Поверхностные волны. Незатухающая волна с вертикальной поляризацией

Поверхностные волны

Типичное ПАВ устройство, используемое, например, в качестве полосового фильтра . Поверхностная волна генерируется слева через приложение переменного напряжения через проводники, изготовленные печатным методом. При этом электрическая энергия преобразуется в механическую. Двигаясь по поверхности механическая высокочастотная волна меняется. Справа - приёмные дорожки снимают сигнал, при этом происходит обратное преобразование механической энергии в переменный электрический ток, через нагрузочный резистор.

Пове́рхностные акусти́ческие во́лны (ПАВ) - упругие волны , распространяющиеся вдоль поверхности твёрдого тела или вдоль границы с другими средами. ПАВ подразделяются на два типа: с вертикальной поляризацией и с горизонтальной поляризацией (волны Лява ).

К наиболее часто встречающимся частным случаям поверхностных волн можно отнести следующие:

  • Волны Рэлея (или рэлеевские), в классическом понимании распространяющиеся вдоль границы упругого полупространства с вакуумом или достаточно разреженной газовой средой.
  • на границе твердого тела с жидкостью.
  • Волна Стонли
  • Волны Лява - поверхностные волны с горизонтальной поляризацией (SH типа), которые могут распространяться в структуре упругий слой на упругом полупространстве.

Волны Рэлея

Волны Релея, теоретически открытые Релеем в 1885 году, могут существовать в твердом теле вблизи его свободной поверхности, граничащей с вакуумом. Фазовая скорость таких волн направлена параллельно поверхности, а колеблющиеся вблизи нее частицы среды имеют как поперечную, перпендикулярную поверхности, так и продольную составляющие вектора смещения. Эти частицы описывают при своих колебаниях эллиптические траектории в плоскости, перпендикулярной поверхности и проходящей через направление фазовой скорости. Указанная плоскость называется сагиттальной. Амплитуды продольных и поперечных колебаний уменьшаются по мере удаления от поверхности вглубь среды по экспоненциальным законам с различными коэффициентами затухания. Это приводит к тому, что эллипс деформируется и поляризация вдали от поверхности может стать линейной. Проникновение волны Релея в глубину звукопровода составляет величину порядка длины поверхностной волны. Если волна Релея возбуждена в пьезоэлектрике, то как внутри него, так и над его поверхностью в вакууме будет существовать медленная волна электрического поля, вызванная прямым пьезоэффектом.

Применяются в сенсорных дисплеях с поверхностными акустическими волнами.

Затухающие волны рэлеевского типа

Затухающие волны рэлеевского типа на границе твердого тела с жидкостью.

Незатухающая волна с вертикальной поляризацией

Незатухающая волна с вертикальной поляризацией , бегущая по границе жидкости и твердого тела со скоростью

Волна Стонли

Волна Стонли , распространяющаяся вдоль плоской границы двух твердых сред, модули упругости и плотности которых не сильно различаются.

Волны Лява

Ссылки

  • Физическая энциклопедия, т.3 - М.:Большая Российская Энциклопедия стр.649 и стр.650 .

Wikimedia Foundation . 2010 .

  • Поверхностно-акустические волны
  • Поверхностные упругие волны

Смотреть что такое "Поверхностные волны" в других словарях:

    ПОВЕРХНОСТНЫЕ ВОЛНЫ - электромагнитные, волны, распространяющиеся вдоль нек рой поверхности и имеющие распределение полей E, Н, достаточно быстро убывающее при удалении от неё в одну (односторонняя П. в.) или обе (истинная П. в.) стороны. Односторонняя Ц. в. возникает … Физическая энциклопедия

    ПОВЕРХНОСТНЫЕ ВОЛНЫ - (см.), возникающие и на свободной поверхности жидкости или распространяющиеся по поверхности раздела двух несмешивающихся жидкостей под воздействием внешней причины (ветер, брошенный камень и др.), выводящей поверхность из состояния равновесия… … Большая политехническая энциклопедия

    поверхностные волны - — Тематики нефтегазовая промышленность EN surface waves …

    ПОВЕРХНОСТНЫЕ ВОЛНЫ - волны, распространяющиеся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей П. в. возникают под влиянием внеш. воздействия (напр.. ветра), выводящего поверхность жидкости из равновесного состояния. В… … Большой энциклопедический политехнический словарь

    Поверхностные волны - Упругие волны, распространяющиеся вдоль свободной поверхности твёрдого тела или вдоль границы твёрдого тела с другими средами и затухающие при удалении от границы. Простейшими и вместе с тем наиболее часто встречающимися на практике П. в … Большая советская энциклопедия

    поверхностные волны-помехи - — Тематики нефтегазовая промышленность EN ground rollssurface wave noise … Справочник технического переводчика

    ПОВЕРХНОСТНЫЕ АКУСТИЧЕСКИЕ ВОЛНЫ - (ПАВ), упругие волны, распространяющиеся вдоль свободной поверхности тв. тела или вдоль границы тв. тела с др. средами и затухающие при удалении от границ. ПАВ бывают двух типов: с вертикальной поляризацией, у к рых вектор колебат. смещения ч ц… … Физическая энциклопедия

    Волны Рэлея - поверхностные акустические волны. Названы в честь Рэлея теоретически предсказавшего их в 1885 году. Содержание 1 Описание 2 Изотропное тело … Википедия

    Волны Лява - Волны Лява упругая волна с горизонтальной поляризацией. Может быть как объёмной так и поверхностной. Названа в честь Лява (англ. Love) исследовавшего этот тип волн в приложении к сейсмологии в 1911 году. Содержание 1 Описание … Википедия

    Поверхностные акустические волны - Типичное ПАВ устройство, в основе которого применяется встречно гребенчатый преобразователь, используемое в качестве полосового фильтра. Поверхностная волна генерируется слева через приложение переменного напряжения через про … Википедия

Волны в дискретной цепочке. Поляризация волн. Скорость поперечной волны. Плотность кинетической энергии бегущей водны.

Волны.

С давних пор наглядный образ волны всегда ассоциировался с волнами на поверхности воды. Но волны на воде представляют собой значительно более сложное явление, чем многие другие волновые процессы - такие, как распространение звука в однородной изотропной среде. Поэтому естественно начинать изучение волнового движения не с волн на воде, а с более простых случаев.


Волны в дискретной цепочке.

Проще всего представить себе волну, распространяющуюся по бесконечной цепочке связанных маятников (рис. 192). С бесконечной цепочки мы начинаем для того, чтобы можно было рассматривать волну, распространяющуюся в одном направлении, и не думать о возможном ее отражении от конца цепочки.

Рис. 192. Волна в цепочке связанных маятников Если маятник, находящийся в начале цепочки, привести в гармоническое колебательное движение с некоторой частотой со и амплитудой А, то колебательное движение будет распространяться по цепочке. Такое распространение колебаний из одного места в другое и называется волновым процессом или волной. В отсутствие затухания любой другой маятник в цепочке будет повторять вынужденные колебания первого маятника с некоторым отставанием по фазе. Это запаздывание связано с тем, что распространение колебаний по цепочке происходит с некоторой конечной скоростью. Скорость распространения колебаний и зависит от жесткости соединяющей маятники пружинки, от того, насколько сильна связь между маятниками. Если первый маятник в цепочке движется по определенному закону, его смешение из положения равновесия есть заданная функция времени, то смещение маятника, отстоящего от начала цепочки на расстояние, в любой момент времени будет точно таким же, как смешение первого маятника в более ранний момент времени будет описываться функцией. Пусть при гармонических колебаниях первого маятника его смещение из положения равновесия дается выражением. Каждый из маятников цепочки характеризуется тем расстоянием, на которое он отстоит от начала цепочки. Поэтому его смещение из положения равновесия при прохождении волны естественно обозначить через. Тогда, в соответствии со сказанным выше, имеем Описываемая уравнением волна называется монохроматической. Характерным признаком монохроматической волны является то, что каждый из маятников совершает синусоидальное колебание определенной частоты. Распространение волны по цепочке маятников сопровождается переносом энергии и импульса. Но никакого переноса массы при этом не происходит: каждый маятник, совершая колебания около положения равновесия, в среднем остается на месте.


Поляризация волн. В зависимости от того, в каком направлении происходят колебания маятников, говорят о волнах разной поляризации. Если колебания маятников происходят вдоль направления распространения волны, как на рис. 192, то волна называется продольной, если поперек - то поперечной. Обычно волны разной поляризации распространяются с разными скоростями. Рассмотренная цепочка связанных маятников представляет собой пример механической системы с сосредоточенными параметрами.

Другой пример системы с сосредоточенными параметрами, в которой могут распространяться волны, это цепочка шариков, связанных легкими пружинками (рис. 193). В такой системе инертные свойства сосредоточены у шариков, а упругие у пружинок. При распространении волны кинетическая энергия колебаний локализована на шариках, а потенциальная - на пружинках. Легко сообразить, что такую цепочку соединенных пружинками шариков можно рассматривать как модель одномерной системы с распределенными параметрами, например упругой струны. В струне каждый элемент длины обладает одновременно массой, инертными свойствами, и жесткостью, упругими свойствами. Волны в натянутой струне. Рассмотрим поперечную монохроматическую волну, распространяющуюся в бесконечной натянутой струне. Предварительное натяжение струны необходимо потому, что ненатянутая гибкая струна, в отличие от твердого стержня, обладает упругостью только по отношению к деформации растяжения, но не сжатия. Монохроматическая волна в струне описывается тем же выражением, что и волна в цепочке маятников. Однако теперь роль отдельного маятника играет каждый элемент струны, поэтому переменная в уравнении, характеризующая равновесное положение маятника, принимает непрерывные значения. Смещение любого элемента струны из равновесного положения при прохождении волны есть функция двух переменны времени и равновесного положения этого элемента. Если в формуле зафиксировать рассматривать определенный элемент струны, то функция при фиксированном дает смещение выделенного элемента струны в зависимости от времени. Это смешение представляет собой гармоническое колебание с частотой со и амплитудой. Начальная фаза колебаний этого элемента струны зависит от его равновесного положения. Все элементы струны при прохождении монохроматической волны совершают гармонические колебания одинаковой частоты и амплитуды, но различающиеся по фазе.


Длина волны.

Если в формуле зафиксировать, рассматривать всю струну в один и тот же момент времени, то функция при фиксированном дает мгновенную картину смещений всех элементов струны как бы моментальную фотографию волны. На этой «фотографии» мы увидим застывшую синусоиду (рис. 194). Период этой синусоиды, расстояние между соседними горбами или впадинами, называется длиной волны. Из формулы можно найти, что длина волны связана с частотой со и скоростью волны и соотношением период колебаний. Картину распространения волны можно представить себе, если эту «застывшую» синусоиду привести в движение вдоль оси со скоростью.


Рис. 194. Смещение разных точек струны в один и тот же момент времени. Рис. 195. Картины смещений точек струны в момент времени. Две последовательные «моментальные фотографии» волны в моменты времени показаны на рис. 195. Видно, что длина волны равна расстоянию, проходимому любым горбом за период колебаний в соответствии с формулой.


Скорость поперечной волны.

Определим скорость распространения монохроматической поперечной волны в струне. Будем считать, что амплитуда мала по сравнению с длиной волны. Пусть волна бежит вправо со скоростью и. Перейдем в новую систему отсчета, движущуюся вдоль струны со скоростью, равной скорости волны и. Эта система отсчета также является инерциальной и, следовательно, в ней справедливы законы Ньютона. Из этой системы отсчета волна кажется застывшей синусоидой, а вещество струны скользит вдоль этой синусоиды влево: любой предварительно окрашенный элемент струны будет казаться убегающим вдоль синусоиды влево со скоростью.

Рис. 196. К расчету скорости распространиния волны в струне. Рассмотрим в этой системе отсчета элемент струны длины, которая много меньше длины волны, в тот момент, когда он находится на гребне синусоиды (рис. 196). Применим к этому элементу второй закон Ньютона. Силы, действующие на элемент со стороны соседних участков струны, показаны в выделенном кружке на рис. 196. Поскольку рассматривается поперечная волна, в которой смещения элементов струны перпендикулярны направлению распространения волны, то горизонтальная составляющая силы натяжения. жения постоянна вдоль всей струны. Так как длина рассматриваемого участка, то направления сил натяжения, действующих на выделенный элемент, почти горизонтальны, а их модуль можно считать равным. Равнодействующая этих сил направлена вниз и равна. Скорость рассматриваемого элемента равна и и направлена влево, а малый участок его синусоидальной траектории вблизи горба можно считать дугой окружности радиуса. Поэтому ускорение этого элемента струны направлено вниз и равно. Массу элемента струны можно представить в виде плотность материала струны, a площадь сечения, которые ввиду малости деформаций при распространении волны можно считать такими же, как и в отсутствие волны. На основании второго закона Ньютона. Это и есть искомая скорость распространения поперечной монохроматической волны малой амплитуды в натянутой струне. Видно, что она зависит только от механического напряжения натянутой струны и ее плотности и не зависит от амплитуды и длины волны. Это значит, что поперечные волны любой длины распространяются в натянутой струне с одинаковой скоростью. Если в струне одновременно распространяются, например, две монохроматические волны с одинаковыми амплитудами и близкими частотами со, то «моментальные фотографии» этих монохроматических волн и результирующей волны будут иметь вид, показанный на рис. 197.


Там, где горб одной волны совпадает с горбом другой, в результирующей волне смешение максимально. Поскольку соответствующие отдельным волнам синусоиды бегут вдоль оси z с одинаковой скоростью и, то и результирующая кривая бежит с той же самой скоростью, не меняя своей формы. Оказывается, что это справедливо для волнового возмущения любой формы: поперечные волны произвольного вида распространяются в натянутой струне, не меняя своей формы. О дисперсии волн. Если скорость распространения монохроматических волн не зависит от длины волны или частоты, то говорят, что отсутствует дисперсия. Сохранение формы любой волны при ее распространении есть следствие отсутствия дисперсии. Дисперсия отсутствует для волн любого вида, распространяющихся в сплошных упругих средах. Это обстоятельство позволяет очень легко найти скорость продольных волн.


Скорость продольных волн.

Рассмотрим, например, длинный упругий стержень площади, в котором распространяется продольное возмущение с крутым передним фронтом. Пусть в некоторый момент времени этот фронт, перемещаясь со скоростью, дошел до точки с координатой справа от фронта все точки стержня еще покоятся. Спустя промежуток времени фронт переместится вправо на расстояние (рис. 198). В пределах этого слоя все частицы движутся с одной и той же скоростью. Спустя этот промежуток времени частицы стержня, находившиеся в момент на фронте волны, переместятся вдоль стержня на расстояние. Применим к вовлеченной за время в волновой процесс массе стержня закон сохранения импульса. Действующую на массу выразим через деформацию элемента стержня с помощью закона Гука. Длина выделенного элемента стержня равна, а изменение его длины под действием силы равно. Поэтому с помощью находим Подставляя это значение в, получаем Скорость продольных звуковых волн в упругом стержне зависит только от модуля Юнга и плотности. Легко убедиться, что в большинстве металлов эта скорость составляет примерно. Скорость продольных волн в упругой среде всегда больше скорости поперечных. Сравним, например, скорости продольных и поперечных волн и(в натянутой гибкой струне. Поскольку при малых деформациях упругие постоянные не зависят от приложенных сил, то скорость продольных волн в натянутой струне не зависит от ее предварительного натяжения и определяется формулой. Для того чтобы сравнить эту скорость с найденной ранее скоростью поперечных волн иг выразим силу натяжения струны, входящую в формулу, через относительную деформацию струны обусловленную этим предварительным натяжением. Подставляя значение в формулу, получаем Таким образом, скорость поперечных волн в натянутой струне ut оказывается значительно меньше скорости продольных волн, так как относительное растяжение струны е много меньше единицы. Энергия волны. При распространении волн происходит передача энергии без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц вещества и из потенциальной энергии упругой деформации среды. Рассмотрим, например, продольную волну в упругом стержне. В фиксированный момент времени кинетическая энергия распределена по объему стержня неравномерно, так как одни точки стержня в этот момент покоятся, другие, напротив, движутся с максимальной скоростью. То же самое справедливо и для потенциальной энергии, так как в этот момент какие-то элементы стержня не деформированы, другие же деформированы максимально. Поэтому при рассмотрении энергии волны естественно вводить плотность кинетической и потенциальной энергий. Плотность энергии волны в каждой точке среды не остается постоянной, а периодически изменяется при прохождении волны: энергия распространяется вместе с волной.

Почему при распространении поперечной волны в натянутой струне продольная составляющая силы натяжения струны одинакова вдоль всей струны и не изменяется при прохождении волны?

Что такое монохроматические волны? Как длина монохроматической волны связана с частотой и скоростью распространения? В каких случаях волны называются продольными и в каких поперечными? Покажите с помощью качественных рассуждений, что скорость распространения волны тем больше, чем больше сила, стремящаяся возвратить возмущенный участок среды в состояние равновесия, и тем меньше, чем больше инертность этого участка. Какими характеристиками среды определяется скорость продольных волн и скорость поперечных волн? Как связаны между собой скорости таких волн в натянутой струне?


Плотность кинетической энергии бегущей волны.

Рассмотрим плотность кинетической энергии в монохроматической упругой волне, описываемой уравнением. Выделим в стержне малый элемент между плоскостями такой, что его длина в недеформированном состоянии много меньше длины волны. Тогда скорости всех частиц стержня в этом элементе при распространении волны можно считать одинаковыми. С помощью формулы находим скорость, рассматривая как функцию времени и считая величину, характеризующую положение рассматриваемого элемента стержня, фиксированной. Масса выделенного элемента стержня, поэтому его кинетическая энергия в момент времени есть С помощью выражения находим плотность кинетической энергии в точке в момент времени. Плотность потенциальной энергии. Перейдем к вычислению плотности потенциальной энергии волны. Поскольку длина выделенного элемента стержня мала по сравнению с длиной волны, то вызываемую волной деформацию этого элемента можно считать однородной. Поэтому потенциальную энергию деформации можно записать в виде удлинение рассматриваемого элемента стержня, вызванное проходящей волной. Для нахождения этого удлинения нужно рассмотреть положение плоскостей, ограничивающих выделенный элемент, в некоторый момент времени. Мгновенное положение любой плоскости, равновесное положение которой характеризуется координатой, определяется функцией, рассматриваемой как функция при фиксированном. Поэтому удлинение рассматриваемого элемента стержня, как видно из рис. 199, равно Относительное удлинение этого элемента есть Если в этом выражении перейти к пределу при, то оно превращается в производную функции по переменной при фиксированном. С помощью формулы получаем

Рис. 199. К расчету относительного удлинения стержня Теперь выражение для потенциальной энергии принимает вид а плотность потенциальной энергии в точке в момент времени есть Энергия бегущей волны. Поскольку скорость распространения продольных волн, то правые части в формулах совпадают. Это значит, что в бегущей продольной упругой волне плотности кинетической и потенциальной энергий равны в любой момент времени в любой точке среды. Зависимость плотности энергии волны от координаты в фиксированный момент времени показана на рис. 200. Обратим внимание на то, что в отличие от локализованных колебаний (осциллятор), где кинетическая и потенциальная энергии изменяются в противофазе, в бегущей волне колебания кинетической и потенциальной энергий происходят в одинаковой фазе. Кинетическая и потенциальная энергии в каждой точке среды одновременно достигают максимальных значений и одновременно обращаются в нуль. Равенство мгновенных значений плотности кинетической и потенциальной энергий есть общее свойство бегущих волн волн, распространяющихся в определенном направлении. Можно убедиться, что это справедливо и для поперечных волн в натянутой гибкой струне. Рис. 200. Смещение частиц среды и плотность энергии в бегущей волне

До сих пор мы рассматривали волны, распространяющиеся в системе, имеющей бесконечную протяженность только по одному направлению: в цепочке маятников, в струне, в стержне. Но волны могут распространяться и в среде, имеющей бесконечные размеры по всем направлениям. В такой сплошной среде волны бывают разного вида в зависимости от способа их возбуждения. Плоская волна. Если, например, волна возникает в результате гармонических колебаний бесконечной плоскости, то в однородной среде она распространяется в направлении, перпендикулярном этой плоскости. В такой волне смещение всех точек среды, лежащих на любой плоскости, перпендикулярной направлению распространения, происходит совершенно одинаково. Если в среде не происходит поглощения энергии волны, то амплитуда колебаний точек среды всюду одинакова и их смещение дается формулой. Такая волна называется плоской.


Сферическая волна.

Волну другого вида сферическую создает в однородной изотропной упругой среде пульсирующий шар. Такая волна распространяется с одинаковой скоростью по всем направлениям. Ее волновые поверхности, поверхности постоянной фазы, представляют собой концентрические сферы. В отсутствие поглощения энергии в среде легко определить зависимость амплитуды сферической волны от расстояния до центра. Поскольку поток энергии волны, пропорциональный квадрату амплитуды, одинаков через любую сферу, амплитуда волны убывает обратно пропорционально расстоянию от центра. Уравнение продольной сферической волны имеет вид где амплитуда колебаний на расстоянии от центра волны.

Как зависит переносимая бегущей волной энергия от частоты и от амплитуды волны?

Что такое плоская волна? Сферическая волна? Как зависят от расстояния амплитуды плоской и сферической волн?

Объясните, почему в бегущей волне кинетическая энергия и потенциальная энергия изменяются в одинаковой фазе.

Любое локальное нарушение горизонтальности поверхности жидкости приводит к появлению волн, которые распространяются по поверхности и быстро затухают с глубиной. Возникновение волн происходит из-за совместного действия силы тяжести и силы инерции (гравитационные гидродинамические волны) или силы поверхностного натяжения и силы инерции (капиллярные волны).

Приведем ряд результатов по гидродинамике поверхностного волнения жидкости, которые понадобятся нам в дальнейшем . Можно существенно упростить задачу, если считать жидкость идеальной; учет диссипации необходим главным образом для капиллярных и коротких гравитационных волн.

Считая смещения частиц жидкости малыми, можно ограничиться линейной задачей и пренебречь в уравнении Эйлера нелинейным членом что соответствует малости амплитуды волны по сравнению с ее длиной X. Тогда для несжимаемой жидкости волновое движение на ее поверхности без учета сил поверхностного натяжения определяется такой системой уравнений для потенциала (напомним, что :

Направлена вертикально вверх и соответствует невозмущенной поверхности жидкости).

Для неограниченной поверхности жидкости, глубина которой значительно больше длины волны, можно искать решение задачи в виде распространяющейся в положительном направлении х и затухающей с глубиной плоской неоднородной волны:

где - частота волны и волновое число, где - фазовая скорость. Подставляя это значение потенциала в уравнение (6.1), а также учитывая, что решения имеют смысл для , получаем выражение для потенциала:

а удовлетворяя граничному условию на поверхности жидкости дисперсионное уравнение

Таким образом, групповая скорость распространения гравитационной волны

тогда как фазовая скорость такой волны

Как видно, гравитационные волны обладают дисперсией; с увеличением длины волны их фазовая скорость растет.

Интересен вопрос о том, каково распределение скоростей частиц жидкости в волне; оно находится дифференцированием потенциала (6.3) по х.

Рис. 1.4. Дисперсионная кривая для гравитационно-капиллярных волн на поверхности глубокой воды в области, где существенны и g, и а.

Рассмотрение показывает, что частицы жидкости в волне описывают движение приблизительно по окружности (вокруг своих равновесных точек ), радиус которых экспоненциально спадает с глубиной. На глубине, равной одной длине волны, ее амплитуда примерно в 535 раз меньше, чем вблизи поверхности. Приведенные результаты относились к волнам на глубокой воде, когда где h - глубина жидкости. Если имеет место противоположный случай (например, волны распространяются в канале конечной, но малой глубины), то

Как видно, такие волны дисперсией не обладают.

С учетом капиллярной силы Лапласа, обусловленной поверхностным натяжением 0,

т. е., в отличие от гравитационных, скорость капиллярных волн растет с уменьшением длины волны. Совместное действие силы тяжести и силы поверхностного натяжения определяется таким дисперсионным уравнением (глубокая вода):

На рис. 1.4 показана зависимость фазовой скорости распространения волн на поверхности жидкости от длины волны для воды согласно выражению (6.9). Из этого рисунка видно, что при см имеет место минимум скорости поверхностных волн, являющихся смешанными гравитационно-капиллярными волнами..

Приведенные результаты относились к одномерным линейным волнам в отсутствие диссипации. Кроме того, считалось, что волны регулярные и распространяются в одном направлении. Волны, возникающие при движении корабля в спокойной воде или при подходе к мелкому берегу, действительно представляют собой

регулярные возмущения. Волны же на поверхности жидкости, возникающие под действием ветра, преимущественно случайные - они движутся в разных направлениях и имеют разные частоты и амплитуды; именно такую картину мы наблюдаем, находясь на корабле в открытом море в ветренную погоду.

Затухание гравитационных волн с длинами волн более метра мало, но оно все же значительно больше, чем это следует из линейной теории. Это расхождение, очевидно, вызвано процессами, связанными с нелинейностью при распространении гравитационных и капиллярных волн. Так, если одиночная волна распространяется на мелкой воде с фазовой скоростью , то такая волна не обладает дисперсией. Ее профиль по мере распространения становится круче благодаря тому, что верхние частицы среды, для которых глубина h больше, чем для нижних частиц, будут двигаться с большей скоростью, согласно (6.7), и волна начнет захлестываться; при подходе к берегу волна обрушивается на него. Эффект захлестывания усиливается еще и потому, что при уменьшении глубины h возрастает амплитуда волны по закону сохранения лотока энергии плотность энергии возрастает из-за уменьшения поперечного сечения слоя воды. С ростом же нелинейные эффекты проявляются еще сильнее. Процесс «укручения» волн при их распространении происходит и на глубокой воде вследствие нелинейности уравнений движения. Теория нелинейных волн на ловерхности жидкости получила большое развитие в последнее время, хотя первые работы в этом направлении были сделаны еще в конце прошлого века.

Если имеется несколько волн, они нелинейно взаимодействуют друг с другом; принцип суперпозиции для волн конечной амплитуды уже не соблюдается. Условия нелинейного взаимодействия гравитационных волн, благодаря их дисперсионным свойствам, отличаются интересными особенностями, на которых мы здесь не имеем возможности остановиться. Отметим лишь, что реально существующее взаимодействие случайных волн конечной амплитуды в принципе объясняет значительно большее затухание волн на поверхности, чем это предсказывает линейная теория. Действует механизм поглощения за счет нелинейного взаимодействия; энергия из области малых волновых чисел (длинные волны) перекачивается в области все меньших длин волн и, наконец, - в капиллярную область спектра, где она в конечном счете диссипируется за счет вязкости, переходя в тепло .

В гл. 3 мы будем иметь дело с нелинейными звуковыми волнами и еще вернемся к вопросам взаимодействия волн на поверхности жидкости.


Пове́рхностные акусти́ческие во́лны (ПАВ) - упругие волны , распространяющиеся вдоль поверхности твёрдого тела или вдоль границы с другими средами. ПАВ подразделяются на два типа: с вертикальной поляризацией и с горизонтальной поляризацией (волны Лява ).

К наиболее часто встречающимся частным случаям поверхностных волн можно отнести следующие:

  • Волны Рэлея (или рэлеевские), в классическом понимании распространяющиеся вдоль границы упругого полупространства с вакуумом или достаточно разреженной газовой средой.
  • на границе твердого тела с жидкостью.
  • , бегущая по границе жидкости и твердого тела
  • Волна Стоунли , распространяющаяся вдоль плоской границы двух твердых сред, модули упругости и плотности которых не сильно различаются.
  • Волны Лява - поверхностные волны с горизонтальной поляризацией (SH типа), которые могут распространяться в структуре упругий слой на упругом полупространстве.

Энциклопедичный YouTube

    1 / 3

    ✪ Сейсмические волны

    ✪ Продольные и поперечные волны. Звуковые волны. Урок 120

    ✪ Лекция седьмая: Волны

    Субтитры

    В этом видео я хочу немного обсудить сейсмические волны. Запишем тему. Во-первых, они очень интересны сами по себе и, во-вторых, очень важны для понимания строения Земли. Вы уже видели мое видео о слоях Земли, и именно благодаря сейсмическим волнам мы сделали вывод, из каких слоев состоит наша планета. И, хотя обычно сейсмические волны ассоциируются с землетрясениями, на самом деле это любые волны, путешествующие по земле. Они могут возникнуть от землетрясения, сильного взрыва, чего угодно, что способно послать много энергии прямо в землю и камень. Итак, существуют два основных типа сейсмических волн. И мы больше сосредоточимся на одном из них. Первый - поверхностные волны. Запишем. Второй - объемные волны. Поверхностные волны - это просто волны, распространяющиеся по поверхности чего-либо. В нашем случае по поверхности земли. Здесь, на иллюстрации, видно, как выглядят поверхностные волны. Они похожи на рябь, которую можно увидеть на поверхности воды. Поверхностные волны бывают двух типов: волны Рэлея и волны Лява. Я не буду распространяться, но здесь видно, что волны Рэлея движутся вверх и вниз. Вот здесь земля двигается вверх-вниз. Тут движется вниз. Тут - вверх. И тут - снова вниз. Похоже на бегущую по земле волну. Волны Лява, в свою очередь, двигаются в стороны. То есть, вот здесь волна не движется вверх-вниз, а, если посмотреть по направлению волны, она движется влево. Здесь движется вправо. Здесь - влево. Здесь - снова вправо. В обоих случаях, движение волны перпендикулярно направлению ее перемещения. Иногда такие волны называют поперечными. И они, как я уже говорил, похожи на волны в воде. Намного более интересны объемные волны, потому что, во-первых, это самые быстрые волны. И, к тому же, именно эти волны используются для изучения структуры земли. Объемные волны бывают двух типов. Есть P-волны, или первичные волны. И S-волны, или вторичные. Их можно увидеть вот здесь. Такие волны - это энергия, перемещающаяся внутри тела. А не просто по его поверхности. Итак, на данном рисунке, который я скачал из Википедии, видно, как по большому камню бьют молотком. И когда молоток попадает по камню… Давайте я перерисую покрупнее. Здесь у меня будет камень, и я бью его молотком. Он сожмет камень там, куда он попал. Тогда энергия от удара толкнет молекулы, которые врежутся в молекулы по соседству. И эти молекулы врежутся в молекулы за ними, а те, в свою очередь, в молекулы рядом. Получится, что эта сжатая часть камня движется волной. Вот это - сжатые молекулы, они врежутся в молекулы рядом и тогда здесь камень станет плотнее. Первые молекулы, те, которые начали все движение, вернутся на место. Поэтому сжатие сдвинулось, и дальше сдвинется еще. Получается волна сжатия. Вы бьете молотком сюда и получаете меняющуюся плотность, которая движется в направлении волны. В нашем случае молекулы двигаются вперед и назад вдоль одной оси. Параллельно направлению волны. Это - Р-волны. Р-волны могут распространяться в воздухе. По существу, звуковые волны - это волны сжатия. Они могут перемещаться как в жидкостях, так и в твердых веществах. И, в зависимости от среды, они двигаются с разными скоростями. В воздухе они двигаются со скоростью 330 м/с, что не так уж и медленно для повседневной жизни. В жидкости они двигаются на скорости 1 500 м/с. А в граните, из которого состоит большая часть поверхности Земли, они двигаются на скорости 5 000 м/с. Давайте я это запишу. 5 000 метров, или 5 км/с в граните. А S-волны, сейчас я нарисую, потому что эта слишком маленькая. Если ударить молотком сюда, сила удара временно сдвинет камень в сторону. Он немного деформируется и потянет за собой соседний участок камня. Затем этот камень сверху будет утянут вниз, а камень, по которому изначально ударили, вернется вверх. И приблизительно через миллисекунду слой камня сверху немного деформируется вправо. И дальше, с течением времени, деформация будет двигаться вверх. Заметьте, что в этом случае волна тоже движется вверх. Но движение материала теперь не параллельно оси, как в Р-волнах, а перпендикулярно. Эти перпендикулярные волны также называют поперечными колебаниями. Движение частиц перпендикулярно оси движения волны. Это и есть S-волны. Они двигаются чуть медленнее Р-волн. Поэтому, если вдруг случится землетрясение, сначала вы почувствуете Р-волны. А затем, на приблизительно 60% скорости Р-волн придут S-волны. Итак, для понимая структуры Земли важно помнить, что S-волны могут двигаться только в твердых веществах. Запишем это. Вы могли бы сказать, что видели поперечные волны на воде. Но там были поверхностные волны. А мы обсуждаем объемные волны. Волны, которые проходят внутри объема воды. Чтобы было проще это представить, я нарисую немного воды, скажем, вот здесь будет бассейн. В разрезе. Вот как-то так. Да, мог бы и получше нарисовать. Итак, здесь будет бассейн в разрезе, и я надеюсь, что вы поймете, что в нем происходит. И если я сожму часть воды, например, ударив по ней чем-нибудь очень большим, чтобы вода быстро сжалась. Р-волна сможет двигаться, потому что молекулы воды врежутся в молекулы по соседству, которые врежутся в молекулы за ними. И это сжатие, эта Р-волна, будет двигаться в направлении от моего удара. Отсюда видно, что Р-волна может двигаться как в жидкостях, так и, например, в воздухе. Хорошо. И помните, что мы говорим о подводных волнах. Не о поверхностях. Наши волны движутся в объеме воды. Предположим, что мы взяли молоток и ударили по данному объему воды со стороны. И от этого возникнет только волна сжатия в эту сторону. И больше ничего. Поперечной волны не возникнет, потому что у волны нет той эластичности которая позволяет ее частям колебаться из стороны в сторону. Для S-волны нужна такая эластичность, которая бывает только в твердых телах. В дальнейшем мы будем использовать свойства Р-волн, которые могут двигаться в воздухе, жидкости и твердых телах, и свойства S-волн, чтобы узнать, из чего состоит земля. Subtitles by the Amara.org community

Волны Рэлея

Затухающие волны рэлеевского типа

Затухающие волны рэлеевского типа на границе твердого тела с жидкостью.

Незатухающая волна с вертикальной поляризацией

Незатухающая волна с вертикальной поляризацией , бегущая по границе жидкости и твердого тела со скоростью звука в данной среде.

ОПРЕДЕЛЕНИЕ

Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Этот вектор, называется вектором потока. (Для упругих волн – вектор Умова).

Теория про уравнение бегущей волны

Когда мы говорим о движении тела, то имеем в виду перемещение в пространстве его самого. В случае же волнового движения речь идет не о перемещении среды или поля, а о перемещении возбужденного состояния среды или поля. В волне определенное состояние, сначала локализованное в одном месте пространства, передается (перемещается) в другие, соседние точки пространства.

Состояние среды или поля в данной точке пространства характеризуется одним или несколькими параметрами. Такими параметрами, например, в волне, образуемой на струне, является отклонение данного участка струны от положения равновесия (х), в звуковой волне в воздухе — это величина, характеризующая сжатие или расширение , в — это модули векторов и . Важнейшим понятием для любой волны является фаза. Под фазой понимается состояние волны в данной точке и в данный момент времени, описанное соответствующими параметрами. Например, фаза электромагнитной волны задается модулями векторов и . Фаза от точки к точке меняется. Таким обpазом, фаза волны в математическом смысле есть функция координат и времени. С понятием фазы связано понятие волновой поверхности. Это поверхность, все точки которой в данный момент времени находятся в одной и той же фазе, т.е. это поверхность постоянной фазы.

Понятия волновой поверхности и фазы позволяют провести некоторую классификацию волн по характеру их поведения в пространстве и времени. Если волновые поверхности перемещаются в пространстве (например, обычные волны на поверхности воды), то волна называется бегущей.

Бегущие волны можно разделить на: и цилиндрические.

Уравнение бегущей плоской волны

В экспоненциальной форме уравнение сферической волны имеет вид:

где – комплексная амплитуда. Везде, кроме особой точки r=0, функция x удовлетворяет волновому уравнению .

Уравнение цилиндрическое бегущей волны:

где r – расстояние от оси.

где – комплексная амплитуда.

Примеры решения задач

ПРИМЕР 1

Задание Плоская незатухающая звуковая волна возбуждается источником колебаний частоты источника a. Напишите уравнение колебаний источника x(0,t), если в начальный момент смещение точек источника максимально.
Решение Запишем уравнение бегущей волны, зная, что она плоская:

Используем в записи уравнения w=, запишем (1.1) в начальный момент времени (t=0):

Из условий задачи известно, что в начальный момент смещение точек источника максимально. Следовательно, .

Получим: , отсюда в точке, где расположен источник (т.е. при r=0).



Читайте также: