно присоединяются к эритроцитам крови. Уменьшается концентрация кислорода в крови. Недостаток кислорода в крови называется гипоксией . Гипоксия приводит к развитию горной болезни .

Типичные проявления горной болезни:

· повышенный пульс;

· одышка при нагрузке;

· головная боль, бессонница ;

· слабость, тошнота и рвота;

· неадекватность поведения.

В запущенных случаях горная болезнь может привести к тяжелым последствиям.

Для безопасного нахождения на больших высотах необходима акклиматизация - приспособление организма к условиям высокогорья.

Акклиматизация невозможна без горной болезни. Легкие формы горной болезни запускают механизмы перестройки организма.

Выделяют две фазы акклиматизации:

· Краткосрочная акклиматизация - это быстрый ответ на гипоксию. Изменения в основном касаются систем транспорта кислорода. Увеличивается частота дыхания и сердцебиения. Из депо крови выбрасываются дополнительные эритроциты. Происходит перераспределение крови в организме. Увеличивается мозговой кровоток, т. к. мозг требует кислорода. Это и приводит к головным болям. Но такие механизмы адаптации могут быть эффективны только непродолжительное время. Организм при этом испытывает стресс и работает на износ.

· Долговременная акклиматизация - это комплекс глубоких изменений в организме. Именно она является целью акклиматизации. В этой фазе смещается акцент с механизмов транспорта на механизмы экономного использования кислорода. Разрастается капиллярная сеть, увеличивается площадь легких. Изменяется состав крови - появляется эмбриональный гемоглобин, который легче присоединяет кислород при низком его парциальном давлении. Увеличивается активность ферментов расщепляющих глюкозу и гликоген. Изменяется биохимия клеток миокарда, что позволяет эффективней использовать кислород.

Ступенчатая акклиматизация

При подъеме на высоту организм испытывает недостаток кислорода. Начинается легкая горная болезнь. Включаются механизмы краткосрочной акклиматизации. Для эффективной акклиматизации после подъема лучше спустится, что бы изменения в организме происходили в более благоприятных условиях и не происходило истощение организма. На этом построен принцип ступенчатой акклиматизации - последовательности подъемов и спусков, в которой каждый последующий подъем выше предыдущего.

Рис. 1. Пилообразный график ступенчатой акклиматизации

Иногда особенности рельефа не дают возможности для полноценной ступенчатой акклиматизации. Например, на многих треках в Гималаях, где ежедневно происходит набор высоты. Тогда дневные переходы делают небольшие, что бы рост высоты не происходил слишком быстро. Очень полезно в таком случае искать возможность сделать пусть и небольшой выход верх от места ночевки. Часто можно вечером прогуляться на близлежащий холм или отрог горы, и набрать хоть пару сотен метров.

Что нужно делать, что бы акклиматизация была успешной до поездки?

Общефизическая подготовка . Тренированному спортсмену легче переносить нагрузки связанные с высотой. Прежде всего, следует развивать выносливость. Это достигается продолжительными нагрузками низкой интенсивности. Наиболее доступным средством развития выносливости является бег .

Практически бесполезно бегать часто, но по малу. Лучше пробежать раз в неделю 1 час, чем каждый день по 10 мин. Для развития выносливости длина пробежек должна быть больше 40 мин, частота - по ощущениям. Важно следить за частотой пульса и не перегружать сердце. В общем, тренировки должны быть приятными, фанатизм не нужен.

Здоровье. Очень важно приехать в горы здоровым и отдохнувшим. Если вы тренировались, то за три недели перед поездкой снизить нагрузки и дать организму отдохнуть. Обязателен полноценный сон и питание. Питание можно дополнить приемом витаминов и микроэлементов. Минимизировать, а лучше отказаться от алкоголя. Не допускать стрессов и переутомления на работе. Нужно вылечить зубы.

В первые дни организм подвержен большим нагрузкам. Иммунитет слабеет и легко заболеть. Необходимо не допускать переохлаждения или перегрева. В горах происходят резкие перепады температур и поэтому нужно соблюдать правило - раздеваться до того как вспотел, одеваться до того как замерз.

Аппетит на высоте может быть снижен, особенно если происходит заезд сразу на большие высоты. Есть через силу не нужно. Отдавайте предпочтение легкоусвояемым продуктам. В горах в связи с сухостью воздуха и большими физическими нагрузками человеку требуется большое количество воды - пейте много .

Продолжайте прием витаминов и микроэлементов. Можно начать принимать аминокислоты, обладающие адаптогенными свойствами.

Режим движения. Бывает, только приехав в горы, туристы, испытывая эмоциональный подъем и ощущая переполняющие их силы, слишком быстро идут по тропе. Нужно себя сдерживать, темп движения должен быть спокойным и равномерным. В первые дни на высокогорье пульс в покое в 1,5 раза выше, чем на равнине. Организму и так тяжело, поэтому не нужно гнать, особенно на подъемах. Небольшие надрывы могут быть незаметны, но имеют свойство накапливаться, и могут привести к срыву акклиматизации.

Если вы пришли на место ночевки, и чувствуете себя неважно, не нужно ложиться спать. Лучше погуляйте в спокойном темпе по окрестностям, поучаствуйте в обустройстве бивуака, в общем, займитесь чем-нибудь.

Движение и работа - отличное лекарство от легких форм горной болезни. Ночь - очень важное время для акклиматизации. Сон должен быть крепкий. Если вечером болит голова - примите обезболивающее. Головная боль дестабилизирует организм, и терпеть ее нельзя. Если не удается заснуть - примите снотворное. Терпеть бессонницу тоже нельзя.

Контролируйте свой пульс перед сном и утром сразу после пробуждения. Утренний пульс должен быть ниже - это показатель того, что организм отдохнул.

При хорошо спланированной подготовке и правильном графике набора высоты удается избежать серьезных проявлений горной болезни и получить удовольствие от покорения больших высот.

5. Развитие специфической выносливости как фактор, способствующий высотной акклиматизации

"Если альпинист (горный турист) в межсезонный и предсезонный период будет повышать свой "кислородный потолок" плаванием, бегом, велосипедом , лыжами, греблей, - он обеспечит совершенствование своего организма, успешнее будет затем справляться с большими, но увлекательными трудностями при штурме горных вершин".

Эта рекомендация – и правда, и неправда. В том плане, что готовиться к горам, конечно, необходимо. Но велосипед, гребля, плавание и другие виды тренировок дают разное "совершенствование своего организма" и, соответственно, разный "кислородный потолок". Когда речь идет о двигательных актах организма, следует четко представлять, что нет "движения вообще" и любой двигательный акт предельно специфичен. А с определенного уровня развитие одного физического качества всегда происходит за счет другого: силы за счет выносливости и скорости, выносливости – за счет силы и скорости.

При тренировках к интенсивной работе расход кислорода и субстратов окисления в мышцах в единицу времени столь велик, что быстро восполнить их запасы усилением работы транспортных систем нереально. Чувствительность дыхательного центра к углекислому газу снижена, что защищает дыхательную систему от ненужного перенапряжения.

Мышцы, способные к выполнению такой нагрузки, фактически работают при этом в автономном режиме, рассчитывая на собственные ресурсы. Это не устраняет развития тканевой гипоксии и приводит к накоплению больших количеств недоокисленных продуктов. Важным аспектом адаптивных реакций в этом случае является формирование толерантности, то есть устойчивости к сдвигу рН. Это обеспечивается увеличением мощности буферных систем крови и тканей, возрастанием т. н. щелочного резерва крови. Увеличивается также мощность системы антиоксидантов в мышцах, что ослабляет или предотвращает перекисное окисление липидов клеточных мембран - один из основных повреждающих эффектов стресс-реакции. Увеличивается мощность системы анаэробного гликолиза за счет повышенного синтеза гликолитических ферментов, повышаются запасы гликогена и креатинфосфата - источников энергии для синтеза АТФ.

При тренировках к умеренной работе разрастание сосудистой сети в мышцах, сердце, легких, увеличение числа митохондрий и изменение их характеристик, возрастание синтеза окислительных ферментов, усиление эритропоэза, ведущее к увеличению кислородной емкости крови, позволяют снизить уровень гипоксии или предотвратить ее. При систематическом выполнении умеренных физических нагрузок, сопровождающихся усилением легочной вентиляции , дыхательный центр, напротив, повышает чувствительность к СО 2 , что обусловлено понижением его содержания вследствие вымывания из крови при усиленном дыхании.

Поэтому в процессе адаптации к интенсивной (как правило, кратковременной) работе в мышцах развивается иной спектр адаптивных приспособлений, чем к длительной умеренной работе. Поэтому, например, при гипоксии при нырянии невозможной становится активация внешнего дыхания, типичного для адаптации к высотной гипоксии или гипоксии при мышечной работе. А борьба за поддержание кислородного гомеостаза проявляется в увеличении запасов кислорода, уносимого под воду. Следовательно, спектр адаптивных приспособлений при разных видах гипоксии – различается, следовательно - далеко не всегда полезный для высоких гор.

Таблица. Объем циркулирующей крови (ОЦК) и ее составных частей у спортсменов, тренирующих выносливость, и нетренированных (Л. Рёккер, 1977).

Показатели

Спортсмены

Не спортсмены

ОЦК [л]

6,4

5,5

ОЦК [мл/кг веса тела]

95,4

76,3

Объем циркулирующей плазмы (ОЦП) [л]

3,6

3,1

ОЦП [мл/кг веса тела]

55,2

43

Объем циркулирующих эритроцитов (ОЦЭ) [л]

2,8

2,4

ОЦЭ [мл/кг веса тела]

40,4

33,6

Гематокрит [%]

42,8

44,6

Так, у нетренированных и у представителей скоростно-силовых видов спорта общее содержание в крови гемоглобина составляет 10-12 г/кг (у женщин - 8-9 г/кг), а у выносливых спортсменов - г/кг (у спортсменок - 12 г/кг).

У спортсменов, тренирующих выносливость, обнаруживается усиленная утилизация образующейся в мышцах молочной, кислоты. Этому способствует повышенный аэробный потенциал всех мышечных волокон и особенно высокий, процент медленных мышечных волокон, а также увеличенная масса сердца. Медленные мышечные волокна, как и миокард, способны активно использовать молочную кислоту, в качестве энергетического субстрата. Кроме того, при одинаковых аэробных нагрузках (равном потреблении О 2 ) кровоток через печень у спортсменов - выше, чем у нетренированных, что также может способствовать более интенсивной экстракции печенью молочной кислоты из крови и ее дальнейшему превращению в глюкозу и гликоген. Таким образом, тренировка аэробной выносливости не только повышает аэробные возможности, но и развивает способность выполнять большие длительные аэробные нагрузки без значительного увеличения содержания молочной кислоты в крови.

Очевидно, что зимой лучше заниматься лыжами, в межсезонье – стайерским бегом по пересеченной местности. Этим тренировкам должна быть посвящена львиная доля физической подготовки тех, кто собирается в высокие горы. Не так давно ученые ломали копья по поводу того, какая раскладка сил при беге является оптимальной. Одни считали, что переменная, другие - равномерная. На самом деле это зависит от уровня тренированности.

Литература

1. Павлов. – М., "Паруса", 2000. – 282 с.

2. Физиология человека в условиях высокогорья: Руководство по физиологии. Под ред. . – Москва, Наука, 1987, 520 с.

3. Сомеро Дж. Биохимическая адаптация. М.: Мир, 19с

4. Кислородно-транспортная система и выносливость

5. А. Лебедев . Планирование спортивных походов

  • Специальность ВАК РФ03.00.16
  • Количество страниц 101

ГЛАВА 1. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМЕ АДАПТАЦИИ ОРГАНИЗМА К ХОЛОДУ И ДЕФИЦИТУ ТОКОФЕРОЛА.

1.1 Новые представления о биологических функциях активных форм кислорода при адаптивных преобразованиях метаболизма.

1.2 Механизмы адаптации организма к холоду и роль оксидативного стресса в этом процессе.

1.3 Механизмы адаптации организма к дефициту токоферола и роль оксидативного стресса в этом процессе.

ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1 Организация исследования.

2.1.1 Организация экспериментов по влиянию холода.

2.1.2 Организация экспериментов по влиянию дефицита токоферола.

2.2 Методы исследования

2.2.1 Гематологические показатели

2.2.2 Исследование энергетического метаболизма.

2.2.3 Исследование оксидативного метаболизма.

2.3 Статистическая обработка результатов.

ГЛАВА 3. ИССЛЕДОВАНИЕ ОКСИДАТИВНОГО ГОМЕОСТАЗА, ОСНОВНЫХ МОРФОФУНКЦИОНАЛЬНЫХ ПАРАМЕТРОВ ОРГАНИЗМА КРЫС И ЭРИТРОЦИТОВ ПРИ ДЛИТЕЛЬНОМ ВОЗДЕЙСТВИИ ХОЛОДА.

ГЛАВА 4. ИССЛЕДОВАНИЕ ОКСИДАТИВНОГО ГОМЕОСТАЗА, ОСНОВНЫХ МОРФОФУНКЦИОНАЛЬНЫХ ПАРАМЕТРОВ ОРГАНИЗМА КРЫС И ЭРИТРОЦИТОВ ПРИ ДЛИТЕЛЬНОМ ДЕФИЦИТЕ ТОКОФЕРОЛА.

Рекомендованный список диссертаций

  • Физиологические аспекты клеточно-молекулярных закономерностей адаптации животных организмов к экстремальным ситуациям 2013 год, доктор биологических наук Черкесова, Дилара Улубиевна

  • Механизмы участия токоферола в адаптивных преобразованиях на холоде 2000 год, доктор биологических наук Колосова, Наталия Гориславовна

  • Особенности функционирования гипоталамо-гипофизарно-репродуктивной системы на этапах онтогенеза и в условиях применения геропротекторов 2010 год, доктор биологических наук Козак, Михаил Владимирович

  • Эколого-физиологические аспекты формирования адаптивных механизмов млекопитающих к гипотермии в условиях эксперимента 2005 год, кандидат биологических наук Солодовникова, Ольга Григорьевна

  • Биохимические механизмы антистрессорного эффекта α-токоферола 1999 год, доктор биологических наук Сабурова, Анна Мухаммадиевна

Введение диссертации (часть автореферата) на тему «Экспериментальное исследование ферментных антиоксидантных систем при адаптации к длительному воздействию холода и дефицита токоферола»

Актуальность темы. Исследованиями последних лет показано, что в механизмах приспособления организма к факторам внешней среды важную роль играют так называемые активные формы кислорода - супероксидный и гидро-ксильный радикалы, перекись водорода и другие (Finkel, 1998; Kausalya, Nath, 1998). Установлено, что эти свободно-радикальные метаболиты кислорода, которые до недавнего времени рассматривались лишь как повреждающие агенты, являются сигнальными молекулами и регулируют адаптивные преобразования нервной системы, артериальной гемодинамики и морфогенез. (Luscher, Noll, Vanhoute, 1996; ; Groves, 1999; Wilder, 1998; Drexler, Homig, 1999). Главным источником активных форм кислорода является ряд ферментных систем эпителия и эндотелия (НАДФ-оксидаза, циклооксигеназа, липооксигеназа, ксанти-ноксидаза), которые активируются при раздражении хемо-и механорецепторов, расположенных на люминальной мембране клеток этих тканей.

В то же время известно, что при усилении продукции и накоплении в организме активных форм кислорода, то есть при так называемом оксидативном стрессе, их физиологическая функция может трансформироваться в патологическую с развитием перекисного окисления биополимеров и повреждением вследствие этого клеток и тканей. (Kausalua, Nath, 1998; Smith, Guilbelrt, Yui et al. 1999). Очевидно, что возможность такой трансформации определяется прежде всего скоростью инактивации АФК антиоксидантными системами. В связи с этим, особый интерес представляет исследование изменений инактиваторов активных форм кислорода - ферментных антиоксидантных систем организма, при длительном воздействии на организм таких экстремальных факторов, как холод и дефицит витаминного антиоксиданта - токоферола, которые рассматриваются в настоящее время как эндо- и экзогенные индукторы оксидативного стресса.

Цель и задачи исследования. Целью работы явилось исследование изменений основных ферментных антиоксидантных систем при адаптации крыс к длительному воздействию холода и дефицита токоферола.

Задачи исследования:

1. Сопоставить изменения показателей оксидативного гомеостаза с изменениями основных морфофункциональных параметров организма крыс и эритроцитов при длительном воздействии холода.

2. Сопоставить изменения показателей оксидативного гомеостаза с изменениями основных морфофункциональных параметров организма крыс и эритроцитов при дефиците токоферола.

3. Провести сравнительный анализ изменений оксидативного метаболизма и характера адаптивной реакции организма крыс при длительном воздействии холода и дефицита токоферола.

Научная новизна. Впервые установлено, что длительное интермитти-рующее воздействие холода (+5°С по 8 часов в сутки на протяжении 6 месяцев) вызывает в организме крыс ряд морфофункциональных изменений адаптивной направленности: ускорение прироста массы тела, увеличение содержания спек-трина и актина в мембранах эритроцитов, повышение активности ключевых энзимов гликолиза, концентрации АТФ и АДФ, а также активности АТФ-аз.

Впервые показано, что в механизме развития адаптации к холоду важную роль играет оксидативный стресс, особенностью которого является возрастание активности компонентов системы антиоксидантной системы - энзимов НАДФН-генерирующего пентозофосфатного пути распада глюкозы, суперок-сиддисмутазы, каталазы и глутатионпироксидазы.

Впервые показано, что развитие патологических морфо-функциональных изменений при дефиците токоферола связано с выраженным оксидативным стрессом, протекающим на фоне сниженной активности основных антиокси-дантных ферментов и ферментов пентозофосфатного пути распада глюкозы.

Впервые установлено, что результат преобразований обмена веществ при воздействии на организм факторов внешней среды зависит от адаптивного возрастания активности антиоксидантных ферментов и связанной с этим выраженности оксидативного стресса.

Научно-практическая значимость работы. Полученные в работе новые факты расширяют представления о механизмах приспособления организма к факторам внешней среды. Выявлена зависимость результата адаптивных преобразований метаболизма от степени активации основных ферментных антиок-сидантов, что указывает на необходимость направленного развития адаптивного потенциала этой неспецифической системы стресс-резистентности организма при изменении экологических условий.

Основные положения, выносимые на защиту:

1. Длительное воздействие холода вызывает в организме крыс комплекс изменений адаптивной направленности: возрастание устойчивости к действию холода, которое выражалось в ослаблении гипотермии; ускорение прироста массы тела; повышение содержания спектрина и актина в мембранах эритроцитов; увеличение скорости гликолиза, повышение концентрации АТФ и АДФ; возрастание активности АТФ-аз. Механизм этих изменений связан с развитием оксидативного стресса в сочетании с адаптивным увеличением активности компонентов системы антиоксидантной защиты - ферментов пентозо-фосфатного шунта, а также основных внутриклеточных антиоксидантных ферментов, прежде всего супероксиддисмутазы.

2. Длительный дефицит в организме крыс токоферола вызывает стойкий гипотрофический эффект, повреждение мембран эритроцитов, угнетение гликолиза, снижение концентрации АТФ и АДФ, активности клеточных АТФ-аз. В механизме развития этих изменений существенное значение имеет недостаточная активация антиоксидантных систем - НАДФН-генерирующего пентозо-фосфатного пути и антиоксидантных ферментов, создающая условия для повреждающего действия активных форм кислорода.

Апробация работы. Результаты исследований доложены на совместном заседании кафедры биохимии и кафедры нормальной физиологии Алтайского государственного медицинского института (Барнаул, 1998, 2000), на научной конференции, посвященной 40-летию кафедры фармакологии Алтайского государственного медицинского университета (Барнаул, 1997),на научно-практической конференции"Современные проблемы курортологии и терапии", посвященной 55-летию санатория "Барнаульский" (Барнаул,2000), на II международной конференции молодых ученых России (Москва,2001).

Похожие диссертационные работы по специальности «Экология», 03.00.16 шифр ВАК

  • Исследование роли глутатионовой системы в естественном старении эритроцитов, продуцированных в условиях нормального и напряженного эритропоэза 2002 год, кандидат биологических наук Кудряшов, Александр Михайлович

  • Показатели антиоксидантной системы эритроцитов при ожоговой травме 1999 год, кандидат биологических наук Еремина, Татьяна Владимировна

  • Биохимические изменения в мембранах млекопитающих при зимней спячке и гипотермии 2005 год, доктор биологических наук Кличханов, Нисред Кадирович

  • Исследование воздействия тиоктовой кислоты на свободнорадикальный гомеостаз в тканях крыс при патологиях, сопряженных с оксидативным стрессом 2007 год, кандидат биологических наук Макеева, Анна Витальевна

  • Соотношение между прооксидантной и антиоксидантной системами в эритроцитах при иммобилизационном стрессе у крыс 2009 год, кандидат биологических наук Лаптева, Ирина Азатовна

Заключение диссертации по теме «Экология», Скурятина, Юлия Владимировна

1. Длительное интермиттирующее воздействие холода (+5°С по 8 часов в сутки на протяжении 6 месяцев) вызывает в организме крыс комплекс адаптивных изменений: диссипацию гипотермической реакции на холод, ускорение прироста массы тела, повышение содержания спектрина и актина в мембранах эритроцитов, усиление гликолиза, возрастание суммарной концентрации АТФ и АДФ и активности АТФ-аз.

2. Состоянию адаптированности крыс к длительному интермиттирующе-му воздействию холода соответствует оксидативный стресс, для которого характерны повышенная активность компонентов ферментных антиоксидантных систем - глюкозо-6-фосфатдегидрогеназы, супероксиддисмутазы, каталазы и глутатионпероксидазы.

3. Длительный (6 месяцев) алиментарный дефицит токоферола вызывает в организме крыс стойкий гипотрофический эффект, анемию, повреждение мембран эритроцитов, угнетение в эритроцитах гликолиза, снижение суммарной концентрации АТФ и АДФ, а также активности Na+,K+- АТФ-азы.

4. Дизадаптивные изменения в организме крыс при дефиците токоферола связаны с развитием выраженного оксидативного стресса, для которого характерны снижение активности каталазы и глутатионпероксидазы в сочетании с умеренным возрастанием активности глюкозо-6-фосфатдегидрогеназы и супероксиддисмутазы.

5. Результат адаптационных преобразований метаболизма в ответ на длительное воздействие холода и алиментарного дефицита токоферола зависит от выраженности оксидативного стресса, которая во многом определяется возрастанием активности антиоксидантных ферментов.

ЗАКЛЮЧЕНИЕ

К настоящему времени сложилось достаточно четкое представление о том, что адаптация организма человека и животных определяется взаимодействием генотипа с внешними факторами (Меерсон, Малышев, 1981; Панин, 1983; Голдстейн, Браун, 1993; Адо, Бочков, 1994). При этом следует учитывать, что генетически детерминированная неадекватность включения адаптивных механизмов при воздействии экстремальных факторов может приводить к трансформации состояния напряжения в острый или хронический патологический процесс (Казначеев, 1980).

В основе процесса приспособления организма к новым условиям внутренней и внешней среды лежат механизмы срочной и долговременной адаптации (Меерсон, Малышев, 1981). При этом процесс срочной адаптации, рассматриваемый как временная мера, к которой организм прибегает в критических ситуациях, исследован достаточно подробно (Davis, 1960, 1963; Исаакян, 1972; Ткаченко, 1975; Rohlfs, Daniel, Premont et al., 1995; Beattie, Black, Wood et. al., 1996; Marmonier, Duchamp, Cohen-Adad et al., 1997). В этот период повышенная продукция различных сигнальных факторов, включая гормональные, индуцирует существенную локальную и системную перестройку метаболизма в различных органах и тканях, чем в итоге определяется истинная, долговременная адаптация (Хочачка, Сомеро, 1988). Активация процессов биосинтеза на уровне репликации и транскрипции обусловливает развивающиеся при этом структурные изменения, которые проявляются гипертрофией и гиперплазией клеток и органов (Меерсон, 1986). Поэтому изучение биохимических основ адаптации к длительному воздействию возмущающих факторов имеет не только научный, но и большой практический интерес, особенно с точки зрения распространенности дизадаптивных болезней (Lopez-Torres et al., 1993; Pipkin, 1995; Wallace, Bell, 1995; Sun et al., 1996).

Несомненно, что развитие долговременной адаптации организма является весьма сложным процессом, реализующимся с участием всего комплекса иерархически организованной системы регуляции метаболизма, причем многие стороны механизма этой регуляции остаются неизвестными. Согласно последним литературным данным, адаптация организма к длительно действующим возмущающим факторам начинается с локальной и системной активации филогенетически наиболее древнего процесса свободно-радикального окисления, ведущего к образованию физиологически важных сигнальных молекул в виде активных форм кислорода и азота - оксид азота, супероксидный и гидроксиль-ный радикал, пероксид водорода и др. Этим метаболитам принадлежит ведущая медиаторная роль в адаптивной локальной и системной регуляции метаболизма аутокринным и паракринным механизмами (Sundaresan, Yu, Ferrans et. al., 1995; Finkel, 1998; Givertz, Colucci, 1998).

В связи с этим, при исследовании физиологических и патофизиологических аспектов адаптивных и дизадаптивных реакций занимают вопросы регуляции свободно-радикальными метаболитами, причем особую актуальность составляют вопросы биохимических механизмов адаптации при длительном воздействии на организм индукторов оксидативного стресса (Cowan, Langille, 1996; Kemeny, Peakman, 1998; Farrace, Cenni, Tuozzi et al., 1999).

Несомненно, что наибольшую информацию в этом отношении можно получить в экспериментальных исследованиях на соответствующих "моделях" распространенных видов оксидативного стресса. В качестве таковых наиболее известны модели экзогенного оксидативного стресса, вызываемого холодовой экспозицией, и эндогенного оксидативного стресса, возникающего при дефиците витамина Е - одного из важнейших мембранных антиоксидантов. Эти модели и были использованы в работе для выяснения биохимических основ адаптации организма к длительному оксидативному стрессу.

В соответствии с многочисленными литературными данными (Спиричев, Матусис, Бронштейн, 1979; Aloia, Raison, 1989; Glofcheski, Borrelli, Stafford, Kruuv, 1993; Beattie, Black, Wood, Trayhurn, 1996), нами установлено, что ежедневная 8-часовая холодовая экспозициям на протяжении 24-недель приводила к выраженному повышению концентрации малонилдиальдегида в эритроцитах. Это свидетельствует о развитии под влиянием холода хронического оксидативного стресса. Аналогичные изменения имели место в организме крыс, содержавшихся в течение такого же периода на диете, лишенной витамина Е. Этот факт также соответствует наблюдениям других исследователей (Masugi,

Nakamura, 1976; Tamai., Miki, Mino, 1986; Архипенко, Коновалова, Джапаридзе и др., 1988; Matsuo, Gomi, Dooley, 1992; Cai, Chen, Zhu et al., 1994). Однако причины оксидативного стресса при длительном интермиттирующем воздействии холода и оксидативного стресса при длительном дефиците токоферола различны. Если в первом случае причиной стрессового состояния является воздействие внешнего фактора - холода, вызывающего повышение продукции ок-сирадикалов вследствие индукции синтеза разобщающего протеина в митохондриях (Nohl, 1994; Bhaumik, Srivastava, Selvamurthy et al., 1995; Rohlfs, Daniel, Premont et al., 1995; Beattie, Black, Wood et. al., 1996; Femandez-Checa, Kaplowitz, Garcia-Ruiz et al., 1997; Marmonier, Duchamp, Cohen-Adad et al., 1997; Rauen, de Groot, 1998), то при дефиците мембранного антиоксиданта токоферола причиной оксидативного стресса было снижение скорости нейтрализации оксирадикальных медиаторов (Lawler, Cline, Ни, Coast, 1997; Richter, 1997; Polyak, Xia, Zweier et. al., 1997; Sen, Atalay, Agren et al., 1997; Higashi, Sasaki, Sasaki et al., 1999). Учитывая тот факт, что длительное холодовое воздействие и авитаминоз Е вызывают накопление активных форм кислорода, можно было ожидать трансформацию физиологической регуляторной роли последних в патологическую, с повреждением клеток вследствие перекисного окисления биополимеров. В связи с общепринятым до недавнего времени представлением о повреждающем действии активных форм кислорода, холод и дефицит токоферола рассматриваются как факторы, провоцирующие развитие многих хронических заболеваний (Cadenas, Rojas, Perez-Campo et al., 1995; de Gritz, 1995; Jain, Wise, 1995; Luoma, Nayha, Sikkila, Hassi., 1995; Barja, Cadenas, Rojas et al., 1996; Dutta-Roy, 1996; Jacob, Burri, 1996; Snircova, Kucharska, Herichova et al., 1996; Va-Squezvivar, Santos, Junqueira, 1996; Cooke, Dzau, 1997; Lauren, Chaudhuri, 1997; Davidge, Ojimba, Mc Laughlin, 1998; Kemeny, Peakman, 1998; Peng, Kimura, Fregly, Phillips, 1998; Nath, Grande, Croatt et al., 1998; Newaz, Nawal, 1998; Taylor, 1998). Очевидно, что в свете концепции о медиа-торной роли активных форм кислорода, реализация возможности трансформации физиологического оксидативного стресса в патологический в значительной степени зависит от адаптивного возрастания активности антиоксидантных ферментов. В соответствии с представлением о ферментном антиоксидантном комплексе как функционально динамичной системе находится недавно выявленный феномен субстратной индукции экспрессии генов всех трех основных антиоксидантных энзимов - супероксиддисмутазы, каталазы и глутатионперок-сидазы (Пескин, 1997; Tate, Miceli, Newsome, 1995; Pinkus, Weiner, Daniel, 1996; Watson, Palmer., Jauniaux et al., 1997; Sugino, Hirosawa-Takamori, Zhong, 1998). Важно отметить, что эффект такой индукции имеет достаточно длительный лаг-период, измеряемый десятками часов и даже днями (Beattie, Black, Wood, Trayhurn, 1996; Battersby, Moyes, 1998; Lin, Coughlin, Pilch, 1998). Поэтому данный феномен способен привести к ускорению инактивации активных форм кислорода лишь при длительных воздействиях стресс-факторов.

Проведенные в работе исследования показали, что длительное интермит-тирующее воздействие холодом вызывало гармоничную активацию всех исследованных антиоксидантных энзимов. Это согласуется с мнением Bhaumik G. et al (1995) о протективной роли этих ферментов в ограничении осложнений при длительном холодовом стрессе.

В то же время в эритроцитах крыс с дефицитом витамина Е в конце 24-х недельного периода наблюдений регистрировалась активация лишь суперок-сиддисмутазы. Следует отметить, что в проводимых ранее подобных исследованиях такого эффекта не наблюдалось (Xu, Diplock, 1983; Chow, 1992; Matsuo, Gomi, Dooley, 1992; Walsh, Kennedy, Goodall, Kennedy, 1993; Cai, Chen, Zhu et al., 1994; Tiidus, Houston, 1994; Ashour, Salem, El Gadban et al., 1999). Следует, однако,отметить что возрастание активности супероксиддисмутазы, не сопровождалось адекватным повышением активности каталазы ж глутатионперокси-дазы и не предотвращало развитие повреждающего действия активных форм кислорода. О последнем свидетельствовало значительное накопление в эритроцитах продукта перекисного окисления липидов - малонидиальдегида. Необходимо отметить, что перекисное окисление биополимеров рассматривается в настоящее время как главная причина патологических изменений при авитаминозе Е (Chow, Ibrahim, Wei и Chan, 1999).

Об эффективности антиоксидантной защиты в экспериментах по исследованию холодового воздействия свидетельствовало отсутствие выраженных изменений в гематологических показателях и сохранение устойчивости эритроцитов к действию различных гемолитиков. О сходных результатах ранее сообщалось и другими исследователями (Марачев, 1979; Рапопорт, 1979; Sun, Cade, Katovich, Fregly, 1999). Напротив, у животных с Е-авитаминозом наблюдался комплекс изменений, указывающих на повреждающее действие активных форм кислорода: анемия с явлениями внутрисосудистого гемолиза, появление эритроцитов со сниженной резистентностью к гемолитикам. Последнее считается весьма характерным проявлением оксидативного стресса при Е-авитами нозе (Brin, Horn, Barker, 1974; Gross, Landaw, Oski, 1977; Machlin, Filipski, Nelson et al., 1977; Siddons, Mills, 1981; Wang, Huang, Chow, 1996). Выше изложенное убеждает в значительных возможностях организма по нейтрализации последствий оксидативного стресса внешнего генеза, в частности вызываемого холодом, и неполноценности адаптации к эндогенному оксида-тивному стрессу в случае Е-авитаминоза.

К группе антиоксидантных факторов в эритроцитах относится и система генерации НАДФН, который является кофактором гемоксигеназы, глутатион-редуктазы и тиоредоксинредуктазы, восстанавливающих железо, глутатион и другие тиосоединения. В наших экспериментах наблюдалось весьма значительное увеличение активности глюкозо-6-фосфатдегидрогеназы в эритроцитах крыс как при действии холода, так и при дефиците токоферола, что ранее наблюдали и другие исследователи (Казначеев, 1977; Уласевич, Грозина, 1978;

Gonpern, 1979; Куликов, Ляхович, 1980; Ландышев, 1980; Fudge, Stevens, Ballantyne, 1997). Это указывает на активацию у экспериментальных животных пентозофосфатного шунта, в котором синтезируется НАДФН.

Механизм развития наблюдаемого эффекта во многом становится понятнее при анализе изменений показателей углеводного метаболизма. Наблюдалось усиление поглощения глюкозы эритроцитами животных как на фоне оксидативного стресса, вызванного холодом, так и при оксидативном стрессе, индуцированном дефицитом токоферола. Это сопровождалось существенной активацией мембранной гексокиназы - первого энзима внутриклеточной утилизации углеводов, что хорошо согласуется с данными других исследователей (Лях, 1974, 1975; Панин, 1978; Уласевич, Грозина, 1978; Nakamura, Moriya, Murakoshi. et al., 1997; Rodnick, Sidell, 1997). Однако, дальнейшие превращения интенсивно образующегося в указанных случаях глюкозо-6-фосфата существенно различались. При адаптации к холоду метаболизм этого интермедиата усиливался как в гликолизе (о чем свидетельствовало возрастание активности гексофосфатизомеразы и альдолазы), так и в пентозофосфатном пути. Последнее подтверждалось увеличением активности глюкозо-6-фосфатдегидрогеназы. В то же время у Е-авитаминозных животных перестройка углеводного метаболизма была связана с увеличением активности лишь глюкозо-6-фосфатдегидрогеназы, тогда как активность ключевых ферментов гликолиза не изменялась или даже снижалась. Следовательно, в любом случае оксидативный стресс вызывает повышение скорости метаболизма глюкозы в пентозофосфат-ном шунте, обеспечивающем синтез НАДФН. Это представляется весьма целесообразным в условиях повышения потребности клеток в редокс-эквивалентах, в частности НАДФН. Можно предположить, что у Е-авитаминозных животных данный феномен развивается в ущерб гликолитическим энергопродуцирую-щим процессам.

Отмеченное различие влияний экзогенного и эндогенного оксидативного стресса на гликолитическую энергопродукцию сказывалось и на энергетическом статусе клеток, а также на системах энергопотребления. При холодовом воздействии наблюдалось значимое увеличение концентрации АТФ+АДФ со снижением концентрации неорганического фосфата, увеличение активности общей АТФ-азы, Mg^-АТФ-азы и Ыа+,К+-АТФ-азы. И напротив, в эритроцитах крыс с Е-авитаминозом наблюдалось снижение содержания макроэргов и активности АТФаз. При этом вычисленный индекс АТФ+АДФ/Фн подтвердил имеющиеся сведения о том, что для холодового, но не для Е-авитаминозного оксидативного стресса характерно превалирование энергопродукции над энергопотреблением (Марачев, Сороковой, Корчев с сотр., 1983; Rodnick, Sidell, 1997; Hardewig, Van Dijk, Portner, 1998).

Таким образом, при длительном интермиттирующем воздействии холода перестройка процессов энергопродукции и энергопотребления в организме животных имела явный анаболический характер. В этом убеждает наблюдавшееся ускорение прироста массы тела животных. Исчезновение у крыс гипотермиче-ской реакции на холод к 8-ой неделе эксперимента свидетельствует об устойчивой адаптированности их организма к холоду и, следовательно, об адекватности адаптивных преобразований метаболизма. В то же время судя по основным морфофункциональным, гематологическим и биохимическим показателям, изменения энергетического метаболизма у Е-авитаминозных крыс не приводили к адаптивно-целесообразному результату. Представляется, что основной причиной такого ответа организма на дефицит токоферола является отток глюкозы от энергопродуцирующих процессов в процессы образования эндогенного антиоксиданта НАДФН. Вероятно, выраженность адаптивного оксидативного стресса является своеобразным регулятором метаболизма глюкозы в организме: данный фактор способен включать и усиливать продукцию антиок-сидантов в ходе метаболизма глюкозы, что является более значимым для выживания организма в условиях мощного повреждающего эффекта активных форм кислорода, чем продукция макроэргов.

Следует отметить, что согласно современным данным, кислородные радикалы являются индукторами синтеза отдельных факторов репликации и транскрипции, стимулирующих адаптивную пролиферацию и дифференциров-ку клеток различных органов и тканей (Agani, Semenza, 1998). При этом одной из важнейших мишеней для свободно-радикальных медиаторов являются факторы транскрипции типа NFkB, индуцирующих экспрессию генов антиоксидантных энзимов и других адаптивных белков (Sundaresan, Yu, Ferrans et. al, 1995; Finkel, 1998; Givertz, Colucci, 1998). Таким образом, можно думать, что именно этот механизм срабатывает при холод-индуцированном оксидативном стрессе и обеспечивает возрастание активности не только специфических энзимов антиоксидантной защиты (супероксиддисмутазы, каталазы и глутатион-пероксидазы), но и повышение активности ферментов пентозофосфатного пути. При более выраженном оксидативном стрессе, вызванном дефицитом мембранного антиоксиданта - токоферола, адаптивная субстратная индуцибель-ность указанных компонентов антиоксидантной защиты реализуется лишь частично и, скорее всего, недостаточно эффективна. Следует отметить, что низкая эффективность этой системы в конечном итоге приводила к трансформации физиологического оксидативного стресса в патологический.

Полученные в работе данные позволяют сделать вывод о том, что результат адаптивных преобразований метаболизма в ответ на возмущающие факторы внешней среды, в развитии которых задействованы активные формы кислорода, во многом определяется адекватностью сопряженного возрастания активности основных антиоксидантных ферментов, а также ферментов НАДФН-генерирующего пентозофосфатного пути распада глюкозы. В связи с этим, при изменении условий существования макроорганизма,особенно при так называемых экологических катастрофах, выраженность оксидативного стресса и активность ферментных антиоксидантов должны стать не только объектом наблюдения, но и одним из критериев эффективности адаптации организма.

Список литературы диссертационного исследования кандидат биологических наук Скурятина, Юлия Владимировна, 2001 год

1. Абраров А.А. Влияние жира и жирорастворимых витаминов А, Д, Е на биологические свойства эритроцитов: Дисс. докт. мед. наук. М.,1971.- С. 379.

2. Адо А. Д., Адо Н. А., Бочков Г. В. Патологическая физиология.- Томск: Изд-во ТГУ, 1994.- С. 19.

3. Асатиани В. С. Ферментные методы анализа. М.: Наука, 1969. - 740 с.

4. Бенисович В. И., Идельсон Л. И. Образование перекисей и состав жирных кислот в липидах эритроцитов больных при болезни Маркиафава Микели // Пробл. гематол. и перелив, крови. - 1973. - №11. - С. 3-11.

5. Бобырев В. Н., Воскресенский О. Н. Изменения в активности антиоксидант-ных ферментов при синдроме пероксидации липидов у кроликов // Вопр. мед. химии. 1982. - т. 28(2). - С. 75-78.

6. Виру А. А. Гормональные механизмы адаптации и тренировки. М.: Наука, 1981.-С. 155.

7. Голдстейн Д. Л., Браун М. С. Генетические аспекты болезней // Внутренние болезни / Под. ред. Е. Браунвальда, К. Д. Иссельбахера, Р. Г. Петерсдорфа и др.- М.: Медицина, 1993.- Т. 2.- С.135.

8. Даценко 3. М., Донченко Г. В., Шахман О. В., Губченко К. М., Хмель Т. О. Роль фосфолипидов в функционировании различных клеточных мембран в условиях нарушения антиоксидантной системы // Укр. биохим. ж.- 1996.- т. 68(1).- С. 49-54.

9. Ю.Дегтярев В. М., Григорьев Г. П. Автоматическая запись кислотных эритро-грамм на денситометре ЭФА-1 //Лаб. дело.- 1965.- №9.- С. 530-533.

10. П.Дервиз Г. В., Бялко Н. К. Уточнение метода определения гемоглобина, растворенного в плазме крови // Лаб. дело.- 1966.- №8.- С. 461-464.

11. Деряпа Н. Р., Рябинин И. Ф. Адаптация человека в полярных районах Земли.- Л.: Медицина, 1977.- С. 296.

12. Джуманиязова К. Р. Влияние витаминов A, D, Е на эритроциты периферической крови: Дисс. канд. мед. наук.- Ташкент, 1970.- С. 134.

13. Донченко Г. В., Метальникова Н. П., Паливода О. М. и др. Регуляция а-токоферолом и актиномицином D биосинтеза убихинона и белка в печени крыс при Е-гиповитаминозе // Укр. биохим. ж.- 1981.- Т. 53(5).- С. 69-72.

14. Дубинина Е. Е., Сальникова Л. А., Ефимова Л. Ф. Активность и изофер-ментный спектр супероксиддисмутазы эритроцитов и плазмы крови // Лаб. дело.- 1983.-№10.-С. 30-33.

15. Исаакян JI. А. Метаболическая структура температурных адаптаций Д.: Наука, 1972.-С. 136.

16. Казначеев В. П. Биосистема и адаптация // Доклад на II сессии Научного совета АН СССР по проблеме прикладной физиологии человека.- Новосибирск, 1973.-С. 74.

17. Казначеев В. П. Проблемы адаптации человека (итоги и перспективы) // 2 Всесоюз. конф. по адаптации человека к различ. географич., климатич., и производст. условиям: Тез. докл.- Новосибирск, 1977.- т. 1.-С. 3-11.

18. Казначеев В. П. Современные аспекты адаптации.- Новосибирск: Наука, 1980.-С. 191.

19. Калашников Ю. К., Гейслер Б. В. К методике определения гемоглобина крови с помощью ацетонциангидрина// Лаб. дело.- 1975.- №6.- СГ373-374.

20. Кандрор И. С. Очерки по физиологии и гигиене человека на Крайнем Севере.- М.: Медицина, 1968.- С. 288.

21. Кашевник Л. Д. Обмен веществ при авитаминозе С.- Томск., 1955.- С. 76.

22. Коровкин Б. Ф. Ферменты в диагностике инфаркта миокарда.- Л: Наука, 1965.- С. 33.

23. Куликов В. Ю., Ляхович В. В. Реакции свободнорадикального окисления липидов и некоторые показатели кислородного обмена // Механизмы адаптации человека в условиях высоких широт / Под ред. В. П. Казначеева.- Л.: Медицина, 1980.- С. 60-86.

24. Ландышев С. С. Адаптация метаболизма эритроцитов к действию низких температур и дыхательной недостаточности // Адаптация человека и животных в различных климатических зонах / Под ред. М. 3. Жиц.- Чита, 1980.- С. 51-53.

25. Ланкин В. 3., Гуревич С. М., Кошелевцева Н. П. Роль перекисей липидов в патогенезе атеросклероза. Детоксикация липоперекисей глютатионперокси-дазной системой в аорте // Вопр. мед. химии.- 1976.- №3,- С. 392-395.

26. Лях Л. А. О стадиях формирования адаптации к холоду // Теоретические и практические проблемы действия низких температур на организм: Тез. IV Всесоюз. конф.- 1975.- С. 117-118.

27. Марачев А. Г., Сороковой В. И., Корчев А. В. и др. Биоэнергетика эритроцитов у жителей Севера // Физиология человека.- 1983.- №3.- С. 407-415.

28. Марачев А.Г. Структура и функция эритрона человека в условиях Севера // Биологические проблемы Севера. VII симпозиум. Адаптация человека к условиям Севера/Под ред. В.Ф. Бурханова, Н.Р. Деряпы.- Кировск,1979.- С. 7173.

29. Матусис И. И. Функциональные взаимоотношения витаминов Е и К в метаболизме организма животных // Витамины.- Киев: Наукова думка, 1975.- т. 8.-С. 71-79.

30. Меерсон Ф. 3., Малышев Ю. И. Феномен адаптации и стабилизации структур и защиты сердца.- М: Медицина, 1981.- С. 158.

31. Меерсон Ф. 3. Основные закономерности индивидуальной адаптации // Физиология адаптационных процессов. М.: Наука, 1986.- С. 10-76.

32. Панин JI. Е. Некоторые биохимические проблемы адаптации // Медико -биологические аспекты процессов адаптации / Под ред. JI. П. Непомнящих.-Новосибирск.: Наука.-1975а.-С. 34-45.

33. Панин Л. Е. Роль гормонов гипофизо адреналовой системы и поджелудочной железы в нарушении холестеринового обмена при некоторых экстремальных состояниях: Дисс. докт. мед. наук.- М., 19756.- С. 368.

34. Панин Л. Е. Энергетические аспекты адаптации.- Л.: Медицина, 1978.- 192 с.43 .Панин Л. Е. Особенности энергетического обмена // Механизмы адаптациичеловека к условиям высоких широт / Под ред. В. П. Казначеева.- Л.: Медицина, 1980.- С. 98-108.

35. Пескин А. В. Взаимодействие активного кислорода с ДНК (Обзор) // Биохимия.- 1997.- Т. 62.- №12.- С. 1571-1578.

36. Поберезкина Н. Б., Хмелевский Ю. В. Нарушение структуры и функции мембран эритроцитов Е авитаминозных крыс и его коррекция антиоксидан-тами // Укр. биохим. ж.- 1990.- т. 62(6).- С. 105-108.

37. Покровский А. А., Орлова Т. А., Поздняков A. JL Влияние токоферольной недостаточности на активность некоторых ферментов и их изоферментов в семенниках крыс // Витамины и реактивность организма: Труды МОИП.- М., 1978.-Т. 54.- С. 102-111.

38. Рапопорт Ж. Ж. Адаптация ребенка на Севере.- Л.: Медицина, 1979.- С. 191.

39. Россомахин Ю. И. Особенности терморегуляции и устойчивости организма к контрастным воздействиям тепла и холода при различных режимах температурных адаптаций: Автореф. дисс. канд. биол. наук.- Донецк, 1974.- С. 28.

40. Сейц И. Ф. О количественном определении аденозинтри- и аденозиндифос-фатов // Бюлл. эксп. биол. и мед.- 1957.- №2.- С. 119-122.

41. Сень И. П. Развитие Е-витаминной недостаточности у белых крыс при питании качественно различными жирами: Дисс. канд. мед. наук.- М.,1966.- С. 244.

42. Слоним А. Д. О физиологических механизмах природных адаптаций животных и человека // Докл. на ежегод. засед. ученого совета посвящ. памяти акад. К. М. Быкова.- JL, 1964.

43. Слоним А. Д. Физиологические адаптации и периферическая структура рефлекторных ответов организма // Физиологические адаптации к теплу и холоду / Под ред. А. Д. Слоним.- JL: Наука, 1969.- С. 5-19.

44. Спиричев В. Б., Матусис И. И., Бронштейн JL М. Витамин Е. // В кн.: Экспериментальная витаминология / Под ред. Ю. М. Островского.- Минск: Наука и техника, 1979.- С. 18-57.

45. Стабровский Е. М. Энергетический обмен углеводов и его эндокринная регуляция в условиях действия низкой температуры среды на организм: Авто-реф. дисс. докт. биол. наук.- JL, 1975.- С. 44.

46. Теплый Д. JL, Ибрагимов Ф. X. Изменение проницаемости оболочек эритроцитов у грызунов под действием рыбьего жира, витамина Е и жирных кислот // Ж. эволюцион. биохимии и физиологии.- 1975.- т. 11(1).- С. 58-64.

47. Терсков И. А., Гительзон И. И. Эритрограммы как метод клинического исследования крови.- Красноярск, 1959.- С. 247.

48. Терсков И. А., Гительзон И. И. Значение дисперсионных методов анализа эритроцитов в норме и патологии // Вопросы биофизики, биохимии и патологии эритроцитов.- М.: Наука, 1967.- С. 41-48.

49. Ткаченко Е. Я. О соотношении сократительного и несократительного термо-генеза в организме при адаптации к холоду // Физиологические адаптации к холоду, условиям гор и субарктики / Под ред. К. П. Иванова, А. Д. Слоним.-Новосибирск: Наука, 1975.- С. 6-9.

50. Узбеков Г. А., Узбеков М. Г. Высокочувствительный микрометод фотометрического определения фосфора // Лаб. дело.- 1964.- №6.- С. 349-352.

51. Хочачка П., Сомеро Дж. Биохимическая адаптация: пер. с англ. М.: Мир, 1988.-576 с.

52. Щеглова А. И. Адаптивные изменения газообмена у грызунов с разной экологической специализацией // Физиологические адаптации к теплу и холоду / Под ред. А. Д. Слоним.- Л.: Наука, 1969.- С. 57-69.

53. Якушева И. Я., Орлова Л. И. Метод определения аденозинтрифосфатаз в ге-молизатах эритроцитов крови // Лаб. дело.- 1970.- № 8.- С. 497-501.

54. Agani F., Semenza G. L. Mersalyl is a novel inducer of vascular endothelial growth factor gene expression and hypoxia-inducible factor 1 activity // Mol. Pharmacol.- 1998.- Vol. 54(5).- P. 749-754.

55. Ahuja В. S., Nath R. A kinetik study of superoxide dismutase in normal human erytrocytes and its possible role in anemia and radiation damage // Simpos. on control mechanisms in cell, processes.- Bombey, 1973.- P. 531-544.

56. Aloia R. C., Raison J. K. Membrane function in mammalian hibernation // Bio-chim. Biophys. Acta.- 1989.- Vol. 988.- P. 123-146.

57. Asfour R. Y., Firzli S. Hematologic stadies in undernowrished children with low serum vitamin E levels // Amer. J. Clin. Nutr.- 1965.- Vol. 17(3).- P. 158-163.

58. Ashour M. N., Salem S. I., El Gadban H. M., Elwan N. M., Basu Т. K. Antioxidant status in children with protein-energy malnutrition (РЕМ) living in Cairo, Egypt //Eur. J. Clin. Nutr.- 1999.- Vol. 53(8).- P. 669-673.

59. Bang H. O., Dierberg J., Nielsen A. B. Plasma lipid and lipoprotein pattern in Greenlandic west coast Eskimos // Lancet.- 1971.- Vol. 7710(1).- P. 1143-1145.

60. Barja G., Cadenas S., Rojas C., et al. Effect of dietary vitamin E levels on fatty acid profiles and nonenzymatic lipid peroxidation in the guinea pig liver // Lipids.-1996.- Vol. 31(9).- P. 963-970.

61. Barker M. О., Brin М. Mechanisms of lipid peroxidation in erithrocytes of vitamin E deficients rats and in phospholipid model sistems // Arch. Biochem. and Biophys.- 1975.- Vol. 166(1).- P. 32-40.

62. Battersby B. J., Moyes C. D. Influence of acclimation temperature on mitochondrial dna, rna and enzymes in skeletal muscle // APStracts.- 1998.- Vol. 5.- P. 195.

63. Beattie J. H., Black D. J., Wood A. M., Trayhurn P. Cold-induced expression of the metallothionein-1 gene in brown adipose tissue of rats // Am. J. Physiol.-1996.- Vol. 270(5).- Pt 2.- P. 971-977.

64. Bhaumik G., Srivastava К. K., Selvamurthy W., Purkayastha S. S. The role of free radicals in cold injuries // Int. J. Biometeorol.- 1995.- Vol. 38(4).- P. 171-175.

65. Brin M., Horn L. R., Barker M. O. Relationship between fatty acid composition oferithrocytes and susceptibility to vitamin E deficiency // Amer. J. Clin. Nutr.-%1974.- Vol. 27(9).- P. 945-950.

66. Caasi P. I., Hauswirt J. W., Nair P. P. Biosynthesis of heme in vitamin E deficiency // Ann. N. Y. Acad. Sci.- 1972.- Vol. 203.- P. 93-100.

67. Cadenas S., Rojas C., Perez-Campo R., Lopez-Torres M., Barja G. Vitamin E protects guinea pig liver from lipid peroxidation without depressing levels of antioxidants//Int. J. Biochem. Cell. Biol.- 1995.-Vol. 27(11).-P. 1175-1181.

68. Cai Q. Y., Chen X. S., Zhu L. Z., et al. Biochemical and morphological changes in the lenses of selenium and/or vitamin E deficient rats // Biomed. Environ. Sci.-1994.-Vol. 7(2).-P. 109-115.

69. Cannon R. O. Role of nitric oxide in cardiovascular disease: focus on the endothelium // Clin. Chem.- 1998.- Vol. 44.- P. 1809-1819.

70. Chaudiere J., Clement M., Gerard D., Bourre J. M. Brain alterations induced by vitamin E deficiency and intoxication with methyl ethyl ketone peroxide // Neuro-toxicology.- 1988.- Vol. 9 (2).- P. 173-179.

71. Chow С. K. Distribution of tocopherols in human plasma and red blood cells // Amer. J. Clin. Nutr.- 1975.- Vol. 28(7).- P. 756-760.

72. Chow С. K. Oxidative damage in the red cells of vitamin E-deficient rats // Free. Radic. Res. Commun.- 1992 vol. 16(4).- P. 247-258.

73. Chow С. K., Ibrahim W., Wei Z., Chan A. C. Vitamin E regulates mitochondrial hydrogen peroxide generation // Free Radic. Biol. Med.- 1999.- Vol. 27 (5-6).- P. 580-587.

74. Combs G. F. Influences of dietary vitamin E and selenium on the oxidant defense system of the chick//Poult. Sci.- 1981.- Vol. 60(9).- P. 2098-2105.

75. Cooke J. P., Dzau V. J. Nitric oxide synthase: Role in the Genesis of Vascular Disease // Ann. Rev. Med.- 1997.- Vol. 48.- P. 489-509.

76. Cowan D. В., Langille B. L. Cellular and molecular biology of vascular remodeling // Current Opinion in Lipidology.- 1996.- Vol. 7.- P. 94-100.

77. Das К. С., Lewis-Molock Y., White С. W. Elevation of manganese superoxide dismutase gene expression by thioredoxin // Am. J. Respir. Cell Mol. Biol.- 1997.-Vol. 17 (6).-P. 12713-12726.

78. Davidge S. Т., Ojimba J., McLaughlin M. K. Vascular Function in the Vitamin E Deprived Rat. An Interaction Between Nitric Oxide and Superoxide Anions // Hypertension.- 1998.- Vol. 31.- P. 830-835.

79. Davis T. R. A. Shivering and nonshivering heat production in animals and man // Cold Injury: Ed. S. H. Horvath.- N. Y., I960.- P. 223-269.

80. Davis T. R. A. Nonshivering thermogenesis // Feder. Proc.- 1963.- Vol. 22(3).- P. 777-782.

81. Depocas F. Calorigenesis from various organ systems in the whole animal // Feder. Proc.- I960.-Vol. 19(2).-P. 19-24.

82. Desaultes M., Zaror-Behrens G., Hims-Hagen J. Increased purine nucleotide binding, altered polipeptide composition and thermogenesis in brown adipose tissue mitochondria of cold-acclimated rats // Can. J. Biochem.- 1978.- Vol. 78(6).- P. 378-383.

83. Drexler H., Hornig B. Endothelial dysfunction in human disease // J. Mol. Cell. Cardiol.- 1999.- Vol. 31(1).- P. 51-60.

84. Dutta-Roy A. K. Therapy and clinical trials // Current Opinion in Lipidology.-1996.-Vol. 7.-P. 34-37.

85. Elmadfa I., Both-Bedenbender N., Sierakowski В., Steinhagen-Thiessen E. Significance of vitamin E in aging // Z. Gerontol.- 1986.- Vol. 19(3).- P. 206-214.

86. Farrace S., Cenni P., Tuozzi G., et al. Endocrine and psychophysiological aspects of human adaptation to the extreme //Physiol.Behav.- 1999.- Vol.66(4).- P.613-620.

87. Fernandez-Checa, J. C., Kaplowitz N., Garcia-Ruiz C., et al. Importance and characteristics of glutahione transport in mitochondria: defense against TNF-induced oxidative stress and defect induced by alcohol // APStracts.- 1997.-Vol.4.- P. 0073G.

88. Finkel T. Oxygen radicals and signaling // Current Opinion in Cell Biology.-1998.- Vol. 10.-P. 248-253.

89. Photobiol.- 1993.- Vol. 58(2).-P. 304-312.

90. Fudge D. S., Stevens E. D., Ballantyne J. S. Enzyme adaptation along a hetero-thermic tissue the visceral retia mirabilia of the bluefin tuna // APStracts.- 1997.-Vol. 4,- P. 0059R.

91. Givertz M. M., Colucci W. S. New targets for heart-failure therapy: endothelin, inflammatory cytokines, and oxidative stress // Lancet.- 1998.- Vol.352- Suppl 1.-P. 34-38.

92. Glofcheski D. J., Borrelli M. J., Stafford D. M., Kruuv J. Induction of tolerance to hypothermia and hyperthermia by a common mechanism in mammalian cells // J. Cell. Physiol.- 1993.- Vol. 156.- P. 104-111.

93. Chemical Biology.- 1999.- Vol. 3.- P. 226-235.1 ll.Guarnieri C., Flamigni F., Caldarera R. C:, Ferrari R. Myocardial mitochondrial functions in alpha-tocopherol-deficient and -refed rabbits // Adv. Myocardiol.-1982.- Vol.3.- P. 621-627.

94. Hardewig I., Van Dijk P. L. M., Portner H. O. High energy turnover at low temperatures: recovery from exhaustive exercise in antarctic and temperate eelpouts (zoarcidae) // APStracts.- 1998.- Vol. 5.- P. 0083R.

95. Hassan H., Hashins A., van Italie Т. В., Sebrell W. H. Syndrom in premature infants anemia associated with low plasma vitamin E level and high poliunsaturated fatty acid diet // Amer. J. Clin. Nutr.-1966.- Vol. 19(3).- P. 147-153.

96. Hauswirth G. W., Nair P. P. Some aspects of vitamine E in expression of biological information // Ann. N. Y. Acad. Sci.- 1972.- Vol. 203.- P. 111-122.

97. Henle E. S., Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide // J. Biol, chem.- 1997.- Vol. 272(31).- P. 19095-19098.

98. Higashi Y., Sasaki S., Sasaki N., et al. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension // Hypertension.- 1999.- Vol. 33(1).-Pt 2.-P. 591-597.

99. Howarth P. H Pathogenic mechanisms: a rational basis for treatment // В. M. J.-1998.-Vol. 316.-P. 758-761.

100. Hubbell R. В., Mendel L. В., Wakeman A. J. A new salt mixture for use in experimental diets // J. Nutr.- 1937.- Vol. 14.- P. 273-285.

101. Jacob R. A., Burri B. J. Oxidative damage and defense // Am. J. Clin. Nutr.-1996.- Vol. 63.- P. 985S-990S.

102. Jain S. K., Wise R. Relationship between elevated lipid peroxides, vitamin E deficiency and hypertension in preeclampsia // Mol. Cell. Biochem.- 1995.- Vol. 151(1).-P. 33-38.

103. Karel P., Palkovits M., Yadid G., et al. Heterogeneous neurochemical responses to different stressors: a test of selye"s doctrine of nonspecificity // APStracts.-1998.-Vol. 5.-P. 0221R.

104. Kausalya S., Nath J. Interactive role of nitric oxide and superoxide anion in neu-trophil-mediated endothelial cell in injury // J. Leukoc. Biol.- 1998.- Vol. 64(2).-P. 185-191.

105. Kemeny M., Peakman M. Immunology // В. M. J.- 1998.- Vol. 316.- P. 600-603.

106. Kozyreva Т. V., Tkachenko E. Y., Kozaruk V. P., Latysheva Т. V., Gilinsky M. A. The effects of slow and rapid cooling on catecholamine concentration in arterial plasma and the skin // APStracts.- 1999.- Vol. 6.- P. 0081R.

107. Lauren N., Chaudhuri G. Estrogens and atherosclerosis // Ann. Rev. Pharmacol. Toxicol.- 1997.- Vol. 37.- P. 477-515.

108. Lawler J. M., Cline С. C., Hu Z., Coast J. R. Effect of oxidative stress and acidosis on diaphragm contractile function // Am. J. Physiol.- 1997.- Vol. 273(2).- Pt 2.-P. 630-636.

109. Lin В., Coughlin S., Pilch P. F. Bi-directional regulation of uncoupling protein-3 and glut4 mrna in skeletal muscle by cold // APStracts.- 1998.- Vol. 5.- P. 0115E.

110. Lindquist J. M., Rehnmark S. Ambient temperature regulation of apoptosis in brown adipose tissue // J. Biol. Chem.- 1998.- Vol. 273(46).-P. 30147-30156.

111. Lowry О. H., Rosenbrough N. G., Farr A. L., Randell R. I. Protein measurement with the Folin phenol reagent // J. Biol. Chem.-195L- Vol. 193.- P. 265-275.

112. Luoma P. V., Nayha S., Sikkila K., Hassi J. High serum alpha-tocopherol, albumin, selenium and cholesterol, and low mortality from coronary heart disease in northern Finland//J.Intern. Med.- 1995.-Vol. 237(1).-P. 49-54.

113. Luscher T. F., Noll G., Vanhoutte P. M. Endothelial dysfunction in hypertension //J.Hypertens.- 1996.- Vol. 14(5).- P. 383-393.

114. Machlin L. J., Filipski R., Nelson J., Horn L. R., Brin M. Effect of prolonged vitamin E deficiency in the rat // J. Nutr.- 1977.- Vol. 107(7).- P. 1200-1208.

115. Marmonier F., Duchamp C., Cohen-Adad F., Eldershaw T. P. D., Barra H. Hormonal control of thermogenesis in perfused muscle of muscovy ducklings // AP-Stracts.-1997.- Vol. 4.- P. 0286R.

116. Marvin H. N. Erithrocyte survival of rat deficient in vitamin E or vitamin B6 // J. Nutr.- 1963.-Vol. 80(2).-P. 185-190.

117. Masugi F., Nakamura T. Effect of vitamin E deficiency on the level of superoxide dismutase, glutathione peroxidase, catalase and lipid peroxide in rat liver // Int. J. Vitam. Nutr. Res.- 1976.- Vol. 46 (2).- P. 187-191.

118. Matsuo M., Gomi F., Dooley M. M. Age-related alterations in antioxidant capacity and lipid peroxidation in brain, liver, and lung homogenates of normal and vitamin E-deficient rats // Mech. Ageing Dev.- 1992.- Vol. 64(3).- P. 273-292.

119. Mazor D., Brill G., Shorer Z., Moses S., Meyerstein N. Oxidative damage in red blood cells of vitamin E deficient patients // Clin. Chim. Acta.- 1997.- Vol. 265 (l).-P. 131-137.

120. Mircevova L. The role of Mg++-ATPase (actomyosine-like protein) in maintaining the biconcave shape of erythrocytes // Blut.- 1977.- vol 35(4).- P. 323-327.

121. Mircevova L., Victora L., Kodicek M., Rehackova H., Simonova A. The role of spectrin dependent ATPase in erytrocyte shape maintenance // Biomed. Biochim. Acta.- 1983.- Vol. 42(11/12).- P. 67-71.

122. Nair P. P. Vitamine E and metabolic regulation // Ann. N. Y. Acad. Sci.- 1972a.-Vol. 203.- P. 53-61.

123. Nair P. P. Vitamine E regulation of the biosintesis of porphirins and heme // J. Agr. and Food Chem.- 1972b.- Vol. 20(3).- P. 476-480.

124. Nakamura Т., Moriya M., Murakoshi N., Shimizu Y., Nishimura M. Effects of phenylalanine and tyrosine on cold acclimation in mice // Nippon Yakurigaku Zasshi.- 1997.-Vol. 110(1).-P. 177-182.

125. Nath K. A., Grande J., Croatt A., et al. Redox regulation of renal DNA synthesis, transforming growth factor-betal and collagen gene expression // Kidney Int.-1998.- Vol. 53(2).- P. 367-381.

126. Nathan C. Perspectives Series: Nitric Oxide and Nitric Oxide Synthases Inducible Nitric Oxide Synthase: What Difference Does It Make? // J. Clin. Invest.1997.- Vol. 100(10).- P. 2417-2423.

127. Newaz M. A., Nawal N. N. Effect of alpha-tocopherol on lipid peroxidation and total antioxidant status in spontaneously hypertensive rats // Am J Hypertens.1998.-Vol. 11(12).-P. 1480-1485.

128. Nishiyama H., Itoh K., Kaneko Y., et al. Glycine-rich RNA-binding Protein Mediating Cold-inducible Suppression of Mammalian Cell Growth // J. Cell. Biol.- 1997.- Vol. 137(4).- P. 899-908.

129. Nohl H. Generation of superoxide radicals as byproduct of cellular respiration // Ann. Biol. Clin. (Paris).- 1994.- Vol. 52(3).- P. 199-204.

130. Pendergast D. R., Krasney J. A., De Roberts D. Effects of immersio in cool water on lung-exhaled nitric oxide at rest and during exercise // Respir. Physiol.-1999.-Vol. 115(1).-P. 73-81.

131. Peng J. F., Kimura В., Fregly M., Phillips M. I. Reduction of cold-induced hypertension by antisense oligodeoxynucleotides to angiotensinogen mRNA and ATi receptor mRNA in brain and blood // Hypertension.- 1998.- Vol. 31.- P. 13171323.

132. Pinkus R., Weiner L. M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappa В and glutathione S~transferase gene expression // J. Biol. Client.- 1996.- Vol. 271(23).- P. 13422-13429.

133. Pipkin F. B. Fortnightly Review: The hypertensive disorders of pregnancy // BMJ.- 1995.-Vol. 311.-P. 609-613.

134. Reis S. E., Blumenthal R. S., Gloth S. Т., Gerstenblith R. G., Brinken J. A. Estrogen acutely abolishes cold-induced coronary vasoconstriction in postmenopausal women // Circulation.- 1994.- Vol. 90.- P. 457.

135. Salminen A., Kainulainen H., Arstila A. U., Vihko V. Vitamin E deficiency and the susceptibility to lipid peroxidation of mouse cardiac and skeletal muscles // Acta Physiol. Scand.- 1984.- Vol. 122(4).- P. 565-570.

136. Sampson G. M. A., Muller D. P. Studies on the neurobiology of vitamin E (al-pha-tocopherol) and some other antioxidant systems in the rat // Neuropathol. Appl. Neurobiol.- 1987.- Vol. 13(4).- P. 289-296.

137. Sen С. К., Atalay М., Agren J., Laaksonen D. E., Roy S., Hanninen O. Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise // APStracts.- 1997.- Vol. 4.- P. 0101 A.

138. Shapiro S. S., Mott D. D., Machlin L. J. Altered binding of glyceraldehyde 3 -phosphate dehidrogenase to its binding site in vitamine E - deficient red blood cells //Nutr. Rept. Int.- 1982.- Vol. 25(3).- P. 507-517.

139. Sharmanov А. Т., Aidarkhanov В. В., Kurmangalinov S. M. Effect of vitamin E deficiency on oxidative metabolism and antioxidant enzyme activity of macrophages // Ann. Nutr. Metab.- 1990.- Vol. 34(3).- P. 143-146.

140. Siddons R. C., Mills C. F. Glutatione peroxidase activity and erythrocyte stability in calves differing in selenium and vitamin E status // Brit. J. Nutr.-1981.- Vol. 46(2).-P. 345-355.

141. Simonoff M., Sergeant C., Gamier N., et al. Antioxidant status (selenium, vitamins A and E) and aging // EXS.- 1992.- Vol. 62.- P. 368-397.

142. Sklan D., Rabinowitch H. D., Donaghue S. Superoxide dismutase: effect of vitamins A and E // Nutr. Rept. Int.- 1981.- Vol. 24(3).- P. 551-555.

143. Smith S. C., Guilbert L. J., Yui J., Baker P. N., Davidge S. T. The role of reactive nitrogen/oxygen intermediates in cytokine-induced trophoblast apoptosis // Placenta.- 1999.- Vol. 20(4).- P. 309-315.

144. Snircova M., Kucharska J., Herichova I., Bada V., Gvozdjakova A. The effect of an alpha-tocopherol analog, MDL 73404, on myocardial bioenergetics // Bratisl Lek Listy.- 1996.- Vol. 97. P. 355-359.

145. Soliman M. K. Uber die Blutveranderungen bei Ratten nach verfuttem einer Tocopherol und Ubichinon Mangeldiat. 1. Zytologische und biochemische Ve-randerungen im Blut von vitamin E Mangelratten // Zbl. Veterinarmed.- 1973.-Vol. 20(8).- P. 624-630.

146. Stampfer M. J., Hennekens С. H., Manson J. E., et al. Vitamin E consumption and the risk of coronary disease in women // N. Engl. J. Med.- 1993.- Vol. 328.- P. 1444-1449.

147. Sun J. Z., Tang X. L., Park S. W., et al. Evidence for an Essential Role of Reactive Oxygen Species in the Genesis of Late Preconditioning Against Myocardial Stunning in Conscious Pigs // J. Clin. Invest. 1996,- Vol. 97 (2).- P. 562-576.

148. Sun Z., Cade J. R., Fregly M. J. Cold-induced hypertension. A model of miner-alocorticoid-induced hypertension// Ann.N.Y.Acad.Sci.- 1997.- Vol.813.- P.682-688.

149. Sun Z., Cade R, Katovich M. J., Fregly M. J. Body fluid distribution in rats with cold-induced hypertension // Physiol. Behav.- 1999.- Vol. 65(4-5).- P. 879-884.

150. Sundaresan M., Yu Z.-X., Ferrans V. J., Irani K., Finkel T. Requirement for generation of H202 for platelet-derived growth factor signal transduction // Science (Wash. DC).- 1995.- Vol. 270.- P. 296-299.

151. Suzuki J., Gao M., Ohinata H., Kuroshima A., Koyama T. Chronic cold exposure stimulates microvascular remodeling preferentially in oxidative muscles in rats // Jpn. J. Physiol.- 1997.- Vol. 47(6).- P. 513-520.

152. Tamai H., Miki M., Mino M. Hemolysis and membrane lipid changes induced by xanthine oxidase in vitamin E deficient red cells // J. Free Radic. Biol. Med.-1986.-Vol. 2(1).- P. 49-56.

153. Tanaka M., Sotomatsu A., Hirai S. Aging of the brain and vitamin E // J. Nutr. Sci. Vitaminol. (Tokyo).- 1992.- Spec. No.- P. 240-243.

154. Tappel A. L. Free radical lipid peroxidation damage and its inhibition by vita-mine E and selenium // Fed. Proc.- 1965.- Vol. 24(1).- P. 73-78.

155. Tappel A. L. Lipid peroxidation damage to cell components // Fed. Proc.- 1973.-Vol. 32(8).-P. 1870-1874.

156. Taylor A.J. N. Asthma and allergy // В. M. J.- 1998.- Vol. 316.- P. 997-999.

157. Tate D. J., Miceli M. V., Newsome D. A. Phagocytosis and H2C>2 induce catalase and metaliothionein irene expression in human retinal pigment epithelial cells // Invest. Onithalmol. Vis. Sci.- 1995.- Vol. 36.- P. 1271-1279.

158. Tensuo N. Effect of daily infusion of noradrenaline on metabolism and skin temperature in rabbits // J. Appl. Physiol.- 1972.- Vol. 32(2).- P. 199-202.

159. Tiidus P. M., Houston M. E. Antioxidant and oxidative enzyme adaptations to vitamin E deprivation and training // Med. Sci. Sports. Exerc.- 1994.- Vol. 26(3).-P. 354-359.

160. Tsen С. C., Collier H. B. The protective action of tocopherol against hemolisis of rat eritrocites by dialuric acid // Canad. J. Biochem. Physiol.- I960.- Vol. 38(9).- P. 957-964.

161. Tudhope G. R., Hopkins J. Lipid peroxidation in human erythrocytes in tocopherol deficiency // Acta Haematol.- 1975.- Vol. 53(2).- P. 98-104.

162. Valentine J. S., Wertz D. L., Lyons T. J., Liou L.-L., Goto J. J., Gralla E. B. The dark side of dioxygen biochemistry // Current Opinion in Chemical Biology.-1998.-Vol. 2.-P. 253-262.

163. Vransky V. K. Red blood cell membrane resistanse // Biophys. Membrane Transport.- Wroclaw.- 1976.- Part 2.- P. 185-213.

164. Vuillanine R. Role biologiqe et mode d" action des vitamines E // Rec. med vet.-1974.-Vol. 150(7).-P. 587-592.

165. Wang J., Huang C. J., Chow С. K. Red cell vitamin E and oxidative damage: a dual role of reducing agents // Free Radic. Res.- 1996 Vol. 24(4).- P. 291-298.

166. Wagner B. A., Buettner G. R., Burns C. P. Vitamin E slows the rate of free radical-mediated lipid peroxidation in cells // Arch. Biochem. Biophys.- 1996.- Vol. 334.-P. 261-267.

167. Wallace J. L., Bell C. J. Gastroduodenal mucosal defense // Current Opinion in Gastroenterology 1994 .-Vol. 10.-P. 589-594.

168. Walsh D. M., Kennedy D. G., Goodall E. A., Kennedy S. Antioxidant enzyme activity in the muscles of calves depleted of vitamin E or selenium or both // Br. J. Nutr.- 1993.- Vol. 70(2).- P. 621-630.

169. Watson A. L., Palmer M. E., Jauniaux E., Burton G. J. Variations in expression of copper/zinc superoxide dismutase in villous trophoblast of the human placenta with gestational age // Placenta.- 1997.- Vol. 18(4).- P. 295-299.

170. Young J. В., Shimano Y. Effects of rearing temperature on body weight and abdominal fat in male and female rats // APStracts.-1991.- Vol. 4.- P. 041 OR.

171. Zeiher A. M., Drexler H., Wollschlager H., Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis // Circulation.- 1991.- Vol. 84.- P. 19841992.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Способность адаптации к холоду обусловлена величиной энергетических и пластических ресурсов организма, при их отсутствии адаптация к холоду невозможна. Ответная реакция на холод развивается стадийно и практически во всех системах организма. Ранняя стадия адаптации к холоду может сформироваться при температуре 3С о в течении 2мин, а при 10С о за 7мин.

Со стороны сердечно-сосудистой системы можно выделить 3 фазы адаптационных реакций. 2 первые являются оптимальными (желательными) при воздействии холодом с целью закаливания. Они проявляются в включении, посредством нервной и эндокринной системы, механизмов несократительного термогенеза, на фоне сужения сосудистого русла в коже, результатом чего является теплопродукция и повышение температуры «ядра», что приводит к рефлекторному увеличению кровотока в коже и повышенной теплоотдаче, в том числе посредством включения резервных капилляров. Внешне это выглядит равномерной гиперемией кожи, приятным ощущением тепла и бодрости.

Третья фаза развивается при перегрузке холодовым агентом по интенсивности или длительности. Активная гиперемия сменяется на пассивную (застойную), ток крови замедляется, кожа приобретает синюшный оттенок (венозная застойная гиперемия), появляется тремор мышц, «гусиная кожа». Эта фаза ответной реакции не желательна. Она свидетельствует об истощении компенсаторных возможностей организма, их недостаточности для восполнения теплопотери и переходе на сократительный термогенез.

Реакции сердечно-сосудистой системы складываются не только из перераспределения кровотока в кожном депо. Сердечная деятельность уряжается, фракция выброса становится больше. Происходит некоторое снижение показателей вязкости крови и повышение артериального давления. При передозировке фактором (третья фаза) происходит повышение вязкости крови с компенсаторным перемещением межтканевой жидкости в сосуды, что приводит к дегидратации тканей.

Регуляция дыхания
В обычных условиях дыхание регулируется по отклонению парциального давления О 2 иСО 2 и величины рН в артериальной крови. Умеренная гипотермия возбуждающе действует на дыхательные центры и угнетающе на рН чувствительные хеморецепторы. При длительном холоде присоединяется спазм бронхиальной мускулатуры, что увеличивает сопротивление дыханию и газообмену, а также снижается хемочувствительность рецепторов. Происходящие процессы лежат в основе холодовой гипоксии, а при срыве адаптации к так называемой «полярной» одышке. На лечебные холодовые процедуры органы дыхания реагируют задержкой в первый момент с последующим учащением на короткое время. В дальнейшем дыхание замедляется и становится глубоким. Происходит усиление газообмена, окислительных процессов, основного обмена.

Метаболические реакции
Реакции метаболизма охватывают все стороны обмена. Основным направлением, естественно, является увеличение теплопродукции. В первую очередь происходит активация несократительного термогенеза путём мобилизации метаболизма липидов (концентрация в крови свободных жирных кислот под действием холода возрастает на 300%) и углеводов. Так же активируется потребление тканями кислорода, витаминов, макро- и микроэлементов. В дальнейшем, при некомпенсированных тепловых потерях, происходит включение дрожательного термогенеза. Термогенная активность дрожи выше таковой при производстве произвольных сократительных движений, т.к. не совершается работа, а вся энергия превращается в тепло. В эту реакцию включаются все мышцы, даже дыхательная мускулатура грудной клетки.

Водно-солевой обмен
При остром действии холода первоначально активируется симпатико-адреналовая система и увеличивается секреция щитовидной железы. Повышается выработка антидиуретического гормона, который уменьшает реабсорбцую натрия в почечных канальцах и увеличивает экскрецию жидкости. Это приводит к развитию дегидратации, гемоконцентрации и повышению осмолярности плазмы. По-видимому, выведение воды служит защитным действием в отношении тканей, которые могут повреждаться на фоне её кристаллизации под действием холода.

Основные стадии адаптации к холоду
Долговременная адаптация к холоду сказывается неоднозначно на структурно-функциональных перестройках организма. Наряду с гипертрофией симпатико-адреналовой системы, щитовидной железы, системы митохондрий в мышцах и всех звеньев транспорта кислорода, наблюдается жировая гипотрофия печени и снижение ей дезинтоксикационных функций, дистрофические явления со стороны ряда систем со снижением их функционального потенциала.

Выделяют 4 адаптационных стадии к холоду
(Н.А. Барбараш, Г.Я. Двуреченская)

Первая - аварийная - неустойчивой адаптации к холоду
Характеризуется резкой реакцией ограничения теплоотдачи в виде спазма периферических сосудов. Увеличение теплопродукции происходит за счет распада запасов АТФ и сократительного термогенеза. Развивается дефицит богатых энергией фосфатов. Возможно развитие повреждений (отморожения, ферментемия, некротизация тканей).

Вторая - переходная - стадия срочной адаптации
Отмечается уменьшение стресс-реакции при сохранении гиперфункции симпатико-адреналовой системы и щитовидной железы. Активизируются процессы синтеза нуклеиновых кислот и белков, ресинтез АТФ. Уменьшается вазоконстрикция периферических тканей, а, следовательно, риск развития повреждения.

Третья - устойчивости - стадия долгосрочной адаптации
Долговременная адаптация формируется при периодическом действии холода. При его непрерывном воздействии она менее вероятна. Она характеризуется гипертрофией симпатико-адреналовой системы, щитовидной железы, усилением окислительно-восстановительных реакций, что приводит как к прямой адаптации к холоду (стационарное увеличение теплопродукции для сохранения гомеостаза), так и положительной перекрестной - атеросклерозу, солевой гипертонии, гипоксии. Более устойчивы к стрессу становятся регуляторные системы, включая высшие.

Четвертая стадия - истощения
Развивается при непрерывном длительном или интенсивном периодическом воздействии холода. Она характеризуется явлениями негативной перекрестной адаптацией, с развитием хронических заболеваний и дистрофических процессов со снижением функции в ряде внутренних органов.

Как и любое существо, лошадь способна до некоторой степени адаптироваться к холоду. Вопрос: насколько безобидной для здоровья лошади будет такая адаптация? Какую температуру можно считать критической? Есть ли у нас уверенность, что все лошади одинаково реагируют на холод?

Даже если говорить о здоровой лошади, что практически нереально после ее участия в спорте или покатушках любого сорта, то так ли ей хорошо в холод, под дождем и снегом, как верят в это конепользователи всех конфессий от спортсменов до натуристов?

Благодаря «спортивным» ветеринарам, мы имеем огромное количество исследований на тему влияния на лошадь жары и перегрева - оно и понятно: пробеги, скачки... И слишком мало серьезных работ о влиянии на организм холода. Такие исследования можно пересчитать по пальцам.

Вот рысачники выяснили, что при температуре ниже -23 °С рысаки мрут на дорожках... От холодного воздуха.

А при тренировках на морозе в -22 °С остаются живы! Из чего делается вывод, что в -22 °С выходить на дорожку необходимо, но в попоне...

Финны в течение нескольких лет детально выясняли, как мерзнут финские лошадки, измеряли толщину подкожного жира, длину волоса - и выяснили-таки, что мерзнут они сильно. Вывод: надо надевать попоны.

Вот, пожалуй, и все исследования...

Разумеется, любые попытки изучения вопроса о влиянии холода на организм будут неполноценными, пока мы не узнаем, что думает по этому поводу сама лошадь.

А пока нет уверенности в том, что лошадь на самом деле чувствует зимой, мы вынуждены руководствоваться строго научными данными анатомии и физиологии и, разумеется, собственными догадками и здравым смыслом. Ведь наша задача - сделать любую погоду нашего не самого нежного климата максимально комфортной для лошадей.

Комфортной для лошади принято считать температуру от +24 до +5°С (при отсутствии других раздражающих факторов, разумеется). При таком температурном режиме у лошади нет необходимости расходовать дополнительную энергию на обогрев при условии, что она здорова и находится в хорошей кондиции и в приличных условиях содержания.

Очевидно, что в любом случае при температуре ниже -ГС лошадь будет нуждаться в дополнительных источниках тепла, а зачастую, учитывая влажность, ветреность и пр., такая нужда может возникнуть даже в диапазоне «комфортных» температур.

Какова физиологическая реакция организма на холод?

Немедленная реакция. Возникает в ответ на внезапное резкое изменение температуры воздуха. Лошадь заметно мерзнет, шерсть ее встает дыбом (пилоэрекция), кровь от конечностей отливает к внутренним органам - ноги, уши, нос становятся холодными. Лошадь стоит, поджав хвост, не двигаясь в целях экономии энергии.

Адаптация. Это следующая реакция лошади, подвергающейся дальнейшему постоянному воздействию холода. Обычно на некоторую адаптацию к холоду лошади требуется от 10 до 21 дня. Например, лошадь, содержащаяся при температуре +20°С, внезапно попадает в условия с температурой +5°С. Она адаптируется к новым условиям среды за 21 день. При дальнейшем снижении температуры с +5 до -5°С лошади понадобится еще до 21 дня на адаптацию. И так до тех пор, пока температура не достигнет нижней критической отметки (НКО) в -15°С для взрослой лошади или 0°С - для растущей. По достижении критической температуры организм лошади начнет работать в «аварийном режиме», не жить, а выживать, что приведет к серьезному и, порой, необратимому, истощению его ресурсов.

Как только НКО достигнута, начинаются стрессовые физиологические изменения, и лошади, чтобы справиться с холодом, необходимо вмешательство человека: обогрев, дополнительное питание.

Понятно, что все данные условны и различаются для каждой конкретной лошади. Однако точными данными наука на сегодняшний день не располагает.

Физиологические изменения заключаются в «сосредотачивании» кровоснабжения на внутренних органах, кровеносная система начинает работать как бы по «малому кругу». Происходит понижение респираторного и сердечного ритмов для сохранения тепла, следствием чего является малоподвижность лошади в зимнее время. Наиболее заметным внешним признаком физиологических изменений является отращивание длинной густой шерсти.

Обрастание по интенсивности сильно варьируется от лошади к лошади при одинаковых условиях содержания. Имеют большое значение порода, здоровье, упитанность, пол, тип. Чем более «толстокожа» лошадь, чем тяжелее ее тип, тем больше она обрастает. Как отмечает Н. Д. Алексеев (1992), у якутских лошадей по сравнению с лошадьми других пород самая толстая кожа (4,4 + 0,05 мм зимой в области последнего ребра). Сравните: у европейской теплокровной лошади толщина кожи в этом же месте составляет примерно 3-3,6 мм. Бывают исключения, связанные с индивидуальными особенностями метаболизма. Играет роль темперамент: активные «тонкокожие» жеребцы теплокровных пород обрастают мало или не обрастают вообще. Например, Као живет в тех же условиях, что и другие наши лошади, но не обрастает вовсе - ходит зимой в летней шерсти. Пони, тяжеловозы, рысаки обрастают, как правило, сильнее, у них появляются ярко выраженные «щетки», существенно усиливается оволосение от запястья до венчика и появляется не сильно привлекательная, прямо-таки поповская борода. То же касается больных и голодных лошадей - организм пытается компенсировать отсутствие термоизоляционной жировой прослойки и недостаточность питания, тратя последние запасы на отращивание волоса, хотя и здесь все строго индивидуально. По длине шерсти лошади всегда можно безошибочно судить о ее здоровье, содержании и уходе.

В общем, обрастание, вроде бы, привычная для всех вещь... Но чего она стоит лошади? Я не скажу лучше, чем супруг, потому привожу прямую цитату: «На процесс обрастания уходит солидная часть физиологических сил. Просто попробуйте подсчитать, во что обходится организму лошади выращивание, содержание, осаливание и т.д. длинной шерсти. Ей ведь не муж шубку купил, ей же пришлось снять с собственного биологического и физиологического сйета очень большую "сумму" и потратить ее на шерсть, притом, что биологический ресурс у лошади не так велик. Природой установлен некий "норматив утепления" для данной полосы (север, запад, центр России). Вычислить этот норматив можно легко, анализируя нормы утепления диких зверей, коренным образом обитающих в естественной среде данного региона, отсчитав и проанализировав длину шерсти, глубину и плотность подшерстка, температуру тела (в норме) данных зверей. Это - нормальная "природная" программа, отвечающая требованиям климата и сезона. Человек в нее не вмешивался.

Путем естественного отбора этот тепловой норматив и норматив утепления вырабатывался десятки тысяч лет. Именно такое количество защитной шерсти, именно такая густота и глубина подшерстка, именно такая температура тела, как предъявлена дикими естественными обитателями региона, - и является нормой, обеспечивающей выживание, а возможно, и некоторый комфорт.

Лошадь здесь в "законодатели мод" не годится, будучи привнесенным, чуждым данной полосе существом - не важно, в каком поколении. Эдакой "потерявшейся экзотической собачкой".

Но для адаптационных эволюционных изменений нужны тысячелетия!

Все, что способна "предъявить" российским холодам лошадь - это 2,5 - 3 см шерсти. Без подшерстка.

Выяснив несоответствие качества лошадиного утепления местным природным нормативам, мы можем с уверенностью говорить о физиологических страданиях лошади, о нанесении холодом лошади как физиологического, так и функционального вреда. И это, и только это -будет строго научной точкой зрения. Довод, базирующийся на анализе того, что "носят в данной полосе" для выживания - неопровержим и очень серьезен. Даже два часа зимней прогулки в условиях воздействия на организм естественных климатических условий Северо-Запада, к сожалению, либо очень дискомфортны для лошади, либо откровенно опасны».

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство спорта и туризма Республики Беларусь

Учреждение образования

"Белорусский государственный университет физической культуры"

Институт туризма

Кафедра технологий в туристической индустрии

Кон трольная работа

по дисциплине "Физиология"

на тем у " Адаптация к действию низкой температуры "

Выполнила: студентка 2 курса 421 группы

заочной формы получения образования

факультета туризма и гостеприимства

Цинявская Анастасия Викторовна

Проверил: Бобр Владимир Матвеевич

  • Введение
  • 1. Адаптация к воздействию низкой температуры
  • 1.1 Физиологические реакции на выполнение упражнений в условиях низкой температуры окружающей среды
  • 1.2 Метаболические реакции
  • Заключение
  • Список использованной литературы

Введение

На организм человека влияет такой климатический фактор, как температура. Температура - один из важных абиотических факторов, влияющих на физиологические функции всех живых организмов. Температура зависит от географической широты, высоты над уровнем моря, и времени года.

Когда температурные факторы изменяются, то человеческий организм производит относительно каждого фактора специфические реакции приспособления. То есть адаптируется.

Адаптация - это процесс приспособления, который формируется в течение жизни человека. Благодаря адаптационным процессам человек приспосабливается к непривычным условиям или нового уровня активности, т.е. повышается устойчивость его организма против действия различных факторов. Организм человека может адаптироваться к высокой и низкой температуре, к низкому атмосферному давлению или даже некоторым патогенным факторам.

Люди, живущие в северных или южных широтах, в горах или на равнине, во влажных тропиках или в пустыне по многим показателям гомеостаза отличаются друг от друга. Поэтому ряд показателей нормы для отдельных регионов земного шара может отличаться.

1. Адаптация к воздействию низкой температуры

Приспособление к холоду - наиболее трудно - достижимый и быстро утрачиваемый без специальных тренировок вид климатической адаптации человека. Объясняется это тем, что, согласно современным научным представлениям, наши предки жили в условиях теплого климата и были гораздо больше приспособлены к защите от перегревания. Наступившее похолодание было относительно быстрым и человек, как вид, "не успел" приспособиться к этому изменению климата большей части планеты. Кроме того, к условиям низких температур люди стали приспосабливаться, в основном, за счет социальных и техногенных факторов - жилища, очага, одежды. Однако, в экстремальных условиях человеческой деятельности (в том числе в альпинистской практике) физиологические механизмы терморегуляции - "химическая" и "физическая" ее стороны становятся жизненно важными.

Первой реакцией организма на воздействие холода является снижение кожных и респираторных (дыхательных) потерь тепла за счет сужения сосудов кожи и легочных альвеол, а также за счет уменьшения легочной вентиляции (снижение глубины и частоты дыхания). За счет изменения просвета сосудов кожи кровоток в ней может варьировать в очень широких пределах - от 20 мл до 3 литров в минуту во всей массе кожи.

Сужение сосудов приводит к снижению температуры кожи, но когда эта температура достигает 6єС и возникает угроза холодовой травмы, развивается обратный механизм - реактивная гиперемия кожи. При сильном охлаждении может возникнуть стойкое сужение сосудов в виде их спазма. В этом случае появляется сигнал неблагополучия - боль.

Снижение температуры кожи кистей рук до 27 єС связано с ощущением "холодно", при температуре, меньшей 20єС - "очень холодно", при температуре меньше 15 єС - "невыносимо холодно".

При воздействии холода вазоконструкторные (сосудосуживающие) реакции возникают не только на охлажденных участках кожи, но и в отдаленных областях организма, в том числе во внутренних органах ("отраженная реакция"). Особенно выражены отраженные реакции при охлаждении стоп - реакции слизистой носа, органов дыхания, внутренних половых органов. Сужение сосудов при этом вызывает снижение температуры соответствующих областей тела и внутренних органов с активизацией микробной флоры. Именно этот механизм лежит в основе так называемых "простудных" заболеваний с развитием воспаления в органах дыхания (пневмонии, бронхиты), мочевыделения (пиелиты, нефриты), половой сферы (аднекситы, простатиты) и т.д.

Механизмы физической терморегуляции первыми включаются в защиту постоянства внутренней среды при нарушении равновесия теплопродукции и теплоотдачи. Если этих реакций недостаточно для поддержания гомеостаза, подключаются "химические" механизмы - повышается мышечный тонус, появляется мышечная дрожь, что приводит к усилению потребления кислорода и увеличению теплопродукции. Одновременно возрастает работа сердца, повышается кровяное давление, скорость кровотока в мышцах. Подсчитано, что для поддержания теплобаланса обнаженного человека при неподвижном холодном воздухе необходимо увеличение теплопродукции в 2 раза на каждые 10є снижения температуры воздуха, а при значительном ветре теплопродукция должна удваиваться на каждые 5є понижения температуры воздуха. У тепло одетого человека удвоение величины обмена будет компенсировать понижение внешней температуры на 25є.

При многократных контактах с холодом, локальных и общих, у человека вырабатываются защитные механизмы, направленные на предотвращение неблагоприятных последствий холодовых воздействий. В процессе акклиматизации к холоду повышается устойчивость к возникновению отморожений (частота отморожений у акклиматизированных к холоду лиц в 6-7 раз ниже, чем у неакклиматизированных). При этом, в первую очередь, происходит совершенствование сосудодвигательных механизмов ("физическая" терморегуляция). У лиц, длительно подвергающихся действию холода, определяется повышенная активность процессов "химической" терморегуляции - основной обмен; у них повышен на 10 - 15%. У коренных жителей Севера (например, эскимосов) это превышение достигает 15 - 30% и закреплено генетически.

Как правило, в связи с совершенствованием механизмов терморегуляции в процессе акклиматизации к холоду уменьшается доля участия скелетной мускулатуры в поддержании теплобаланса - становится менее выраженной интенсивность и продолжительность циклов мышечной дрожи. Расчеты показали, что за счет физиологических механизмов приспособления к холоду обнаженный человек способен переносить длительное время температуру воздуха не ниже 2°С. По-видимому, эта температура воздуха является пределом компенсаторных возможностей организма поддерживать теплобаланс на стабильном уровне.

Условия, при которых организм человека адаптируется к холоду, могут быть различными (например, работа в неотапливаемых помещениях, холодильных установках, на улице зимой). При этом действие холода не постоянное, а чередующееся с нормальным для организма человека температурным режимом. Адаптация в таких условиях выражена нечетко. В первые дни, реагируя на низкую температуру, теплообразование возрастает неэкономно, теплоотдача еще недостаточно ограничена. После адаптации процессы теплообразования становятся более интенсивными, а теплоотдача снижается.

Иначе происходит адаптация к условиям жизни в северных широтах, где на человека влияют не только низкие температуры, но и свойственные этим широтам режим освещения и уровень солнечной радиации.

Что же происходит в организме человека при охлаждении?

Вследствие раздражения холодовых рецепторов изменяются рефлекторные реакции, регулирующие сохранение тепла: сужаются кровеносные сосуды кожи, что на треть уменьшает теплоотдачу организма. Важно, чтобы процессы теплообразования и теплоотдачи были сбалансированными. Преобладание теплоотдачи над теплообразованием приводит к понижению температуры тела и нарушению функций организма. При температуре тела 35 єС наблюдается нарушение психики. Дальнейшее понижение температуры замедляет кровообращение, обмен веществ, а при температуре ниже 25 єС останавливается дыхание.

Одним из факторов интенсификации энергетических процессов является липидный обмен. Например, полярные исследователи, у которых в условиях низкой температуры воздуха замедляется обмен веществ, учитывают необходимость компенсировать энергетические затраты. Их рационы отличаются высокой энергетической ценностью (калорийностью).

У жителей северных районов более интенсивный обмен веществ. Основную массу их рациона составляют белки и жиры. Поэтому в их крови содержание жирных кислот повышено, а уровень сахара несколько понижен.

У людей, приспосабливающихся к влажному, холодному климату и кислородной недостаточности Севера, также повышенный газообмен, высокое содержание холестерина в сыворотке крови и минерализация костей скелета, более утолщенный слой подкожного жира (выполняющего функцию теплоизолятора).

Однако не все люди в одинаковой степени способны к адаптации. В частности, у некоторых людей в условиях Севера защитные механизмы и адаптивная перестройка организма могут вызвать дезадаптацию - целый ряд патологических изменений, называемых "полярной болезнью".

Одним из наиболее важных факторов, обеспечивающих адаптацию человека к условиям Крайнего Севера, является потребность организма в аскорбиновой кислоте (витамин С), повышающей устойчивость организма к различного рода инфекциям.

Теплоизоляционная оболочка нашего тела включает поверхность кожи с подкожным жиром, а так же расположенные под ним мышцы. Когда кожная температура понижается ниже обычного уровня, сужение кровеносных сосудов кожи и сокращение скелетных мышц повышают изоляционные свойства оболочки. Установлено, что сужение сосудов пассивной мышцы обеспечивает до 85% общей изоляционной способности организма в условиях экстремально низких температур. Эта величина противодействия теплопотерям в 3-4 раза превышает изоляционные способности жира и кожи.

1.1 Физиологические реакции на выполнение упражнений в условиях низкой температуры окружающей среды

метаболический температура адаптация

При охлаждении мышца становится более слабой. Нервная система реагирует на охлаждение мышц изменением структуры вовлечения в работу мышечных волокон. По мнению некоторых специалистов, это изменение в выборе волокон приводит к снижению эффективности мышечных сокращений. При пониженной температуре уменьшается и скорость и сила сокращения мышц. Попытка выполнить работу при температуре мышцы 25°С с такой же скоростью и производительностью, с каким она выполнялась, когда температура мышцы была 35°С, приведёт к быстрому утомлению. Поэтому приходится либо расходовать больше энергии, либо выполнять физическую нагрузку с меньшей скоростью.

Если одежда и метаболизм, обусловленный физической нагрузкой, достаточны, чтобы поддержать температуру тела в условиях пониженной температуры окружающей среды, уровень мышечной деятельности не понизится. Вместе с тем по мере появления утомления и замедления мышечной деятельности образование тепла постепенно уменьшится.

1.2 Метаболические реакции

Продолжительные физические нагрузки ведут к повышенному использованию и окислению свободных жирных кислот. Повышенный метаболизм липидов обусловлен, главным образом, выделением катехоламинов (адреналина и норадреналина) в сосудистую систему. В условиях пониженной температуры окружающей среды секреция этих катехоламинов заметно увеличивается, тогда как уровни свободных жирных кислот повышаются значительно меньше по сравнению с таковыми при выполнении продолжительной физической нагрузки в условиях более высокой температуры окружающей среды. Низкая температура окружающей среды вызывает сужение кровеносных сосудов кожи и подкожных тканей. Как известно, подкожная ткань - основное место хранения липидов (жировая ткань), поэтому сужение сосудов приводит к ограниченному кровоснабжению участков. Из которых мобилизуются свободные жирные кислоты, вследствие чего уровни свободных жирных кислот повышаются не столь значительно.

Глюкоза крови играет важную роль в развитии толерантности к условиям низкой температуры, а также поддержании уровня выносливости при выполнении физ. нагрузки. Гипогликемия (пониженное содержание глюкозы в крови), например, подавляет дрожь, и ведёт к значительному понижению ректальной температуры.

Многих интересует, не повреждаются ли дыхательные пути при быстром глубоком вдыхании холодного воздуха. Холодный воздух, проходя через рот и трахею, быстро согревается, даже если его температура ниже -25°С. Даже при такой температуре воздух, пройдя около 5см по носовому ходу, согревается до 15°С. Очень холодный воздух, попадая в нос, достаточно согревается, приближаясь к выходу из носового хода; таким образом, отсутствует опасность травмирования горла, трахеи или лёгких.

Заключение

Условия, при которых организм должен адаптироваться к холоду, могут быть различными. Одним из возможных вариантов таких условий - работа в холодных цехах. При этом холод действует прерывисто. В связи с усиленными темпами освоения Крайнего Севера в настоящее время актуальным становится вопрос адаптации организма человека к жизни в северных широтах, где он подвергается не только воздействию низкой температуры, но также изменению режима освещенности и уровня радиации.

Адаптационные механизмы позволяют компенсировать изменения фактора среды лишь в определенных пределах и определенное время. В результате воздействия на организм факторов, превышающих возможности адаптационных механизмов, развивается дезадаптация. Она приводит к дисфункции систем организма. Следовательно, происходит переход адаптационной реакции в патологическую - болезнь. Примером болезней дезадаптации являются сердечно-сосудистые заболевания у не коренных жителей Севера.

Список использованной литературы

1. Ажаев А.Н., Берзин И.А., Деева С.А., "Физиолого-гигиенические аспекты низких температур на организм человека", 2008г

2. http://bibliofond.ru/view.aspx?id=459098#1

3. http://fiziologija.vse-zabolevaniya.ru/fiziologija-processov-adaptacii/ponjatie-adaptacii.html

4. http://human-physiology.ru/adaptaciya-ee-vidy-i-periody

Размещено на Allbest.ru

Подобные документы

    Строение и функции кожи. Основные механизмы терморегуляции. Реакция кожи на температуру окружающей среды. Всегда ли организм способен компенсировать длительное воздействие низкой или высокой температуры. Первая помощь при тепловом и солнечном ударе.

    презентация , добавлен 02.12.2013

    Основные причины, вызывающие гибель растений от холода. Мгновенное и необратимое повреждение клеток при образовании внутриклеточного льда как указание на физическую природу процесса. Подверженность мембран воздействию гипотермии, пути его предотвращения.

    реферат , добавлен 11.08.2009

    Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат , добавлен 25.06.2011

    Характеристика процессов адаптации человека к условиям окружающей среды. Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.

    презентация , добавлен 11.03.2014

    Изучение понятия физической и химической теплорегуляции. Изотермия - постоянство температуры тела. Факторы, влияющие на температуру тела. Причины и признаки гипотермии и гипертермии. Места измерения температуры. Виды лихорадок. Закаливание организма.

    презентация , добавлен 21.10.2013

    Особенности среды обитания земноводных (лягушек, жаб, тритонов и саламандр). Зависимость температуры тела земноводных от температуры окружающей среды. Польза земноводных для сельского хозяйства. Отряды земноводных: безногие, бесхвостые и хвостатые.

    презентация , добавлен 28.02.2011

    Значение поддержания постоянства температуры внутренней среды организма (изотермии) для обеспечения жизненных процессов. Физическая терморегуляция, которая происходит путем изменения отдачи тепла организмом. Роль гормонов в химической терморегуляции.

    презентация , добавлен 18.04.2019

    Перекрестная адаптация организма к одному фактору среды, ее способствование приспособлению к другим факторам. Молекулярные основы адаптации человека и ее практическое значение. Приспосабливаемость живого организма к повреждающим факторам внешней среды.

    реферат , добавлен 20.09.2009

    Адаптация организма к условиям среды в общебиологическом плане, ее необходимость для сохранения как индивидуума, так и вида. Способы защиты от неблагоприятных условий окружающей среды. Анабиоз, оцепенение, зимняя спячка, миграция, активация ферментов.

    реферат , добавлен 20.09.2009

    Адаптация как приспособление организма к среде обитания, к условиям его существования. Особенности условий жизни спортсмена. Биохимические и физиологические механизмы адаптации к физическим нагрузкам. Биологические принципы спортивной тренировки.



Читайте также: