Arithmetic progression: what is it? Arithmetic progression. Textbook on the exam and GIA The formula for finding a1 arithmetic progression


Yes, yes: arithmetic progression is not a toy for you :)

Well, friends, if you are reading this text, then the internal cap evidence tells me that you still do not know what an arithmetic progression is, but you really (no, like this: SOOOOO!) want to know. Therefore, I will not torment you with long introductions and will immediately get down to business.

To start, a couple of examples. Consider several sets of numbers:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

What do all these sets have in common? At first glance, nothing. But actually there is something. Namely: each next element differs from the previous one by the same number.

Judge for yourself. The first set is just consecutive numbers, each one more than the previous one. In the second case, the difference between adjacent numbers is already equal to five, but this difference is still constant. In the third case, there are roots in general. However, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, while $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, i.e. in which case each next element simply increases by $\sqrt(2)$ (and don't be scared that this number is irrational).

So: all such sequences are just called arithmetic progressions. Let's give a strict definition:

Definition. A sequence of numbers in which each next differs from the previous one by exactly the same amount is called an arithmetic progression. The very amount by which the numbers differ is called the progression difference and is most often denoted by the letter $d$.

Notation: $\left(((a)_(n)) \right)$ is the progression itself, $d$ is its difference.

And just a couple of important remarks. First, progression is considered only orderly sequence of numbers: they are allowed to be read strictly in the order in which they are written - and nothing else. You can't rearrange or swap numbers.

Secondly, the sequence itself can be either finite or infinite. For example, the set (1; 2; 3) is obviously a finite arithmetic progression. But if you write something like (1; 2; 3; 4; ...) - this is already an infinite progression. The ellipsis after the four, as it were, hints that quite a lot of numbers go further. Infinitely many, for example. :)

I would also like to note that progressions are increasing and decreasing. We have already seen increasing ones - the same set (1; 2; 3; 4; ...). Here are examples of decreasing progressions:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Okay, okay: the last example may seem overly complicated. But the rest, I think, you understand. Therefore, we introduce new definitions:

Definition. An arithmetic progression is called:

  1. increasing if each next element is greater than the previous one;
  2. decreasing, if, on the contrary, each subsequent element is less than the previous one.

In addition, there are so-called "stationary" sequences - they consist of the same repeating number. For example, (3; 3; 3; ...).

Only one question remains: how to distinguish an increasing progression from a decreasing one? Fortunately, everything here depends only on the sign of the number $d$, i.e. progression differences:

  1. If $d \gt 0$, then the progression is increasing;
  2. If $d \lt 0$, then the progression is obviously decreasing;
  3. Finally, there is the case $d=0$ — in this case the entire progression is reduced to a stationary sequence of identical numbers: (1; 1; 1; 1; ...), etc.

Let's try to calculate the difference $d$ for the three decreasing progressions above. To do this, it is enough to take any two adjacent elements (for example, the first and second) and subtract from the number on the right, the number on the left. It will look like this:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

As you can see, in all three cases the difference really turned out to be negative. And now that we have more or less figured out the definitions, it's time to figure out how progressions are described and what properties they have.

Members of the progression and the recurrent formula

Since the elements of our sequences cannot be interchanged, they can be numbered:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

Individual elements of this set are called members of the progression. They are indicated in this way with the help of a number: the first member, the second member, and so on.

In addition, as we already know, neighboring members of the progression are related by the formula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

In short, to find the $n$th term of the progression, you need to know the $n-1$th term and the difference $d$. Such a formula is called recurrent, because with its help you can find any number, only knowing the previous one (and in fact, all the previous ones). This is very inconvenient, so there is a more tricky formula that reduces any calculation to the first term and the difference:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

You have probably come across this formula before. They like to give it in all sorts of reference books and reshebniks. And in any sensible textbook on mathematics, it is one of the first.

However, I suggest you practice a little.

Task number 1. Write down the first three terms of the arithmetic progression $\left(((a)_(n)) \right)$ if $((a)_(1))=8,d=-5$.

Decision. So, we know the first term $((a)_(1))=8$ and the progression difference $d=-5$. Let's use the formula just given and substitute $n=1$, $n=2$ and $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Answer: (8; 3; -2)

That's all! Note that our progression is decreasing.

Of course, $n=1$ could not have been substituted - we already know the first term. However, by substituting the unit, we made sure that even for the first term our formula works. In other cases, everything came down to banal arithmetic.

Task number 2. Write out the first three terms of an arithmetic progression if its seventh term is −40 and its seventeenth term is −50.

Decision. We write the condition of the problem in the usual terms:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \right.\]

I put the sign of the system because these requirements must be met simultaneously. And now we note that if we subtract the first equation from the second equation (we have the right to do this, because we have a system), we get this:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(align)\]

Just like that, we found the progression difference! It remains to substitute the found number in any of the equations of the system. For example, in the first:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Now, knowing the first term and the difference, it remains to find the second and third terms:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Ready! Problem solved.

Answer: (-34; -35; -36)

Pay attention to a curious property of the progression that we discovered: if we take the $n$th and $m$th terms and subtract them from each other, then we get the difference of the progression multiplied by the number $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

A simple but very useful property that you should definitely know - with its help, you can significantly speed up the solution of many progression problems. Here is a prime example of this:

Task number 3. The fifth term of the arithmetic progression is 8.4, and its tenth term is 14.4. Find the fifteenth term of this progression.

Decision. Since $((a)_(5))=8.4$, $((a)_(10))=14.4$, and we need to find $((a)_(15))$, we note following:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

But by condition $((a)_(10))-((a)_(5))=14.4-8.4=6$, so $5d=6$, whence we have:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \end(align)\]

Answer: 20.4

That's all! We did not need to compose any systems of equations and calculate the first term and the difference - everything was decided in just a couple of lines.

Now let's consider another type of problem - the search for negative and positive members of the progression. It is no secret that if the progression increases, while its first term is negative, then sooner or later positive terms will appear in it. And vice versa: the terms of a decreasing progression will sooner or later become negative.

At the same time, it is far from always possible to find this moment “on the forehead”, sequentially sorting through the elements. Often, problems are designed in such a way that without knowing the formulas, calculations would take several sheets - we would just fall asleep until we found the answer. Therefore, we will try to solve these problems in a faster way.

Task number 4. How many negative terms in an arithmetic progression -38.5; -35.8; …?

Decision. So, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, from which we immediately find the difference:

Note that the difference is positive, so the progression is increasing. The first term is negative, so indeed at some point we will stumble upon positive numbers. The only question is when this will happen.

Let's try to find out: how long (i.e., up to what natural number $n$) the negativity of the terms is preserved:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \right. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

The last line needs clarification. So we know that $n \lt 15\frac(7)(27)$. On the other hand, only integer values ​​of the number will suit us (moreover: $n\in \mathbb(N)$), so the largest allowable number is precisely $n=15$, and in no case 16.

Task number 5. In arithmetic progression $(()_(5))=-150,(()_(6))=-147$. Find the number of the first positive term of this progression.

This would be exactly the same problem as the previous one, but we don't know $((a)_(1))$. But the neighboring terms are known: $((a)_(5))$ and $((a)_(6))$, so we can easily find the progression difference:

In addition, let's try to express the fifth term in terms of the first and the difference using the standard formula:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Now we proceed by analogy with the previous problem. We find out at what point in our sequence positive numbers will appear:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

The minimum integer solution of this inequality is the number 56.

Please note that in the last task everything was reduced to strict inequality, so the option $n=55$ will not suit us.

Now that we have learned how to solve simple problems, let's move on to more complex ones. But first, let's learn another very useful property of arithmetic progressions, which will save us a lot of time and unequal cells in the future. :)

Arithmetic mean and equal indents

Consider several consecutive terms of the increasing arithmetic progression $\left(((a)_(n)) \right)$. Let's try to mark them on a number line:

Arithmetic progression members on the number line

I specifically noted the arbitrary members $((a)_(n-3)),...,((a)_(n+3))$, and not any $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ etc. Because the rule, which I will now tell you, works the same for any "segments".

And the rule is very simple. Let's remember the recursive formula and write it down for all marked members:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

However, these equalities can be rewritten differently:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Well, so what? But the fact that the terms $((a)_(n-1))$ and $((a)_(n+1))$ lie at the same distance from $((a)_(n)) $. And this distance is equal to $d$. The same can be said about the terms $((a)_(n-2))$ and $((a)_(n+2))$ - they are also removed from $((a)_(n))$ by the same distance equal to $2d$. You can continue indefinitely, but the picture illustrates the meaning well


The members of the progression lie at the same distance from the center

What does this mean for us? This means that you can find $((a)_(n))$ if the neighboring numbers are known:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

We have deduced a magnificent statement: each member of an arithmetic progression is equal to the arithmetic mean of the neighboring members! Moreover, we can deviate from our $((a)_(n))$ to the left and to the right not by one step, but by $k$ steps — and still the formula will be correct:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Those. we can easily find some $((a)_(150))$ if we know $((a)_(100))$ and $((a)_(200))$, because $(( a)_(150))=\frac(((a)_(100))+((a)_(200)))(2)$. At first glance, it may seem that this fact does not give us anything useful. However, in practice, many tasks are specially "sharpened" for the use of the arithmetic mean. Take a look:

Task number 6. Find all values ​​of $x$ such that the numbers $-6((x)^(2))$, $x+1$ and $14+4((x)^(2))$ are consecutive members of an arithmetic progression (in specified order).

Decision. Since these numbers are members of a progression, the arithmetic mean condition is satisfied for them: the central element $x+1$ can be expressed in terms of neighboring elements:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

The result is a classic quadratic equation. Its roots: $x=2$ and $x=-3$ are the answers.

Answer: -3; 2.

Task number 7. Find the values ​​of $$ such that the numbers $-1;4-3;(()^(2))+1$ form an arithmetic progression (in that order).

Decision. Again, we express the middle term in terms of the arithmetic mean of neighboring terms:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Another quadratic equation. And again two roots: $x=6$ and $x=1$.

Answer: 1; 6.

If in the process of solving a problem you get some brutal numbers, or you are not completely sure of the correctness of the answers found, then there is a wonderful trick that allows you to check: did we solve the problem correctly?

Let's say in problem 6 we got answers -3 and 2. How can we check that these answers are correct? Let's just plug them into the original condition and see what happens. Let me remind you that we have three numbers ($-6(()^(2))$, $+1$ and $14+4(()^(2))$), which should form an arithmetic progression. Substitute $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

We got the numbers -54; −2; 50 that differ by 52 is undoubtedly an arithmetic progression. The same thing happens for $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Again a progression, but with a difference of 27. Thus, the problem is solved correctly. Those who wish can check the second task on their own, but I’ll say right away: everything is correct there too.

In general, while solving the last problems, we stumbled upon another interesting fact that also needs to be remembered:

If three numbers are such that the second is the average of the first and last, then these numbers form an arithmetic progression.

In the future, understanding this statement will allow us to literally “construct” the necessary progressions based on the condition of the problem. But before we engage in such a "construction", we should pay attention to one more fact, which directly follows from what has already been considered.

Grouping and sum of elements

Let's go back to the number line again. We note there several members of the progression, between which, perhaps. worth a lot of other members:

6 elements marked on the number line

Let's try to express the "left tail" in terms of $((a)_(n))$ and $d$, and the "right tail" in terms of $((a)_(k))$ and $d$. It's very simple:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Now note that the following sums are equal:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Simply put, if we consider as a start two elements of the progression, which in total are equal to some number $S$, and then we start stepping from these elements in opposite directions (towards each other or vice versa to move away), then the sums of the elements that we will stumble upon will also be equal$S$. This can be best represented graphically:


Same indents give equal sums

Understanding this fact will allow us to solve problems of a fundamentally higher level of complexity than those that we considered above. For example, these:

Task number 8. Determine the difference of an arithmetic progression in which the first term is 66, and the product of the second and twelfth terms is the smallest possible.

Decision. Let's write down everything we know:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

So, we do not know the difference of the progression $d$. Actually, the whole solution will be built around the difference, since the product $((a)_(2))\cdot ((a)_(12))$ can be rewritten as follows:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

For those in the tank: I've taken the common factor 11 out of the second bracket. Thus, the desired product is a quadratic function with respect to the variable $d$. Therefore, consider the function $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - its graph will be a parabola with branches up, because if we open the brackets, we get:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

As you can see, the coefficient with the highest term is 11 - this is a positive number, so we are really dealing with a parabola with branches up:


graph of a quadratic function - parabola

Please note: this parabola takes its minimum value at its vertex with the abscissa $((d)_(0))$. Of course, we can calculate this abscissa according to the standard scheme (there is a formula $((d)_(0))=(-b)/(2a)\;$), but it would be much more reasonable to note that the desired vertex lies on the axis symmetry of the parabola, so the point $((d)_(0))$ is equidistant from the roots of the equation $f\left(d \right)=0$:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

That is why I was in no hurry to open the brackets: in the original form, the roots were very, very easy to find. Therefore, the abscissa is equal to the arithmetic mean of the numbers −66 and −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

What gives us the discovered number? With it, the required product takes the smallest value (by the way, we did not calculate $((y)_(\min ))$ - this is not required of us). At the same time, this number is the difference of the initial progression, i.e. we found the answer. :)

Answer: -36

Task number 9. Insert three numbers between the numbers $-\frac(1)(2)$ and $-\frac(1)(6)$ so that together with the given numbers they form an arithmetic progression.

Decision. In fact, we need to make a sequence of five numbers, with the first and last number already known. Denote the missing numbers by the variables $x$, $y$ and $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Note that the number $y$ is the "middle" of our sequence - it is equidistant from the numbers $x$ and $z$, and from the numbers $-\frac(1)(2)$ and $-\frac(1)( 6)$. And if at the moment we cannot get $y$ from the numbers $x$ and $z$, then the situation is different with the ends of the progression. Remember the arithmetic mean:

Now, knowing $y$, we will find the remaining numbers. Note that $x$ lies between $-\frac(1)(2)$ and $y=-\frac(1)(3)$ just found. So

Arguing similarly, we find the remaining number:

Ready! We found all three numbers. Let's write them down in the answer in the order in which they should be inserted between the original numbers.

Answer: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Task number 10. Between the numbers 2 and 42, insert several numbers that, together with the given numbers, form an arithmetic progression, if it is known that the sum of the first, second, and last of the inserted numbers is 56.

Decision. An even more difficult task, which, however, is solved in the same way as the previous ones - through the arithmetic mean. The problem is that we don't know exactly how many numbers to insert. Therefore, for definiteness, we assume that after inserting there will be exactly $n$ numbers, and the first of them is 2, and the last is 42. In this case, the desired arithmetic progression can be represented as:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Note, however, that the numbers $((a)_(2))$ and $((a)_(n-1))$ are obtained from the numbers 2 and 42 standing at the edges by one step towards each other, i.e. . to the center of the sequence. And this means that

\[((a)_(2))+((a)_(n-1))=2+42=44\]

But then the above expression can be rewritten like this:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Knowing $((a)_(3))$ and $((a)_(1))$, we can easily find the progression difference:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end(align)\]

It remains only to find the remaining members:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Thus, already at the 9th step we will come to the left end of the sequence - the number 42. In total, only 7 numbers had to be inserted: 7; 12; 17; 22; 27; 32; 37.

Answer: 7; 12; 17; 22; 27; 32; 37

Text tasks with progressions

In conclusion, I would like to consider a couple of relatively simple problems. Well, as simple ones: for most students who study mathematics at school and have not read what is written above, these tasks may seem like a gesture. Nevertheless, it is precisely such tasks that come across in the OGE and the USE in mathematics, so I recommend that you familiarize yourself with them.

Task number 11. The team produced 62 parts in January, and in each subsequent month they produced 14 more parts than in the previous one. How many parts did the brigade produce in November?

Decision. Obviously, the number of parts, painted by month, will be an increasing arithmetic progression. And:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

November is the 11th month of the year, so we need to find $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Therefore, 202 parts will be manufactured in November.

Task number 12. The bookbinding workshop bound 216 books in January, and each month it bound 4 more books than the previous month. How many books did the workshop bind in December?

Decision. All the same:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

December is the last, 12th month of the year, so we are looking for $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

This is the answer - 260 books will be bound in December.

Well, if you have read this far, I hasten to congratulate you: you have successfully completed the “young fighter course” in arithmetic progressions. We can safely move on to the next lesson, where we will study the progression sum formula, as well as important and very useful consequences from it.

The matrix $A^(-1)$ is called the inverse of the square matrix $A$ if $A^(-1)\cdot A=A\cdot A^(-1)=E$, where $E $ is the identity matrix, the order of which is equal to the order of the matrix $A$.

A non-singular matrix is ​​a matrix whose determinant is not equal to zero. Accordingly, a degenerate matrix is ​​one whose determinant is equal to zero.

The inverse matrix $A^(-1)$ exists if and only if the matrix $A$ is nonsingular. If the inverse matrix $A^(-1)$ exists, then it is unique.

There are several ways to find the inverse of a matrix, and we'll look at two of them. This page will discuss the adjoint matrix method, which is considered standard in most higher mathematics courses. The second way to find the inverse matrix (method of elementary transformations), which involves the use of the Gauss method or the Gauss-Jordan method, is considered in the second part.

Adjoint (union) matrix method

Let the matrix $A_(n\times n)$ be given. In order to find the inverse matrix $A^(-1)$, three steps are required:

  1. Find the determinant of the matrix $A$ and make sure that $\Delta A\neq 0$, i.e. that the matrix A is nondegenerate.
  2. Compose algebraic complements $A_(ij)$ of each element of the matrix $A$ and write down the matrix $A_(n\times n)^(*)=\left(A_(ij) \right)$ from the found algebraic complements.
  3. Write the inverse matrix taking into account the formula $A^(-1)=\frac(1)(\Delta A)\cdot (A^(*))^T$.

The matrix $(A^(*))^T$ is often referred to as the adjoint (mutual, allied) matrix of $A$.

If the decision is made manually, then the first method is good only for matrices of relatively small orders: second (), third (), fourth (). To find the inverse matrix for a higher order matrix, other methods are used. For example, the Gauss method, which is discussed in the second part.

Example #1

Find matrix inverse to matrix $A=\left(\begin(array) (cccc) 5 & -4 &1 & 0 \\ 12 &-11 &4 & 0 \\ -5 & 58 &4 & 0 \\ 3 & - 1 & -9 & 0 \end(array) \right)$.

Since all elements of the fourth column are equal to zero, then $\Delta A=0$ (i.e. the matrix $A$ is degenerate). Since $\Delta A=0$, there is no matrix inverse to $A$.

Answer: matrix $A^(-1)$ does not exist.

Example #2

Find the matrix inverse to the matrix $A=\left(\begin(array) (cc) -5 & 7 \\ 9 & 8 \end(array)\right)$. Run a check.

We use the adjoint matrix method. First, let's find the determinant of the given matrix $A$:

$$ \Delta A=\left| \begin(array) (cc) -5 & 7\\ 9 & 8 \end(array)\right|=-5\cdot 8-7\cdot 9=-103. $$

Since $\Delta A \neq 0$, then the inverse matrix exists, so we continue the solution. Finding Algebraic Complements

\begin(aligned) & A_(11)=(-1)^2\cdot 8=8; \; A_(12)=(-1)^3\cdot 9=-9;\\ & A_(21)=(-1)^3\cdot 7=-7; \; A_(22)=(-1)^4\cdot (-5)=-5.\\ \end(aligned)

Compose a matrix of algebraic complements: $A^(*)=\left(\begin(array) (cc) 8 & -9\\ -7 & -5 \end(array)\right)$.

Transpose the resulting matrix: $(A^(*))^T=\left(\begin(array) (cc) 8 & -7\\ -9 & -5 \end(array)\right)$ (the resulting matrix is ​​often is called the adjoint or union matrix to the matrix $A$). Using the formula $A^(-1)=\frac(1)(\Delta A)\cdot (A^(*))^T$, we have:

$$ A^(-1)=\frac(1)(-103)\cdot \left(\begin(array) (cc) 8 & -7\\ -9 & -5 \end(array)\right) =\left(\begin(array) (cc) -8/103 & 7/103\\ 9/103 & 5/103 \end(array)\right) $$

So the inverse matrix is ​​found: $A^(-1)=\left(\begin(array) (cc) -8/103 & 7/103\\ 9/103 & 5/103 \end(array)\right) $. To check the truth of the result, it is enough to check the truth of one of the equalities: $A^(-1)\cdot A=E$ or $A\cdot A^(-1)=E$. Let's check the equality $A^(-1)\cdot A=E$. In order to work less with fractions, we will substitute the matrix $A^(-1)$ not in the form $\left(\begin(array) (cc) -8/103 & 7/103\\ 9/103 & 5/103 \ end(array)\right)$ but as $-\frac(1)(103)\cdot \left(\begin(array) (cc) 8 & -7\\ -9 & -5 \end(array )\right)$:

$$ A^(-1)\cdot(A) =-\frac(1)(103)\cdot \left(\begin(array) (cc) 8 & -7\\ -9 & -5 \end( array)\right)\cdot\left(\begin(array) (cc) -5 & 7 \\ 9 & 8 \end(array)\right) =-\frac(1)(103)\cdot\left( \begin(array) (cc) -103 & 0 \\ 0 & -103 \end(array)\right) =\left(\begin(array) (cc) 1 & 0 \\ 0 & 1 \end(array )\right) =E $$

Answer: $A^(-1)=\left(\begin(array) (cc) -8/103 & 7/103\\ 9/103 & 5/103 \end(array)\right)$.

Example #3

Find the inverse of the matrix $A=\left(\begin(array) (ccc) 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end(array) \right)$. Run a check.

Let's start by calculating the determinant of the matrix $A$. So, the determinant of the matrix $A$ is:

$$ \Delta A=\left| \begin(array) (ccc) 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end(array) \right| = 18-36+56-12=26. $$

Since $\Delta A\neq 0$, then the inverse matrix exists, so we continue the solution. We find the algebraic complements of each element of the given matrix:

$$ \begin(aligned) & A_(11)=(-1)^(2)\cdot\left|\begin(array)(cc) 9 & 4\\ 3 & 2\end(array)\right| =6;\; A_(12)=(-1)^(3)\cdot\left|\begin(array)(cc) -4 &4 \\ 0 & 2\end(array)\right|=8;\; A_(13)=(-1)^(4)\cdot\left|\begin(array)(cc) -4 & 9\\ 0 & 3\end(array)\right|=-12;\\ & A_(21)=(-1)^(3)\cdot\left|\begin(array)(cc) 7 & 3\\ 3 & 2\end(array)\right|=-5;\; A_(22)=(-1)^(4)\cdot\left|\begin(array)(cc) 1 & 3\\ 0 & 2\end(array)\right|=2;\; A_(23)=(-1)^(5)\cdot\left|\begin(array)(cc) 1 & 7\\ 0 & 3\end(array)\right|=-3;\\ & A_ (31)=(-1)^(4)\cdot\left|\begin(array)(cc) 7 & 3\\ 9 & 4\end(array)\right|=1;\; A_(32)=(-1)^(5)\cdot\left|\begin(array)(cc) 1 & 3\\ -4 & 4\end(array)\right|=-16;\; A_(33)=(-1)^(6)\cdot\left|\begin(array)(cc) 1 & 7\\ -4 & 9\end(array)\right|=37. \end(aligned) $$

We compose a matrix of algebraic additions and transpose it:

$$ A^*=\left(\begin(array) (ccc) 6 & 8 & -12 \\ -5 & 2 & -3 \\ 1 & -16 & 37\end(array) \right); \; (A^*)^T=\left(\begin(array) (ccc) 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end(array) \right) . $$

Using the formula $A^(-1)=\frac(1)(\Delta A)\cdot (A^(*))^T$, we get:

$$ A^(-1)=\frac(1)(26)\cdot \left(\begin(array) (ccc) 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & - 3 & 37\end(array) \right)= \left(\begin(array) (ccc) 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \ \ -6/13 & -3/26 & 37/26 \end(array) \right) $$

So $A^(-1)=\left(\begin(array) (ccc) 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ - 6/13 & -3/26 & 37/26 \end(array) \right)$. To check the truth of the result, it is enough to check the truth of one of the equalities: $A^(-1)\cdot A=E$ or $A\cdot A^(-1)=E$. Let's check the equality $A\cdot A^(-1)=E$. In order to work less with fractions, we will substitute the matrix $A^(-1)$ not in the form $\left(\begin(array) (ccc) 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end(array) \right)$, but as $\frac(1)(26)\cdot \left( \begin(array) (ccc) 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end(array) \right)$:

$$ A\cdot(A^(-1)) =\left(\begin(array)(ccc) 1 & 7 & 3 \\ -4 & 9 & 4\\ 0 & 3 & 2\end(array) \right)\cdot \frac(1)(26)\cdot \left(\begin(array) (ccc) 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\ end(array) \right) =\frac(1)(26)\cdot\left(\begin(array) (ccc) 26 & 0 & 0 \\ 0 & 26 & 0 \\ 0 & 0 & 26\end (array) \right) =\left(\begin(array) (ccc) 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end(array) \right) =E $$

The check was passed successfully, the inverse matrix $A^(-1)$ was found correctly.

Answer: $A^(-1)=\left(\begin(array) (ccc) 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6 /13 & -3/26 & 37/26 \end(array) \right)$.

Example #4

Find matrix inverse of $A=\left(\begin(array) (cccc) 6 & -5 & 8 & 4\\ 9 & 7 & 5 & 2 \\ 7 & 5 & 3 & 7\\ -4 & 8 & -8 & -3 \end(array) \right)$.

For a matrix of the fourth order, finding the inverse matrix using algebraic additions is somewhat difficult. However, such examples are found in the control works.

To find the inverse matrix, first you need to calculate the determinant of the matrix $A$. The best way to do this in this situation is to expand the determinant in a row (column). We select any row or column and find the algebraic complement of each element of the selected row or column.

For example, for the first row we get:

$$ A_(11)=\left|\begin(array)(ccc) 7 & 5 & 2\\ 5 & 3 & 7\\ 8 & -8 & -3 \end(array)\right|=556; \; A_(12)=-\left|\begin(array)(ccc) 9 & 5 & 2\\ 7 & 3 & 7 \\ -4 & -8 & -3 \end(array)\right|=-300 ; $$ $$ A_(13)=\left|\begin(array)(ccc) 9 & 7 & 2\\ 7 & 5 & 7\\ -4 & 8 & -3 \end(array)\right|= -536;\; A_(14)=-\left|\begin(array)(ccc) 9 & 7 & 5\\ 7 & 5 & 3\\ -4 & 8 & -8 \end(array)\right|=-112. $$

The determinant of the matrix $A$ is calculated by the following formula:

$$ \Delta(A)=a_(11)\cdot A_(11)+a_(12)\cdot A_(12)+a_(13)\cdot A_(13)+a_(14)\cdot A_(14 )=6\cdot 556+(-5)\cdot(-300)+8\cdot(-536)+4\cdot(-112)=100. $$

$$ \begin(aligned) & A_(21)=-77;\;A_(22)=50;\;A_(23)=87;\;A_(24)=4;\\ & A_(31) =-93;\;A_(32)=50;\;A_(33)=83;\;A_(34)=36;\\ & A_(41)=473;\;A_(42)=-250 ;\;A_(43)=-463;\;A_(44)=-96. \end(aligned) $$

Algebraic complement matrix: $A^*=\left(\begin(array)(cccc) 556 & -300 & -536 & -112\\ -77 & 50 & 87 & 4 \\ -93 & 50 & 83 & 36\\ 473 & -250 & -463 & -96\end(array)\right)$.

Attached matrix: $(A^*)^T=\left(\begin(array) (cccc) 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96\end(array)\right)$.

Inverse matrix:

$$ A^(-1)=\frac(1)(100)\cdot \left(\begin(array) (cccc) 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96 \end(array) \right)= \left(\begin(array) (cccc) 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/ 25 & 1/25 & 9/25 & -24/25 \end(array) \right) $$

Checking, if desired, can be done in the same way as in the previous examples.

Answer: $A^(-1)=\left(\begin(array) (cccc) 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end(array) \right) $.

In the second part, another way of finding the inverse matrix will be considered, which involves the use of transformations of the Gauss method or the Gauss-Jordan method.

Matrix determinant

Finding the determinant of a matrix is ​​a very common problem in higher mathematics and algebra. As a rule, one cannot do without the value of the matrix determinant when solving complex systems of equations. Cramer's method for solving systems of equations is built on the calculation of the matrix determinant. Using the definition of a determinate, the presence and uniqueness of the solution of systems of equations are determined. Therefore, it is difficult to overestimate the importance of the ability to correctly and accurately find the determinant of a matrix in mathematics. Methods for solving determinants are theoretically quite simple, but as the size of the matrix increases, the calculations become very cumbersome and require great care and a lot of time. It is very easy to make a minor mistake or typo in such complex mathematical calculations, which will lead to an error in the final answer. Therefore, even if you find matrix determinant independently, it is important to check the result. This allows us to make our service Finding the determinant of a matrix online. Our service always gives an absolutely accurate result that does not contain any errors or typos. You can refuse independent calculations, because from the applied point of view, finding matrix determinant does not have a teaching character, but simply requires a lot of time and numerical calculations. Therefore, if in your task determination of matrix determinant are auxiliary, side calculations, use our service and find matrix determinant online!

All calculations are carried out automatically with the highest accuracy and absolutely free. We have a very convenient interface for entering matrix elements. But the main difference between our service and similar ones is the possibility of obtaining a detailed solution. Our service at calculating matrix determinant online always uses the simplest and shortest method and describes in detail each step of the transformations and simplifications. So you get not just the value of the matrix determinant, the final result, but the whole detailed solution.

A numerical sequence, each member of which, starting from the second, is equal to the previous one, added with the same number for the given sequence, is called an arithmetic progression. The number that is added to the previous number each time is called the difference of an arithmetic progression and is marked with the letter d.

So, the numerical sequence a 1 ; a 2 ; a 3 ; a 4 ; a 5 ; ... and n will be an arithmetic progression if a 2 = a 1 + d;

a 3 \u003d a 2 + d;

They say that given an arithmetic progression with a common term a n. Write: given an arithmetic progression (a n ).

An arithmetic progression is considered definite if its first term is known. a 1 and difference d.

Arithmetic progression examples

Example 1 one; 3; 5; 7; 9;…Here a 1 = 1; d = 2.

Example 2 eight; 5; 2; -one; -4; -7; -10;… Here a 1 = 8; d =-3.

Example 3-sixteen; -12; -eight; -4;… Here a 1 = -16; d = 4.

Note that each member of the progression, starting from the second, is equal to the arithmetic mean of the members adjacent to it.

In 1 example second member 3 =(1+5): 2; those. a 2 \u003d (a 1 + a 3) : 2; third member 5 =(3+7): 2;

i.e. a 3 \u003d (a 2 + a 4) : 2.

So the formula is valid:

But, in fact, each member of the arithmetic progression, starting from the second, is equal to the arithmetic mean of not only the members adjacent to it, but also equally spaced members from him, i.e.

Let's turn example 2. Number -1 is the fourth member of the arithmetic progression and is equally spaced from the first and seventh members (a 1 = 8, and 7 = -10).

According to the formula (**) we have:

We derive the formula n- th member of an arithmetic progression.

So, we get the second term of the arithmetic progression if we add the difference to the first d; we get the third term if we add the difference to the second d or add two differences to the first term d; we get the fourth term if we add the difference to the third d or add three differences to the first d etc.

You guessed it: a 2 = a 1 + d;

a 3 = a 2 + d = a 1 + 2d;

a 4 = a 3 + d = a 1 + 3d;

…………………….

a n = a n-1 + d = a 1 + (n-1) d.

The resulting formula a n = a 1 + (n-1) d (***)

called formulanth member of an arithmetic progression.

Now let's talk about how to find the sum of the first n terms of an arithmetic progression. Let's denote this amount as S n.

From the rearrangement of the places of the terms, the value of the sum will not change, so it can be written in two ways.

S n= a 1 + a 2 + a 3 + a 4 + ... + a n-3 + a n-2 + a n-1 + a n and

S n = a n + a n-1 + a n-2 + a n-3 + …...+ a 4 + a 3 + a 2 + a 1

Let's add these two equalities term by term:

2Sn= (a 1 + a n) + (a 2 + a n-1) + (a 3 + a n-2) + (a 4 + a n-3) + …

For any nonsingular matrix A, there exists a unique matrix A -1 such that

A*A -1 =A -1 *A = E,

where E is the identity matrix of the same orders as A. The matrix A -1 is called the inverse of matrix A.

If someone forgot, in the identity matrix, except for the diagonal filled with ones, all other positions are filled with zeros, an example of an identity matrix:

Finding the inverse matrix by the adjoint matrix method

The inverse matrix is ​​defined by the formula:

where A ij - elements a ij .

Those. To calculate the inverse of a matrix, you need to calculate the determinant of this matrix. Then find algebraic additions for all its elements and make a new matrix from them. Next, you need to transport this matrix. And divide each element of the new matrix by the determinant of the original matrix.

Let's look at a few examples.

Find A -1 for matrix

Solution. Find A -1 by the adjoint matrix method. We have det A = 2. Find the algebraic complements of the elements of the matrix A. In this case, the algebraic complements of the matrix elements will be the corresponding elements of the matrix itself, taken with a sign in accordance with the formula

We have A 11 = 3, A 12 = -4, A 21 = -1, A 22 = 2. We form the adjoint matrix

We transport the matrix A*:

We find the inverse matrix by the formula:

We get:

Use the adjoint matrix method to find A -1 if

Solution. First of all, we calculate the given matrix to make sure that the inverse matrix exists. We have

Here we have added to the elements of the second row the elements of the third row, multiplied previously by (-1), and then expanded the determinant by the second row. Since the definition of this matrix is ​​different from zero, then the matrix inverse to it exists. To construct the adjoint matrix, we find the algebraic complements of the elements of this matrix. We have

According to the formula

we transport the matrix A*:

Then according to the formula

Finding the inverse matrix by the method of elementary transformations

In addition to the method of finding the inverse matrix, which follows from the formula (the method of the associated matrix), there is a method for finding the inverse matrix, called the method of elementary transformations.

Elementary matrix transformations

The following transformations are called elementary matrix transformations:

1) permutation of rows (columns);

2) multiplying a row (column) by a non-zero number;

3) adding to the elements of a row (column) the corresponding elements of another row (column), previously multiplied by a certain number.

To find the matrix A -1, we construct a rectangular matrix B \u003d (A | E) of orders (n; 2n), assigning to the matrix A on the right the identity matrix E through the dividing line:

Consider an example.

Using the method of elementary transformations, find A -1 if

Solution. We form the matrix B:

Denote the rows of the matrix B through α 1 , α 2 , α 3 . Let's perform the following transformations on the rows of the matrix B.

Read also: