Какие величины изменяются в процессе электромагнитных колебаний. Урок "аналогия между механическими и электромагнитными колебаниями". Сравнение колебательных систем

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ. СВОБОДНЫЕ И ВЫНУЖДЕННЫЕ ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ.

  1. Электромагнитные колебания - взаимосвязанные колебания электрического и магнитного полей.

Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.

Свободные электромагнитные колебания возникают в электромагнитной системе после выведения ее из состояния равновесия, например, сообщением конденсатору заряда или изменением тока в участке цепи.

Это затухающие колебания , так как сообщенная системе энергия расходуется на нагревание и другие процессы.

Вынужденные электромагнитные колебания - незатухающие колебания в цепи, вызванные внешней периодически изменяющейся синусоидальной ЭДС.

Электромагнитные колебания описываются теми же законами, что и механические, хотя физическая природа этих колебаний совершенно различна.

Электрические колебания - частный случай электромагнитных, когда рассматривают колебания только электрических величин. В этом случае говорят о переменных токе, напряжении, мощности и т.д.

  1. КОЛЕБАТЕЛЬНЫЙ КОНТУР

Колебательный контур - электрическая цепь, состоящая из последовательно соединенных конденсатора емкостью C, катушки индуктивностью L и резистора сопротивлением R. Идеальный контур – если сопротивлением можно пренебречь, то есть, только конденсатор С и идеальная катушка L.

Состояние устойчивого равновесия колебательного контура характеризуется минимальной энергией электрического поля (конденсатор не заряжен) и магнитного поля (ток через катушку отсутствует).

  1. ХАРАКТЕРИСТИКИ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ

Аналогия механических и электромагнитных колебаний

Характеристики:

Механические колебания

Электромагнитные колебания

Величины, выражающие свойства самой системы (параметры системы):

m- масса (кг)

k- жесткость пружины (Н/м)

L- индуктивность (Гн)

1/C- величина, обратная емкости (1/Ф)

Величины, характеризующие состояние системы:

Кинетическая энергия (Дж)

Потенциальная энергия (Дж)

х - смещение (м)

Электрическая энергия(Дж )

Магнитная энергия (Дж)

q - заряд конденсатора (Кл)

Величины, выражающие изменение состояния системы:

v = x"(t) скорость-быстрота смещения (м/с)

i = q"(t) сила тока – быстрота изменения заряда (А)

Другие характеристики:

T=1/ν

T=2π/ω

ω=2πν

T- период колебаний время одного полного колебания(с)

ν- частота-число колебаний за единицу времени (Гц)

ω - циклическая частота число колебаний за 2π секунд(Гц)

φ=ωt – фаза колебаний- показывает, какую часть от амплитудного значения принимает в данный момент колеблющаяся величина, т.е. фаза определяет состояние колеблющейся системы в любой момент времени t.

где q" - вторая производная заряда по времени.

Величина является циклической частотой. Такими же уравнениями описываются колебания тока, напряжения и других электрических и магнитных величин.

Одним из решений уравнения (1) является гармоническая функция

Это интегральное уравнение гармонических колебаний.

Период колебаний в контуре (формула Томсона):

Величина φ = ώt + φ 0 , стоящая под знаком синуса или косинуса, является фазой колебания.

Ток в цепи равен производной заряда по времени, его можно выразить

Напряжение на пластинах конденсатора изменяется по закону:

Где I max =ωq мак – амплитуда силы тока (А),

U max =q max /C - амплитуда напряжения (В)

Задание: для каждого состояния колебательного контура записать значения заряда на конденсаторе, тока в катушке, напряженности электрического поля, индукции магнитного поля, электрической и магнитной энергии.


Основной ценностью материала презентации является наглядность поэтапной акцентированной динамики формирования понятий относящихся законам механических и особенно электромагнитных колебаний в колебательных системах.

Скачать:


Подписи к слайдам:

Аналогия между механическими и электромагнитными колебаниями. Для учащихся 11 класса Белгородская область г. Губкин МБОУ «СОШ №3» Скаржинский Я.Х. ©

Колебательный контур

Колебательный контур Колебательный контур при отсутствии активного R

Электрическая колебательная система Механическая колебательная система

Электрическая колебательная система с потенциальной энергией заряженного конденсатора Механическая колебательная система с потенциальной энергией деформированной пружины

Аналогия между механическими и электромагнитными колебаниями. ПРУЖИНА КОНДЕНСАТОР ГРУЗ КАТУШК А Механические величины Электрические величины Координата х Заряд q Скорость v x Сила тока i Масса m Индуктивность L Потенциальная энергия kx 2 /2 Энергия электрического поля q 2 /2 Жесткость пружины k Величина, обратная емкости 1/C Кинетическая энергия mv 2 /2 Энергия магнитного поля Li 2 /2

Аналогия между механическими и электромагнитными колебаниями. 1 Найти энергию магнитного поля катушки в колебательном контуре, если её индуктивность равна 5 мГн, а max сила тока – 0,6 мА. 2 Чему был равен max заряд на обкладках конденсатора в том же колебательном контуре, если его емкость рана 0,1 пФ? Решение качественных и количественных задач по новой теме.

Домашнее задание: §


По теме: методические разработки, презентации и конспекты

Главные цели и задачи урока:Осуществить проверку знаний, умений и навыков по пройденной теме с учётом индивидуальных особенностей каждого учащегося.Стимулировать сильных учеников на расширение их деят...

конспект урока "Механические и электромагнитные колебания"

Данную разработку можно использовать при изучении темы в 11 классе: «Электромагнитные колебания». Материал предназначен для изучения новой темы....

Хотя механические и электромагнитные колебания имеют различную природу, между ними можно провести много аналогий. Например, рассмотрим электромагнитные колебания в колебательном контуре и колебание груза на пружине.

Колебание груза на пружине

При механических колебаниях тела на пружине, координата тела будет периодически изменяться. При этом будем меняться проекция скорости тела на ось Ох. В электромагнитных колебаниях с течение времени по периодическому закону будет изменяться заряд q конденсатора, и сила тока в цепи колебательного контура.

Величины будут иметь одинаковый характер изменения. Это происходит потому, что имеется аналогия между условиями, в которых возникают колебания. Когда мы отводим груз на пружине из положения равновесии, в пружине возникает сила упругости F упр., которая стремится вернуть груз обратно, в положение равновесия. Коэффициентом пропорциональности этой силы будет являться жесткость пружины k.

При разрядке конденсатора в цепи колебательного контура появляется ток. Разрядка обусловлена тем, что на пластинах конденсатора есть напряжение u. Это напряжение будет пропорционально заряду q любой из пластин. Коэффициентом пропорциональности будет служить величина 1/C, Где С – емкость конденсатора.

При движении груза на пружине, когда мы отпускаем его, скорость тела увеличивается постепенно, вследствие инертности. И после прекращения силы скорость тела не становится сразу равной нулю, она тоже постепенно уменьшается.

Колебательный контур

Так же и в колебательном контуре. Электрический ток в катушке под действием напряжения увеличивается не сразу, а постепенно, из-за явления самоиндукции. И когда напряжение перестает действовать, сила тока не становится сразу равной нулю.

То есть в колебательном контуре индуктивность катушки L будет аналогична массе тела m, при колебаниях груза на пружине. Следовательно, кинетическая энергия тела (m*V^2)/2, будет аналогична энергии магнитного поля тока (L*i^2)/2.

Когда мы выводим груз из положения равновесия, мы сообщаем уме некоторую потенциальную энергию (k*(Xm)^2)/2, где Хm - смещение от положения равновесия.

В колебательном контуре роль потенциальной энергии выполняет энергия заряда конденсатора q^2/(2*C). Можем сделать вывод, что жесткость пружины в механических колебаниях будет аналогична величине 1/С, где С- емкость конденсатора в электромагнитных колебаниях. А координата тела будет аналогична заряду конденсатора.

Рассмотрим подробнее процессы колебаний, на следующем рисунке.

картинка

(а) Сообщаем телу потенциальную энергию. По аналогии заряжаем конденсатор.

(б) Отпускаем шарик, потенциальная энергия начинает уменьшаться, возрастает скорость шарика. По аналогии, начинает уменьшаться заряд на обкладке конденсатора, в цепи появляется сила тока.

(в) Положение равновесия. Потенциальной энергии нет, скорость тела максимальна. Конденсатор разрядился, сила тока в цепи максимальна.

(д) Тело отклонилось в крайнее положении, скорость его стала равной нулю, а потенциальная энергия достигла своего максимума. Конденсатор снова зарядился, сила тока в цепи стала равняться нулю.

Разработка методики изучения темы «Электромагнитные колебания»

Колебательный контур. Превращения энергии при электромагнитных колебаниях.

Эти вопросы, являющиеся одними из самых важных в данной теме, рассматриваются на третьем уроке.

Сначала вводится понятие колебательного контура, делается соответствующая запись в тетради.

Далее, для выяснения причины возникновения электромагнитных колебаний, демонстрируется фрагмент, где показан процесс зарядки конденсатора. Обращается внимание учащихся на знаки зарядов пластин конденсатора.

После этого рассматриваются энергии магнитного и электрического полей, ученикам рассказывают о том, как изменяются эти энергии и полная энергия в контуре, объясняется механизм возникновения электромагнитных колебаний с использованием модели, ведется запись основных уравнений.

Очень важно обратить внимание учащихся на то, что такое представление тока в цепи (поток заряженных частиц) является условным, так как скорость электронов в проводнике очень мала. Такой способ представления выбран для облегчения понимания сути электромагнитных колебаний.

Далее внимание учащихся акцентируется на том, что они наблюдают процессы превращения энергии электрического поля в энергию магнитного и наоборот, а так как колебательный контур является идеальным (отсутствует сопротивление), то полная энергия электромагнитного поля остается неизменной. После этого дается понятие электромагнитных колебаний и оговаривается, что эти колебания являются свободными. Затем подводятся итоги и дается домашнее задание.

Аналогия между механическими и электромагнитными колебаниями.

Этот вопрос рассматривается на четвертом уроке изучения темы. Вначале для повторения и закрепления можно еще раз продемонстрировать динамическую модель идеального колебательного контура. Для объяснения сути и доказательства аналогии между электромагнитными колебаниями и колебаниями пружинного маятника используются динамическая колебательная модель ”Аналогия между механическими и электромагнитными колебаниями” и презентаций PowerPoint.

В качестве механической колебательной системы рассматривается пружинный маятник (колебания груза на пружине). Выявление связи между механическими и электрическими величинами при колебательных процессах ведется по традиционной методике.

Как это уже было сделано на прошлом занятии, необходимо еще раз напомнить учащимся об условности движения электронов по проводнику, после чего их внимание обращается на правый верхний угол экрана, где находится колебательная система “сообщающиеся сосуды”. Оговаривается, что каждая частица совершает колебания около положения равновесия, поэтому колебания жидкости в сообщающихся сосудах тоже могут служить аналогией электромагнитных колебаний.


Если в конце урока осталось время, то можно более подробно остановиться на демонстрационной модели, разобрать все основные моменты с применением вновь изученного материала.

Уравнение свободных гармонических колебаний в контуре.

Вначале урока демонстрируются динамические модели колебательного контура и аналогии механических и электромагнитных колебаний, повторяются понятия электромагнитных колебаний, колебательного контура, соответствие механических и электромагнитных величин при колебательных процессах.

Новый материал необходимо начать с того, что если колебательный контур идеальный, то его полная энергия с течением времени остается постоянной

т.е. ее производная по времени постоянна, а значит и производные по времени от энергий магнитного и электрического полей тоже постоянны. Затем, после ряда математических преобразований приходят к выводу, что уравнение электромагнитных колебаний аналогично уравнению колебаний пружинного маятника.

Ссылаясь на динамическую модель, учащимся напоминают, что заряд в конденсаторе меняется периодически, после чего ставится задача - выяснить, как зависят от времени заряд, сила тока в цепи и напряжение на конденсаторе.

Данные зависимости находятся по традиционной методике. После того, как найдено уравнение колебаний заряда конденсатора, учащимся демонстрируется картинка, на которой изображены графики зависимости заряда конденсатора и смещения груза от времени, представляющие собой косинусоиды.

По ходу выяснения уравнения колебаний заряда конденсатора вводятся понятия периода колебаний, циклической и собственной частот колебаний. Затем выводится формула Томсона.

Далее получают уравнения колебаний силы тока в цепи и напряжения на конденсаторе, после чего демонстрируется картинка с графиками зависимости трех электрических величин от времени. Внимание учащихся обращается на сдвиг фаз между колебаниями силы тока и зарядами его отсутствием между колебаниями напряжения и заряда.

После того, как выведены все три уравнения, вводится понятие затухающих колебаний и демонстрируется картинка, на которой изображены эти колебания.

На следующем уроке подводятся краткие итоги с повторением основных понятий и решаются задачи на нахождение периода, циклической и собственной частот колебаний, исследуются зависимости q(t), U(t), I(t), а так же различные качественные и графические задачи.

4. Методическая разработка трёх уроков

Приведенные ниже уроки разработаны в виде лекций, так как эта форма, по моему мнению, является наиболее производительной и оставляет в данном случае достаточно времени для работы с динамическими демонстрац ионными моделями. При желании эта форма может быть легко трансформирована в любую другую форму проведения урока.

Тема урока: Колебательный контур. Превращения энергии в колебательном контуре.

Объяснение нового материала.

Цель урока: объяснение понятия колебательного контура и сути электромагнитных колебаний с использованием динамической модели “Идеальный колебательный контур”.

Колебания могут происходить в системе, которая называется колебательным контуром, состоящим из конденсатора емкостью С и катушки индуктивностью L. Колебательный контур называется идеальным, если в нем нет потерь энергии на нагревание соединительных проводов и проводов катушки, т. е. пренебрегают сопротивлением R.

Давайте сделаем в тетрадях чертеж схематичного изображения колебательного контура.

Чтобы возникли электрические колебания в этом контуре, ему необходимо сообщить некоторый запас энергии, т.е. зарядить конденсатор. Когда конденсатор зарядится, то электрическое поле будет сосредоточено между его пластинами.

(Давайте проследим процесс зарядки конденсатора и остановим процесс, когда зарядка будет завершена).

Итак, конденсатор заряжен, его энергия равна

поэтому, следовательно,

Так как после зарядки конденсатор будет иметь максимальный заряд (обратите внимание на пластины конденсатора, на них расположены противоположные по знаку заряды), то при q=q max энергия электрического поля конденсатора будет максимальна и равна

В начальный момент времени вся энергия сосредоточена между пластинами конденсатора, сила тока в цепи равна нулю. (Давайте теперь замкнем на нашей модели конденсатор на катушку). При замыкании конденсатора на катушку он начинает разряжаться и в цепи возникнет ток, который, в свою очередь, создаст в катушке магнитное поле. Силовые линии этого магнитного поля направлены по правилу буравчика.

При разрядке конденсатора ток не сразу достигает своего максимального значения, а постепенно. Это происходит потому, что переменное магнитное поле порождает в катушке второе электрическое поле. Вследствие явления самоиндукции там возникает индукционный ток, который, согласно правилу Ленца, направлен в сторону, противоположную увеличению разрядного тока.

Когда разрядный ток достигает своего максимального значения энергия магнитного поля максимальна и равна:

а энергия конденсатора в этот момент равна нулю. Таким образом, через t=T/4 энергия электрического поля полностью перешла в энергию магнитного поля.

(Давайте понаблюдаем процесс разрядки конденсатора на динамической модели. Обращаю ваше внимание на то, что такой способ представления процессов зарядки и разрядки конденсатора в виде потока перебегающих частиц, является условным и выбран для удобства восприятия. Вы прекрасно знаете, что скорость движения электронов очень мала (порядка нескольких сантиметров в секунду). Итак, вы видите, как, при уменьшении заряда на конденсаторе изменяется сила тока в цепи, как изменяются энергии магнитного и электрического полей, какая между этими изменениями существует связь. Так как контур является идеальным, то потерь энергии нет, поэтому общая энергия контура остается постоянной).

С началом перезарядки конденсатора разрядный ток будет уменьшаться до нуля не сразу, а постепенно. Это происходит опять же из-за возникновения противо э. д. с. и индукционного тока противоположной направленности. Этот ток противодействует уменьшению разрядного тока, как ранее противодействовал его увеличению. Сейчас он будет поддерживать основной ток. Энергия магнитного поля будет уменьшаться, энергия электрического - увеличиваться, конденсатор будет перезаряжаться.

Таким образом, полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей

Колебания, при которых происходит периодическое превращение энергии электрического поля конденсатора в энергию магнитного поля катушки, называются ЭЛЕКТРОМАГНИТНЫМИ колебаниями. Так как эти колебания происходят за счет первоначального запаса энергии и без внешних воздействий, то они являются СВОБОДНЫМИ.

Тема урока: Аналогия между механическими и электромагнитными колебаниями.

Объяснение нового материала.

Цель урока: объяснение сути и доказательство аналогии между электромагнитными колебаниями и колебаниями пружинного маятника с использованием динамической колебательной модели ”Аналогия между механическими и электромагнитными колебаниями” и презентаций PowerPoint.

Материал для повторения:

понятие колебательного контура;

понятие идеального колебательного контура;

условия возникновения колебаний в к/к;

понятия магнитного и электрического полей;

колебания как процесс периодического изменения энергий;

энергия контура в произвольный момент времени;

понятие (свободных) электромагнитных колебаний.

(Для повторения и закрепления учащимся еще раз демонстрируется динамическая модель идеального колебательного контура).

На этом уроке мы рассмотрим аналогию между механическими и электромагнитными колебаниями. В качестве механической колебательной системы будем рассматривать пружинный маятник.

(На экране вы видите динамическую модель, которая демонстрирует аналогию между механическими и электромагнитными колебаниями. Она поможет нам разобраться в колебательных процессах, как в механической системе, так и в электромагнитной).

Итак, в пружинном маятнике упругодеформированная пружина сообщает скорость прикрепленному к ней грузу. Деформированная пружина обладает потенциальной энергией упругодеформированного тела

движущийся груз обладает кинетической энергией

Превращение потенциальной энергии пружины в кинетическую энергию колеблющегося тела является механической аналогией превращения энергии электрического поля конденсатора в энергию магнитного поля катушки. При этом аналогом механической потенциальной энергии пружины является энергия электрического поля конденсатора, а аналогом механической кинетической энергии груза является энергия магнитного поля, которая связана с движением зарядов. Зарядке конденсатора от батареи соответствует сообщение пружине потенциальной энергии (например, смещение рукой).

Давайте сопоставим формулы и выведем общие закономерности для электромагнитных и механических колебаний.

Из сопоставления формул следует, что аналогом индуктивности L является масса m, а аналогом смещения х служит заряд q, аналогом коэффициента k служит величина, обратная электроемкости, т. е. 1/С.

Моменту, кода конденсатор разрядится, а сила тока достигнет максимума, соответствует прохождение телом положения равновесия с максимальной скоростью (обратите внимание на экраны: там вы можете пронаблюдать это соответствие).


Как уже было сказано на прошлом занятии, движение электронов по проводнику является условным, ведь для них основным видом движения является колебательное движение около положения равновесия. Поэтому иногда еще электромагнитные колебания сравнивают с колебаниями воды в сообщающихся сосудах (посмотрите на экран, вы видите, что в правом верхнем углу находится именно такая колебательная система), где каждая частица совершает колебания около положения равновесия.

Итак, мы выяснили, что аналогией индуктивности является масса, а аналогией перемещения является заряд. Но вед вы прекрасно знаете, что изменение заряда в единицу времени - это не что иное, как сила тока, а изменение координаты в единицу времени - скорость, то есть q"= I, а x"= v. Таким образом, мы нашли еще одно соответствие между механическими и электрическими величинами.

Давайте составим таблицу, которая поможет нам систематизировать связи механических и электрических величин при колебательных процессах.

Таблица соответствия между механическими и электрическими величинами при колебательных процессах.


Тема урока: Уравнение свободных гармонических колебаний в контуре.

Объяснение нового материала.

Цель урока: вывод основного уравнения электромагнитных колебаний, законов изменения заряда и силы тока, получения формулы Томсона и выражения для собственной частоты колебания контура с использованием презентаций PowerPoint.

Материал для повторения:

понятие электромагнитных колебаний;

понятие энергии колебательного контура;

соответствие электрических величин механическим величинам при колебательных процессах.

(Для повторения и закрепления необходимо еще раз продемонстрировать модель аналогии механических и электромагнитных колебаний).

На прошлых уроках мы выяснили, что электромагнитные колебания, во-первых, являются свободными, во-вторых, представляют собой периодическое изменение энергий магнитного и электрического полей. Но кроме энергии при электромагнитных колебаниях меняется еще и заряд, а значит и сила тока в контуре и напряжение. На этом уроке мы должны выяснить законы, по которым меняются заряд, а значит сила тока и напряжение.

Итак, мы выяснили, что полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей: . Считаем, энергия не меняется со временем, то есть контур - идеальный. Значит производная полной энергии по времени равна нулю, следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

То есть.

Знак минус в этом выражении означает, что когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. А физический смысл этого выражения таков, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.

Вычисляя производные, получим

Но, поэтому и - мы получили уравнение, описывающее свободные электромагнитные колебания в контуре. Если теперь мы заменим q на x, х""=а х на q"", k на 1/C, m на L, то получим уравнение

описывающее колебания груза на пружине. Таким образом, уравнение электромагнитных колебаний имеет такую же математическую форму, как уравнение колебаний пружинного маятника.

Как вы видели на демонстрационной модели, заряд на конденсаторе меняется периодически. Необходимо найти зависимость заряда от времени.

Из девятого класса вам знакомы периодические функции синус и косинус. Эти функции обладают следующим свойством: вторая производная синуса и косинуса пропорциональна самим функциям, взятым с противоположным знаком. Кроме этих двух, никакие другие функции этим свойством не обладают. А теперь вернемся к электрическому заряду. Можно смело утверждать, что электрический заряд, а значит и сила тока, при свободных колебаниях меняются с течением времени по закону косинуса или синуса, т.е. совершают гармонические колебания. Пружинный маятник также совершают гармонические колебания (ускорение пропорционально смещению, взятому со знаком минус).

Итак, чтобы найти явную зависимость заряда, силы тока и напряжения от времени, необходимо решить уравнение

учитывая гармонический характер изменения этих величин.

Если в качестве решения взять выражение типа q = q m cos t , то, при подстановке этого решения в исходное уравнениe, получим q""=-q m cos t=-q.

Поэтому, в качестве решения необходимо взять выражение вида

q=q m cosщ o t,

где q m - амплитуда колебаний заряда (модуль наибольшего значения колеблющейся величины),

щ o = - циклическая или круговая частота. Её физический смысл -

число колебаний за один период, т. е. за 2р с.

Период электромагнитных колебаний - промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание. Для гармонических колебаний Т=2р с (наименьший период косинуса).

Частота колебаний - число колебаний в единицу времени - определяется так: н = .

Частоту свободных колебаний называют собственной частотой колебательной системы.

Так как щ o = 2р н=2р/Т, то Т= .

Циклическую частоту мы определили как щ o = , значит для периода можно записать

Т= = - формула Томсона для периода электромагнитных колебаний.

Тогда выражение для собственной частоты колебаний примет вид

Нам осталось получить уравнения колебаний силы тока в цепи и напряжения на конденсаторе.

Так как, то при q = q m cos щ o t получим U=U m cosщ o t. Значит, напряжение тоже меняется по гармоническому закону. Найдем теперь закон, по которому меняется сила тока в цепи.

По определению, но q=q m cosщt, поэтому

где р/2 - сдвиг фаз между силой тока и зарядом (напряжением). Итак, мы выяснили, что сила тока при электромагнитных колебаниях тоже меняется по гармоническому закону.

Мы рассматривали идеальный колебательный контур, в котором нет потерь энергии и свободные колебания могут продолжаться бесконечно долго за счет энергии, однажды полученной от внешнего источника. В реальном контуре часть энергии идет на нагревание соединительных проводов и нагревание катушки. Поэтому свободные колебания в колебательном контуре являются затухающими.

Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.



Читайте также: