Ультразвук и его применение сообщение. Применение ультразвука в медицине и технике (кратко). Терапевтическое применение ультразвука в медицине

Механические волны с частотой колебания, большей 20 000 Гц, не воспринимаются человеком как звук. Из называют ультразвуковыми волнами или ультразвуком. Ультразвук сильно поглощается газами и во много раз слабее - твердыми веществами и жидкостями. Поэтому ультразвуковые волны могут распространяться на значительные расстояния только в твердых телах и жидкостях.

Так как энергия, которую переносят волны, пропорциональна плотности среды и квадрату частоты, то ультразвук может переносить энергию, намного большую, чем звуковые волны. Еще одно важное свойство ультразвука заключается в том, что сравнительно просто осуществляется его направленное излучение. Все это позволяет широко использовать ультразвук в технике.

Описанные свойства ультразвука используются в эхолоте - приборе для определения глубины моря (рис. 25.11). Корабль снабжают источником и приемником ультразвука определенной частоты. Источник отправляет кратковременные ультразвуковые импульсы, а приемник улавливает отраженные импульсы. Зная время между отправлением и приемом импульсов и скорость распространения ультразвука в воде, с помощью формулы (25.3) определяют глубину моря. Аналогично действует ультразвуковой локатор, которым пользуются для определения расстояния до препятствия на

пути корабля в горизонтальном направлении. При отсутствии таких препятствий ультразвуковые импульсы не возвращаются к кораблю.

Интересно, что некоторые животные, например летучие мыши, имеют органы, действующие по принципу ультразвукового локатора, что позволяет им хорошо ориентироваться в темноте. Совершенный ультразвуковой локатор имеют дельфины. -

При прохождении ультразвука через жидкость частицы жидкости приобретают большие ускорения и сильно воздействуют на различные тела, помещенные в жидкость. Это используют для ускорения самых различных технологических процессов (например, приготовления растворов, отмывки деталей, дубления кож и т. д.).

При интенсивных ультразвуковых колебаниях в жидкости ее частицы приобретают такие большие ускорения, что в жидкости образуются на короткое время разрывы (пустоты), которые резко захлопываются, создавая множество маленьких ударов, т. е. происходит кавитация. В таких условиях жидкость оказывает сильное дробящее действие, что используется для приготовления суспензий, состоящих из распыленных частиц твердого тела в жидкости, и эмульсий - взвесей мелких капелек одной жидкости в другой.

Ультразвук применяется для обнаружения дефектов в металлических деталях. В современной технике применение ультразвука столь обширно, что трудно даже перечислить все области его использования.

Заметим, что механические волны с частотой колебаний меньше 16 Гц называют инфразвуковыми волнами или инфразвуком. Они также не вызывают звуковых ощущений, Инфразвуковые волны возникают на море во время ураганов и землетрясений. Скорость распространения инфразвука в воде гораздо больше, чем скорость перемещения урагана или гигантских волн цунами, образующихся при землетрясении, Это позволяет некоторым морским животным, обладающим способностью воспринимать инфразвуковые волны, получать таким путем сигналы о приближающейся опасности.




План:

    Введение
  • 1 Источники ультразвука
    • 1.1 Свисток Гальтона
    • 1.2 Жидкостный ультразвуковой свисток
    • 1.3 Сирена
  • 2 Ультразвук в природе
  • 3 Применение ультразвука
    • 3.1 Диагностическое применение ультразвука в медицине (УЗИ)
    • 3.2 Терапевтическое применение ультразвука в медицине
    • 3.3 Резка металла с помощью ультразвука
    • 3.4 Приготовление смесей с помощью ультразвука
    • 3.5 Применение ультразвука в биологии
    • 3.6 Применение ультразвука для очистки
    • 3.7 Применение ультразвука для очистки корнеплодов
    • 3.8 Применение ультразвука в эхолокации
    • 3.9 Применение ультразвука в расходометрии
    • 3.10 Применение ультразвука в дефектоскопии
    • 3.11 Ультразвуковая сварка
    • 3.12 Теплоотведение и ультразвук
    • 3.13 Применение ультразвука в гальванотехнике
  • Литература

Введение

Ультразвук - упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц

Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных областях физики, технологии, химии и медицины.


1. Источники ультразвука

Частота сверхвысокочастотных ультразвуковых волн, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц. Фокусировка таких пучков обычно осуществляется с помощью специальных звуковых линз и зеркал. Ультразвуковой пучок с необходимыми параметрами можно получить с помощью соответствующего преобразователя. Наиболее распространены керамические преобразователи из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвукового пучка, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компоненты многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.


1.1. Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон. Ультразвук здесь создается подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (она составляет около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.


1.2. Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учеными Коттелем и Гудменом в начале 50-х годов 20 века. В нем поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку. Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.


1.3. Сирена

Другая разновидность механических источников ультразвука - сирена. Она обладает относительно большой мощностью и применяется в милицейских и пожарных машинах. Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Основная задача при изготовлении сирен - это, во-первых, сделать как можно больше отверстий в роторе и, во-вторых, достичь большой скорости его вращения. Однако практически выполнить оба эти требования очень трудно.


2. Ультразвук в природе

Летучие мыши, использующие при ночном ориентировании эхолокацию, испускают при этом ртом (кожановые - Vespertilionidae) или имеющим форму параболического зеркала носовым отверстием (подковоносые - Rhinolophidae) сигналы чрезвычайно высокой интенсивности. На расстоянии 1 - 5 см от головы животного давление ультразвука достигает 60 мбар, то есть соответствует в слышимой нами частотной области давлению звука, создаваемого отбойным молотком. Эхо своих сигналов летучие мыши способны воспринимать при давлении всего 0,001 мбар, то есть в 10000 раз меньше, чем у испускаемых сигналов. При этом летучие мыши могут обходить при полете препятствия даже в том случае, когда на эхолокационные сигналы накладываются ультразвуковые помехи с давлением 20 мбар. Механизм этой высокой помехоустойчивости еще неизвестен. При локализации летучими мышами предметов, например, вертикально натянутых нитей с диаметром всего 0,005 - 0,008 мм на расстоянии 20см (половина размаха крыльев), решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами. Подковоносы могут ориентироваться и с помощью только одного уха (моноурально), что существенно облегчается крупными непрерывно движущимися ушными раковинами. Они способны компенсировать даже частотный сдвиг между испускаемыми и отражёнными сигналами, обусловленный эффектом Доплера (при приближении к предмету эхо является более высокочастотным, чем посылаемый сигнал). Понижая во время полёта эхолокационную частоту таким образом, чтобы частота отражённого ультразвука оставалась в области максимальной чувствительности их «слуховых» центров, они могут определить скорость собственного перемещения.

У ночных бабочек из семейства медведиц развился генератор ультразвуковых помех, «сбивающий со следа» летучих мышей, преследующих этих насекомых.

Эхолокацию используют для навигации и птицы - жирные козодои, или гуахаро. Населяют они горные пещеры Латинской Америки - от Панамы на северо-западе до Перу на юге и Суринама на востоке. Живя в кромешной тьме, жирные козодои, тем не менее, приспособились виртуозно летать по пещерам. Они издают негромкие щёлкающие звуки, воспринимаемые и человеческим ухом (их частота примерно 7 000 Герц). Каждый щелчок длится одну-две миллисекунды. Звук щелчка отражается от стен подземелья, разных выступов и препятствий и воспринимается чутким слухом птицы.

Ультразвуковую эхолокацией в воде пользуются китообразные.


3. Применение ультразвука

3.1. Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза.


3.2. Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • аналгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита. Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см2., в области грудного и поясничного отдела - 0,4-0,6 Вт/см2).


3.3. Резка металла с помощью ультразвука

На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.

Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. Обычно резьба сначала делается в мягком металле, а потом уже деталь подвергают закалке. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах. То же и со штампами. Обычно штамп закаляют уже после его тщательной отделки. На ультразвуковом станке сложнейшую обработку производит абразив (наждак, корундовый порошок) в поле ультразвуковой волны. Беспрерывно колеблясь в поле ультразвука, частицы твёрдого порошка врезаются в обрабатываемый сплав и вырезают отверстие такой же формы, как и у долота.


3.4. Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

3.5. Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. [источник не указан 107 дней ] Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.


3.6. Применение ультразвука для очистки

В лабораториях и на производстве применяются ультразвуковые ванны для очистки лабораторной посуды и деталей от мелких частиц. В ювелирной промышленности ювелирные изделия очищают от мелких частиц полировальной пасты в ультразвуковых ваннах. В девяностые годы XX века на Томском заводе НПО «РЕТОН» был получен патент на изобретение и выпущено ультразвуковое стирающее устройство «Ретона», в основе действия которого лежит ультразвук низкой частоты. Позже появилось множество ультразвуковых устройств для стирки текстильных изделий. Общим для них является принцип действия: упругие волны ультразвука действуют на загрязнения, «выбивая» грязь с помощью поверхностно-активных веществ из волокон ткани.


3.7. Применение ультразвука для очистки корнеплодов

В некоторых производствах применяют ультразвуковые ванны для очистки корнеплодов (картофеля, моркови, свеклы и др.) от частиц земли.

3.8. Применение ультразвука в эхолокации

В рыбной промышленности применяют ультразвуковую эхолокацию для обнаружения косяков рыб. Ультразвуковые волны отражаются от косяков рыб и приходят в приёмник ультразвука раньше, чем ультразвуковая волна, отразившаяся от дна.

3.9. Применение ультразвука в расходометрии

Для контроля расхода и учета воды и теплоносителя с 60-х годов прошлого века в промышленности применяются ультразвуковые расходомеры.

3.10. Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

3.11. Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднен, или при соединении разнородных металлов или металлов с прочными окисными пленками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.). Так ультразвуковая сварка применяется при производстве интегральных микросхем.

3.12. Теплоотведение и ультразвук

Существуют три способа отвода тепла - излучение, конвекция и теплопроводность. И на их основе было разработано множество устройств для отвода тепла от электронных компонентов и систем. Наиболее эффективным способом является, прежде всего, передача тепла через границы раздела двух материалов, которые находятся в тесном контакте. Радиаторы и теплорассеиватели применяют для отвода тепла путем теплопроводности. 1

Производители электроники, ориентируясь на требования сегодняшнего потребителя, стремятся к повышению эффективности своих устройств и уменьшению их габаритов и веса. Одна из главных задач, которые необходимо решить конструкторам для достижения поставленных целей, - это разработка эффективной системы отвода тепла для предотвращения перегрева изделий, что отрицательно сказывается на их характеристиках и надежности.

Для эффективного отвода тепла необходим тесный контакт между материалами. Крайне важно, чтобы не было пустот в слое клея, который обычно представляет собой хорошо проводящий тепло материал или термопасту. Образование расслоений или иных воздушных образований ухудшает отвод тепла и приводит к перегреву изделия. Поэтому очень важно вовремя выявлять эти дефекты.


Ультразвук представляет волны продольного вида, которые имеют частоту колебаний более 20 КГц. Это больше частоты колебаний, воспринимаемых человеческим слуховым аппаратом. Человек же может воспринимать частоты, находящиеся в пределах 16-20 КГц, они называются звуковыми. Ультразвуковые волны выглядят как череда сгущений и разряжений вещества или среды. Благодаря их свойствам они находят широкое применение во многих областях.

Что это

В ультразвуковой диапазон попадают частоты, начиная от 20 тысяч и до нескольких миллиардов герц. Это колебания высокой частоты, которые находятся за областью слышимости ухом человека. Однако ультразвуковые волны вполне воспринимают некоторые виды животных. Это дельфины, киты, крысы и другие млекопитающие.

По физическим свойствам ультразвуковые волны являются упругими, поэтому они не имеют отличий от звуковых. В результате разница между звуковыми и ультразвуковыми колебаниями весьма условна, ведь она зависит от субъективного восприятия слуха человека и равняется верхнему уровню слышимого звука.

Но наличие более высоких частот, а значит и небольшой длины волны, придает ультразвуковым колебаниям определенные особенности:
  • Ультразвуковые частоты имеют разную скорость перемещения через различные вещества, благодаря чему можно с высокой точностью определять свойство протекающих процессов, удельную тепловую емкость газов, а также характеристики твердого тела.
  • Волны значительной интенсивности обладают определенными эффектами, которые подчиняются нелинейной акустике.
  • При движении ультразвуковых волн со значительной мощностью в жидкостной среде возникает явление акустической кавитации. Данное явление очень важно, ведь в результате создается поле пузырьков, которые образуются из субмикроскопических частиц газа или пара в водной или иной среде. Они пульсируют с некоторой частотой и захлопываются с огромным локальным давлением. Это создает сферические ударные волны, что ведет к появлению акустических микроскопических потоков. Благодаря использованию этого явления ученые научились очищать загрязненные детали, а также создавать торпеды, которые движутся в воде быстрее скорости звука.
  • Ультразвук может быть сфокусирован и сконцентрирован, что позволяет создавать звуковые рисунки. Это свойство с успехом применяется в голографии и звуковом видении.
  • Ультразвуковая волна вполне может выступать в качестве дифракционной решетки.
Свойства
Ультразвуковые волны по своим свойствам схожи со звуковыми волнами, однако у них есть и специфические особенности:
  • Малая длина волны. Даже для низкой границы длина равняется менее нескольких сантиметров. Такой небольшой размер длины приводит к лучевому характеру перемещения ультразвуковых колебаний. Непосредственно рядом с излучателем волна идет в виде пучка, которая приближается к параметрам излучателя. Однако, оказываясь в условиях неоднородной среды, пучок перемещается как луч света. Он также может отражаться, рассеиваться, преломляться.
  • Малый период колебаний, благодаря чему появляется возможность использования ультразвуковых колебаний в виде импульсов.
  • Ультразвук нельзя услышать и он не создает раздражающего эффекта.
  • При воздействии ультразвуковых колебаний на определенные среды можно добиться получения специфических эффектов. К примеру, можно создать локальный нагрев, дегазацию, обеззаразить среду, кавитацию и многие иные эффекты.
Принцип действия
Для создания ультразвуковых колебаний используются различные устройства:
  • Механические, где в качества источника выступает энергия жидкости или газа.
  • Электромеханические, где ультразвуковая энергия создается из электрической.

В качестве механических излучателей могут выступать свистки и сирены, работающие с помощью воздуха или жидкости. Они удобны и просты, однако у них есть свои минусы. Так коэффициент полезного действия у них находится в пределах 10-20 процентов. Они создают обширный спектр частот с нестабильной амплитудой и частотой. Это ведет к тому, что такие устройства невозможно использовать в условиях, когда требуется точность. Чаще всего их применяют в качестве средств сигнализации.

Электромеханические устройства используют принцип пьезоэлектрического эффекта. Его особенность в том, что при образовании электрозарядов на гранях кристалла происходит его сжимание и растягивание. В результате создаются колебания с частотой, зависящей от периода смены потенциала на поверхностях кристалла.

Кроме преобразователей, которые базируются на пьезоэлектрическом эффекте, могут применяться и магнитострикционные преобразователи. Они используются для создания мощного ультразвукового пучка. Сердечник, который выполнен из магнитострикционного материала, размещенный в проводящей обмотке, изменяет собственную длину согласно форме электрического сигнала, поступающего на обмотку.

Применение

Ультразвук находит широкое применение в самых разнообразных областях.

Чаще всего его используют в следующих направлениях:
  • Получение данных о конкретном веществе.
  • Обработка и передача сигналов.
  • Воздействие на вещество.
Так при помощи ультразвуковых волн изучают:
  • Молекулярные процессы в различных структурах.
  • Определение концентрации веществ в растворах.
  • Определение, состава, прочностных характеристик материалов и так далее.
В ультразвуковой обработке часто используется метод кавитации:
  • Металлизация.
  • Ультразвуковая очистка.
  • Дегазация жидкостей.
  • Диспергирование.
  • Получение аэрозолей.
  • Ультразвуковая стерилизация.
  • Уничтожения микроорганизмов.
  • Интенсификация электрохимических процессов.
Воздействием ультразвуковых волн в промышленности производят следующие технологические операции:
  • Коагуляция.
  • Горение в ультразвуковой среде.
  • Сушка.
  • Сварка.

В медицине ультразвуковые волны используются в терапии и диагностике. В диагностике задействуют локационные методы с применением импульсного излучения. К ним относятся ультразвуковая кардиография, эхоэнцефалография и ряд иных методов. В терапии ультразвуковые волны применяются в качестве методов, основанных на тепловом и механическом воздействии на ткани. К примеру, довольно часто во время операций используют ультразвуковой скальпель.

Также ультразвуковыми колебаниями проводится:

  • Микромассаж структур ткани при помощи вибрации.
  • Стимуляция регенерации клеток, а также межклеточного обмена.
  • Увеличение проницаемости оболочек тканей.

Ультразвукможет действовать на ткани угнетением, стимулированием или разрушением. Все это зависит от применяемой дозы ультразвуковых колебаний и их мощности. Однако не на все области тела человека разрешается использовать такие волны. Так с определенной осторожностью воздействуют на сердечную мышцу и ряд эндокринных органов. На мозг, шейные позвонки, мошонку и ряд иных органов воздействие вовсе не используется.

Ультразвуковые колебания применяются в случаях, когда невозможно использовать рентген в:
  • Травматологии используется метод эхографии, который с легкостью обнаруживает внутреннее кровотечение.
  • Акушерстве волны применяются для оценки развития плода, а также его параметров.
  • Кардиологии они позволяют обследовать сердечнососудистую систему.
Ультразвук в будущем

На текущий момент ультразвукшироко применяется в различных областях, но в будущем он найдет еще большее применение. Уже сегодня планируется создание фантастических для сегодняшнего дня устройств.

  • В медицинских целях разрабатывается технология ультразвуковой акустической голограммы. Данная технология предполагает расположение микрочастиц в пространстве для создания необходимого изображения.
  • Ученые работают над созданием технологии бесконтактных устройств, которые должны будут заменить сенсорные приборы. К примеру, уже сегодня созданы игровые устройства, которые распознают перемещения человека без непосредственного контакта. Прорабатываются технологии, которые предполагают создание невидимых кнопок, которые вполне можно ощутить руками и управлять ими. Развитие подобных технологий позволит создать бесконтактные смартфоны или планшеты. К тому же данная технология расширит возможности виртуальной реальности.
  • При помощи ультразвуковых волн уже сегодня можно заставить левитировать небольшие объекты. В будущем могут появиться машины, которые будут за счет волн парить над землей и в отсутствии трения перемещаться с огромной скоростью.
  • Ученые предполагают, что в будущем ультразвук позволит научить слепых людей видеть. Такая уверенность базируется на том, что летучие мыши распознают объекты с помощью отраженных ультразвуковых волн. Уже создан шлем, который преобразует отражаемые волны в слышимый звук.
  • Уже сегодня люди предполагают добывать полезные ископаемые в космосе, ведь там есть все. Так астрономы нашли алмазную планету, на которой полно драгоценных камней. Но как добывать такие твердые материалы в космосе. Именно ультразвук должен будет помочь в бурении плотных материалов. Такие процессы вполне возможны даже в отсутствии атмосферы. Такие технологии бурения позволят собирать образцы, проводить исследования и добывать полезные ископаемые там, где это сегодня считается невозможным.

Ультразвук

Ультразву́к - упругие колебания с частотой за пределом слышимости для человека. Обычно ультразвуковым диапазоном считают частоты выше 18 000 герц.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц . Такие колебания обычно создают с помощью пьезокерамических преобразователей из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон. Ультразвук здесь создается подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (она составляет около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учеными Коттелем и Гудменом в начале 50-х годов XX века. В нем поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку. Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Другая разновидность механических источников ультразвука - сирена. Она обладает относительно большой мощностью и применяется в полицейских и пожарных машинах. Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Основная задача при изготовлении сирен - это во-первых- сделать как можно больше отверстий в роторе, во-вторых- достичь большой скорости его вращения. Однако практически выполнить оба эти требования очень трудно.

Ультразвук в природе

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • аналгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз , остеохондроз , артриты , бурситы , эпикондилиты, пяточная шпора , состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см2., в области грудного и поясничного отдела - 0,4-0,6 Вт/см2).

Резка металла с помощью ультразвука

На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.

Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. Обычно резьба сначала делается в мягком металле, а потом уже деталь подвергают закалке. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах. То же и со штампами. Обычно штамп закаляют уже после его тщательной отделки. На ультразвуковом станке сложнейшую обработку производит абразив (наждак, корундовый порошок) в поле ультразвуковой волны. Беспрерывно колеблясь в поле ультразвука, частицы твёрдого порошка врезаются в обрабатываемый сплав и вырезают отверстие такой же формы, как и у долота.

Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для очистки

Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоты и повышенную мощность.

В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

Применение ультразвука в расходометрии

Для контроля расхода и учета воды и теплоносителя с 60-х годов прошлого века в промышленности применяются ультразвуковые расходомеры .

Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднен, или при соединении разнородных металлов или металлов с прочными окисными пленками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.). Так ультразвуковая сварка применяется при производстве интегральных микросхем.

Применение ультразвука в гальванотехнике

Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.

Дмитрий Левкин

Ультразвук - механические колебания, находящиеся выше области частот, слышимых человеческим ухом (обычно 20 кГц). Ультразвуковые колебания перемещаются в форме волны, подобно распространению света. Однако в отличие от световых волн, которые могут распространяться в вакууме, ультразвук требует упругую среду такую как газ, жидкость или твердое тело.

, (3)

Для поперечных волн она определяется по формуле

Дисперсия звука - зависимость фазовой скорости монохроматической звуковых волн от их частоты . Дисперсия скорости звука может быть обусловлена как физическим свойствами среды, так и присутствием в ней посторонних включений и наличием границ тела, в котором звуковая волна распространяется.

Разновидности ультразвуковых волн

Большинство методов ультразвукового исследования использует либо продольные, либо поперечные волны. Также существуют и другие формы распространения ультразвука, включая поверхностные волны и волны Лэмба.

Продольные ультразвуковые волны – волны, направление распространения которых совпадает с направлением смещений и скоростей частиц среды.

Поперечные ультразвуковые волны – волны, распространяющиеся в направлении, перпендикулярном к плоскости, в которой лежат направления смещений и скоростей частиц тела, то же, что и сдвиговые волны .

Поверхностные (Рэлеевские) ультразвуковые волны имеют эллиптическое движение частиц и распространяются по поверхности материала. Их скорость приблизительно составляет 90% скорости распространения поперечной волны, а их проникновение вглубь материала равно примерно одной длине волны .

Волна Лэмба - упругая волна, распространяющиеся в твёрдой пластине (слое) со свободными границами, в которой колебательное смещение частиц происходит как в направлении распространения волны, так и перпендикулярно плоскости пластины. Лэмба волны представляют собой один из типов нормальных волн в упругом волноводе – в пластине со свободными границами. Т.к. эти волны должны удовлетворять не только уравнениям теории упругости, но и граничным условиям на поверхности пластины, картина движения в них и их свойства более сложны, чем у волн в неограниченных твёрдых телах.

Визуализация ультразвуковых волн

Для плоской синусоидальной бегущей волны интенсивность ультразвука I определяется по формуле

, (5)

В сферической бегущей волне интенсивность ультразвука обратно пропорциональна квадрату расстояния от источника. В стоячей волне I = 0, т. е. потока звуковой энергии в среднем нет. Интенсивность ультразвука в гармонической плоской бегущей волне равна плотности энергии звуковой волны, умноженной на скорость звука. Поток звуковой энергии характеризуют так называемым вектором Умова - вектором плотности потока энергии звуковой волны, который можно представить как произведение интенсивности ультразвука на вектор волновой нормали, т. е. единичный вектор, перпендикулярный фронту волны. Если звуковое поле представляет собой суперпозицию гармонических волн различной частоты, то для вектора средней плотности потока звуковой энергии имеет место аддитивность составляющих.

Для излучателей, создающих плоскую волну, говорят об интенсивности излучения , понимая под этим удельную мощность излучателя , т. е. излучаемую мощность звука, отнесённую к единице площади излучающей поверхности.

Интенсивность звука измеряется в системе единиц СИ в Вт/м 2 . В ультразвуковой технике интервал изменения интенсивности ультразвука очень велик - от пороговых значений ~ 10 -12 Вт/м 2 до сотен кВт/м 2 в фокусе ультразвуковых концентраторов.

Таблица 1 - Свойства некоторых распространенных материалов

Материал Плотность, кг/м 3 Скорость продольной волны, м/c Скорость поперечной волны, м/c , 10 3 кг/(м 2 *с)
Акрил 1180 2670 - 3,15
Воздух 0,1 330 - 0,00033
Алюминий 2700 6320 3130 17,064
Латунь 8100 4430 2120 35,883
Медь 8900 4700 2260 41,830
Стекло 3600 4260 2560 15,336
Никель 8800 5630 2960 49,544
Полиамид (нейлон) 1100 2620 1080 2,882
Сталь (низколегированный сплав) 7850 5940 3250 46,629
Титан 4540 6230 3180 26,284
Вольфрам 19100 5460 2620 104,286
Вода (293К) 1000 1480 - 1,480

Затухание ультразвука

Одной из основных характеристик ультразвука является его затухание. Затухание ультразвука – это уменьшение амплитуды и, следовательно, звуковой волны по мере ее распространения. Затухание ультразвука происходит из-за ряда причин. Основными из них являются:

Первая из этих причин связана с тем, что по мере распространения волны от точечного или сферического источника энергия, излучаемая источником, распределяется на все увеличивающуюся поверхность волнового фронта и соответственно уменьшается поток энергии через единицу поверхности, т.е. . Для сферической волны, волновая поверхность которой растёт с расстоянием r от источника как r 2 , амплитуда волны убывает пропорционально , а для цилиндрической волны - пропорционально .

Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м).

Для плоской волны коэффициент затухания по амплитуде с расстоянием определяется по формуле

, (6)

Коэффициент затухания от времени определяется

, (7)

Для измерения коэффициента также используют единицу дБ/м, в этом случае

, (8)

Децибел (дБ) – логарифмическая единица измерения отношения энергий или мощностей в акустике .

, (9)

  • где A 1 – амплитуда первого сигнала,
  • A 2 – амплитуда второго сигнала

Тогда связь между единицами измерения (дБ/м) и (1/м) будет:

Отражение ультразвука от границы раздела сред

При падении звуковой волны на границу раздела сред, часть энергии будет отражаться в первую среду, а остальная энергия будет проходить во вторую среду. Соотношение между отраженной энергией и энергией, проходящей во вторую среду, определяется волновыми сопротивлениями первой и второй среды. При отсутствии дисперсии скорости звука волновое сопротивление не зависит от формы волны и выражается формулой:

Коэффициенты отражения и прохождения будут определяться следующим образом

, (12)

, (13)

  • где D – коэффициент прохождения звукового давления

Стоит отметить также, что если вторая среда акустически более «мягкая», т.е. Z 1 >Z 2 , то при отражении фаза волны изменяется на 180˚ .

Коэффициент пропускания энергии из одной среды в другую определяется отношением интенсивности волны, проходящей во вторую среду, к интенсивности падающей волны

, (14)

Интерференция и дифракция ультразвуковых волн

Интерференция звука - неравномерность пространственного распределения амплитуды результирующей звуковой волны в зависимости от соотношения между фазами волн, складывающихся в той или иной точке пространства. При сложении гармонических волн одинаковой частоты результирующее пространственное распределение амплитуд образует не зависящую от времени интерференционную картину, которая соответствует изменению разности фаз составляющих волн при переходе от точки к точке. Для двух интерферирующих волн эта картина на плоскости имеет вид чередующихся полос усиления и ослабления амплитуды величины, характеризующей звуковое поле (например, звукового давления). Для двух плоских волн полосы прямолинейны с амплитудой, меняющейся поперёк полос соответственно изменению разности фаз. Важный частный случай интерференции - сложение плоской волны с её отражением от плоской границы; при этом образуется стоячая волна с плоскостями узлов и пучностей, расположенными параллельно границе.

Дифракция звука - отклонение поведения звука от законов геометрической акустики, обусловленное волновой природой звука. Результат дифракции звука - расхождение ультразвуковых пучков при удалении от излучателя или после прохождения через отверстие в экране, загибание звуковых волн в область тени позади препятствий, больших по сравнению с длиной волны, отсутствие тени позади препятствий, малых по сравнению с длиной волны, и т. п. Звуковые поля, создаваемые дифракцией исходной волны на препятствиях, помещённых в среду, на неоднородностях самой среды, а также на неровностях и неоднородностях границ среды, называются рассеянными полями. Для объектов, на которых происходит дифракция звука, больших по сравнению с длиной волны , степень отклонений от геометрической картины зависит от значения волнового параметра

, (15)

  • где D - поперечник объекта (например, поперечник ультразвукового излучателя или препятствия),
  • r - расстояние точки наблюдения от этого объекта

Излучатели ультразвука

Излучатели ультразвука - устройства, применяемые для возбуждения ультразвуковых колебаний и волн в газообразных, жидких и твердых средах. Излучатели ультразвука преобразуют в энергию энергию какого-либо другого вида.

Наибольшее распространение в качестве излучателей ультразвука получили электроакустические преобразователи . В подавляющем большинстве излучателей ультразвука этого типа, а именно в пьезоэлектрических преобразователях , магнитострикционных преобразователях , электродинамических излучателях , электромагнитных и электростатических излучателях, электрическая энергия преобразуется в энергию колебаний какого-либо твердого тела (излучающей пластинки, стержня, диафрагмы и т.п.), которое и излучает в окружающую среду акустические волны. Все перечисленные преобразователи, как правило, линейны, и, следовательно, колебания излучающей системы воспроизводят по форме возбуждающий электрический сигнал; лишь при очень больших амплитудах колебаний вблизи верхней границы динамического диапазона излучателя ультразвука могут возникнуть нелинейные искажения.

В преобразователях, предназначенных для излучения монохроматической волны, используется явление резонанса : они работают на одном из собственных колебаний механической колебательной системы, на частоту которого настраивается генератор электрических колебаний, возбуждающий преобразователь. Электроакустические преобразователи, не обладающие твердотельной излучающей системой, применяются в качестве излучателей ультразвука сравнительно редко; к ним относятся, например, излучатели ультразвука, основанные на электрическом разряде в жидкости или на электрострикции жидкости .

Характеристики излучателя ультразвука

К основным характеристикам излучателей ультразвука относятся их частотный спектр , излучаемая мощность звука , направленность излучения . В случае моночастотного излучения основными характеристиками являются рабочая частота излучателя ультразвука и его частотная полоса , границы которой определяются падением излучаемой мощности в два раза по сравнению с её значением на частоте максимального излучения. Для резонансных электроакустических преобразователей рабочей частотой является собственная частота f 0 преобразователя, а ширина полосы Δf определяется его добротностью Q.

Излучатели ультразвука (электроакустические преобразователи) характеризуются чувствительностью, электроакустическим коэффициентом полезного действия и собственным электрическим импедансом.

Чувствительность излучателя ультразвука - отношение звукового давления в максимуме характеристики направленности на определённом расстоянии от излучателя (чаще всего на расстоянии 1 м) к электрическому напряжению на нём или к протекающему в нём току. Эта характеристика применяется к излучателям ультразвука, используемым в системах звуковой сигнализации, в гидролокации и в других подобных устройствах. Для излучателей технологического назначения, применяемых, например, при ультразвуковых очистке, коагуляции, воздействии на химические процессы, основной характеристикой является мощность. Наряду с общей излучаемой мощностью, оцениваемой в Вт, излучатели ультразвука характеризуют удельной мощностью , т. е. средней мощностью, приходящейся на единицу площади излучающей поверхности, или усреднённой интенсивностью излучения в ближнем поле, оцениваемой в Вт/м 2 .

Эффективность электроакустических преобразователей, излучающих акустическую энергию в озвучиваемую среду, характеризуют величиной их электроакустического коэффициента полезного действия , представляющего собой отношение излучаемой акустической мощности к затрачиваемой электрической. В акустоэлектронике для оценки эффективности излучателей ультразвука используют так называемый коэффициент электрических потерь, равный отношению (в дБ) электрической мощности к акустической. Эффективность ультразвуковых инструментов, используемых при ультразвуковой сварке, механической обработке и тому подобное, характеризуют так называемым коэффициентом эффективности, представляющим собой отношение квадрата амплитуды колебательного смещения на рабочем конце концентратора к электрической мощности, потребляемой преобразователем. Иногда для характеристики преобразования энергии в излучателях ультразвука используют эффективный коэффициент электромеханической связи.

Звуковое поле излучателя

Звуковое поле преобразователя делят на две зоны: ближнюю зону и дальнюю зону. Ближняя зона это район прямо перед преобразователем, где амплитуда эха проходит через серию максимумов и минимумов. Ближняя зона заканчивается на последнем максимуме, который располагается на расстоянии N от преобразователя. Известно, что расположение последнего максимума является естественным фокусом преобразователя. Дальняя зона это район находящийся за N, где давление звукового поля постепенно уменьшается до нуля .

Положение последнего максимума N на акустической оси в свою очередь зависит от диаметра и длины волны и для дискового круглого излучателя выражается формулой

, (17)

Однако поскольку D обычно значительно больше , уравнение можно упростить и привести к виду

Характеристики звукового поля определяются конструкцией ультразвукового преобразователя. Следовательно, от его формы зависит распространение звука в исследуемой области и чувствительность датчика.

Применение ультразвука

Многообразные применения ультразвука, при которых используются различные его особенности, можно условно разбить на три направления. связано с получением информации посредством ультразвуковых волн, - с активным воздействием на вещество и - с обработкой и передачей сигналов (направления перечислены в порядке их исторического становления). При каждом конкретном применении используется ультразвук определённого частотного диапазона.



Читайте также: