Значение водной среды для живых организмов. Материалы к уроку окружающего мира на тему "Вода. Свойства воды. Значение воды для живых организмов". план-конспект урока по окружающему миру (3 класс) на тему. Водный баланс организма - прямой путь к здоровью

Вода составляет 70-80% от массы живых организмов.

Строение молекулы: электронная плотность смещена к кислороду, на нем частичный отрицательный заряд, на водородах - частичный положительный, молекула - диполь. Между + и - могут образовываться водородные связи.

Функции воды

1. Благодаря маленьким дипольным молекулам вода является лучшим растворителем для полярных (гидрофильных) веществ. В растворенном состоянии вещества очень быстро реагируют между собой.

2. Транспортная функция: в растворенном состоянии вещества передвигаются по организму.

3. Вещества, на поверхности которых нет полных или частичных зарядов (гидрофобные), не могут взаимодействовать с молекулами воды, вода их выталкивает (жир, бензин). На этом основаны строение и работа биологических мембран .

4. Вода обладает аномально высокой теплоемкостью (может поглотить много тепла и при этом почти не нагреться). За счет этого она защищает клетку от резких перепадов температуры.

5. Вода, как и все жидкости, несжимаема , обеспечивает опору для клеток (тургор) и целых организмов (гидроскелет).

6. Вода сама может участвовать в химических реакциях как реагент (реакции гидролиза, фотосинтеза и т.п.).

Вода - уникальнейшее вещество, основа всех живых организмов на планете. Она может приобретать различную форму и находиться в трех состояниях. Какие основные физические и химические свойства воды? Именно о них пойдет речь в нашей статье.

Вода - это...

Вода - это самое распространенное на нашей планете неорганическое соединение. Физические и химические свойства воды определяются составом её молекул.

Так, в структуре молекулы воды содержится два атома водорода (Н) и один атом кислорода (О). В нормальных условиях внешней среды это безвкусная жидкость без запаха и окраса. Вода также может находиться в других состояниях: в виде пара или же в форме льда.

Более 70 % нашей планеты покрыто именно водой. Причем около 97 % приходится на моря и океаны, поэтому большая её часть не годится для употребления человеком. О том, каковы основные химические свойства питьевой воды - вы узнаете далее.

Вода в природе и жизни человека

Вода - обязательный компонент любого живого организма. В частности, человеческий организм, как известно, более чем на 70 % состоит именно из воды. Более того, ученые предполагают, что именно в этой среде зародилась жизнь на Земле.

Вода содержится (в форме водяного пара или капель) в разных слоях атмосферы. На поверхность земли из атмосферы она попадает в виде дождя или других осадков (снега, росы, града, инея) посредством процессов конденсации.

Вода выступает объектом исследований для целого ряда научных дисциплин. Среди них - гидрология, гидрография, гидрогеология, лимнология, гляциология, океанология и другие. Все эти науки, так или иначе, изучают физические, а также химические свойства воды.

Вода активно используется человеком в его хозяйственной деятельности, в частности:

  • для выращивания сельскохозяйственных культур;
  • в промышленности (в качестве растворителя);
  • в энергетике (в качестве теплоносителя);
  • для тушения пожаров;
  • в кулинарии;
  • в фармации и так далее.

Разумеется, чтобы эффективно использовать это вещество в хозяйственной деятельности, следует детально изучить химические свойства воды.

Разновидности воды

Как уже упоминалось выше, вода в природе может находиться в трех состояниях: жидком (собственно, вода), твердом (кристаллы льда) и газообразном (пар). Она также может приобретать любые формы.

Существует несколько видов воды. Так, в зависимости от содержания катионов Са и Na, вода может быть:

  • жесткая;
  • мягкая.
  • пресная;
  • минеральная;
  • солоноватая.

В эзотерике и некоторых религиях бывает вода:

  • мертвая;
  • живая;
  • святая.

В химии также существуют такие понятия, как дистиллированная и деионизированная вода.

Формула воды и её биологическое значение

Оксид водорода - так именуют данное вещество химики. Формула воды следующая: H 2 O. Она означает, что это соединение состоит из одного атома кислорода и двух атомов водорода.

Уникальные химические свойства воды определили её исключительную роль для жизни живых организмов. Именно благодаря воде биологическая жизнь существует на нашей планете.

Самая уникальная особенность воды заключается в том, что она прекрасно растворяет в себе огромное количество других веществ (как органического, так и неорганического происхождения). Важное последствие этой особенности состоит в том, что все химические реакции в живых организмах протекают достаточно быстро.

Кроме этого, благодаря уникальным свойствам воды, она пребывает именно в жидком состоянии, при крайне широком температурном диапазоне.

Физические свойства воды

Благодаря уникальным водородным связям, вода, при стандартных условиях среды, находится в жидком состоянии. Этим объясняется крайне высокая температура кипения воды. Если бы молекулы вещества не были связаны этими водородными связями, то вода закипала бы при +80 градусах, а замерзала - аж при -100 градусах.

Вода закипает при +100 градусах по Цельсию, а замерзает - при нуле градусов. Правда, при определенных, специфических условиях она может начать замерзать и при плюсовых значениях температуры. При замерзании вода увеличивается в своем объеме (за счет уменьшения плотности). Кстати, это чуть ли не единственное вещество в природе, обладающее подобным физическим свойством. Помимо воды, при замерзании расширяется лишь висмут, сурьма, германий и галлий.

Вещество также характеризуется высокой вязкостью, а также довольно сильным поверхностным натяжением. Вода - отличный растворитель для полярных веществ. Также следует знать, что вода очень хорошо проводит через себя электричество. Эта особенность объясняется тем, что в воде почти всегда находится большое количество ионов растворенных в ней солей.

Химические свойства воды (8 класс)

Молекулы воды имеют крайне высокую полярность. Поэтому это вещество в реальности состоит не только из простых молекул вида H 2 O, но и из сложных агрегатов (формула - (H 2 O) n).

В химическом плане вода очень активна, она вступает в реакции со многими другими веществами, даже при обычных температурах. При взаимодействии с оксидами щелочных, а также щелочноземельных металлов, она образует основания.

Вода также способна растворять в себе широкий спектр химических веществ - соли, кислоты, основания, некоторые газы. За это свойство её часто называют универсальным растворителем. Все вещества, в зависимости от того, растворяются они в воде или нет, принято делить на две группы:

  • гидрофильные (хорошо растворяются в воде) - соли, кислоты, кислород, углекислый газ и т. д.;
  • гидрофобные (плохо растворяются в воде) - жиры и масла.

Вода также вступает в химические реакции и с некоторыми металлами (например, с натрием), а также принимает участие в процессе фотосинтеза растений.

В заключение...

Вода - самое распространенное среди неорганических веществ на нашей планете. Она содержится практически везде: на земной поверхности и в её недрах, в мантии и в горных породах, в высоких слоях атмосферы и даже в космосе.

Химические свойства воды определены её химическим составом. Её относят к группе химически активных веществ. Со многими веществами вода вступает в

Вода является основой жизни всех живых существ. Ей принадлежит важнейшая роль в жизнедеятельности и развитии организмов:

– вода составляет основу тел живых организмов;

– вода является средой и участницей идущих в телах живых организмов биохимических реакций;

– вода является средой, в составе которой организмы получают многие необходимые им вещества и избавляются от продуктов обмена (шлаков);

– у растений вода участвует в фотосинтезе – на него расходуется 5% всей потребляемой ими воды, а 95% ее уходит на транспирацию (испарение листьями, что создает восходящий ток минеральных солей) и поддержание тургора (упругости) тканей;

– вода является средой жизни водных организмов;

– высокая теплоемкость воды позволяет теплокровным животным поддерживать постоянство температуры их тел;

– медленное нагревание и медленное охлаждение воды смягчают колебания температур, из-за чего климат побережий называют «мягким», или морским;

– высокая температура испарения воды дает возможность организмам избавляться от излишков тепла;

– другие важные функции.

Ввиду важности биологических функций воды она очень часто является лимитирующим фактором и наряду с температурой и составом почв определяет типы экосистем (степи, саванны, сухие леса, влажные леса).

Наибольшее количество осадков выпадает в тропическом поясе. Это объясняется максимальным поступлением туда энергии Солнца. Благодаря высокой температуре тропический воздух вбирает в себя намного больше воды, чем прохладный в более высоких широтах. Таким образом, влажный климат тропиков обусловлен большим количеством энергии Солнца.

На количество осадков оказывает влияние соотношение площадей суши и моря: в Южном полушарии, где больше площадь океанов и меньше площадь материков, осадков выпадает больше, чем в Северном.

Важное значение имеет не только общее количество осадков, выпадающих на местности, но и их интенсивность и распределение во времени.

Очень сильные дожди, особенно при отсутствии растительного покрова, вызывают эрозию почвы, гибель проростков растений и мелких животных. Сильнейшее повреждающее действие имеют осадки в виде града, размер частиц которого может быть с куриное яйцо. Длительные периоды моросящих дождей неблагоприятны для насекомых и насекомоядных птиц, особенно в период выкармливания ими птенцов. При отсутствии осадков организмам приходится переносить длительные периоды засухи.

В тропическом поясе режим выпадения осадков служит фактором, определяющим сезонную активность организмов – их биологические ритмы. В умеренных широтах главными сигналами смены сезонов года являются длительность светового дня (фотопериод) и режим температур.

Влажность воздуха

Показатель влажности воздуха характеризует степень его насыщенности водяными парами.

Абсолютной влажностью воздуха называют количество водяных паров на единицу его массы, а относительной – отношение количества имеющихся водяных паров к максимально возможному при данной температуре (в %).

Влажность воздуха имеет большое экологическое значение.

От количества влаги в воздухе зависит интенсивность ее испарения с поверхностей тел организмов. При низкой влажности испарение идет очень сильно и может привести к дегидратации (обезвоживанию) организмов. Для защиты от обезвоживания многие из них приобрели специальные адаптации:

– растения - толстую кутикулу, способность сбрасывать листья в сухой сезон, способность сворачивать листья, утрату (редукцию) листьев, опушенность и восковой налет на листьях, погруженные в ткань листа устьица - отверстия, через которые испаряется вода;

– животные - роговые чешуи, хитиновые покровы и др.

Иссушающие свойства воздуха зависят от дефицита его насыщения водяными парами - разницы между абсолютной и максимально возможной влажностью при данной температуре.

Адаптации организмов к разным уровням увлажнения

Адаптации растений . В зависимости от потребности в воде все растения делят на три экологические группы.

1. Гидрофиты (от греч. hydor – вода, влага) – влаголюбивые растения, ими являются:

– растения, полностью находящиеся в воде, - элодея;

– растения, у которых в воду погружены только корни, - камыш, рогоз, осоки, папирус;

– растения, произрастающие во влажных местах, - мхи, папоротники, плауны и др.

2. Мезофиты (от греч. mesos – средний, промежуточный) - растения умеренно влажных мест (полей, лесов, лугов) имеют приспособления для добывания воды - развитую корневую систему, покровные и проводящие ткани, механизмы регуляции уровня испарения.

3. Ксерофиты (от греч. xeros – сухой) - растения сухих мест (сухих степей, саванн, полупустынь, пустынь) способны переносить недостаток влаги.

Ксерофиты преодолевают недостаток влаги следующими способами:

– повышают ее поглощение с помощью мощного развития корневых систем: у некоторых растений пустынь масса корней превышает массу наземных органов в 9-10 раз;

– сокращают потери воды снижением испарения листьями;

– накапливают воду в мясистых стеблях (кактусы и африканские молочаи) или в листьях (алоэ, агавы);

– вырабатывают механизмы, позволяющие переносить недостаток воды.

Растения, накапливающие воду в мясистых стеблях или листьях, называют стеблевыми и листовыми суккулентами (от лат. succulentus – сочный). Для защиты от испарения они имеют толстую покровную ткань, а кактусы – устьица (отверстия, через которые происходит испарение), глубоко погруженные в ткань листа и открывающиеся только ночью, когда температура воздуха снижается. В то же время корневые системы суккулентов развиты слабо, поскольку они произрастают в местностях хотя и с редкими, но обильными осадками.

Растения, не накапливающие влагу, а добывающие ее с больших глубин и имеющие строение для максимального снижения испарения, называют склерофитами (от греч. skleros - твердый, жесткий). Склерофиты имеют жесткие сухие стебли, мелкие жесткие листья, которые часто сбрасывают во время сухого сезона. У многих склерофитов листья редуцированы (саксаул) или представляют собой колючки.

Адаптации животных . Существуют три вида адаптации животных к засухе.

1. Поведенческие – миграции в места, где есть вода, посещение водопоев, ночной образ жизни, укрытие в норах.

2. Морфологические - наличие защитных покровов.

3. Физиологические:

– наличие механизмов обратного всасывания воды в пищеварительной и выделительной системах;

– выделение высококонцентрированной или твердой мочи;

– синтез метаболической воды;

– способность переносить сильное обезвоживание.

Список основной литературы

1.Чебышев Н.В., Филиппова А.В. Основы экологии. – Москва, 2004 г.

2.Национальный доклад о состоянии окружающей среды в Республике Казахстан, МООС РК, Алматы, 2007 г.

3. В.Г.Игнатов, А.В.Кокин. Экология и экономика природопользования., Р-на-Д, 2003 г.

4. Л.И.Губарева, О.М.Мизирева, Т.М. Чурилова. Экология человека. М., 2005 г.

5. Г.С.Оспанова, Г.Т.Бозшатаева. Экология. – Алматы, 2002 г.

6. Под редакцией А.С.Степановских. Общая экология. М., 2001 г.

Вода физиологически необходима цитоплазме любой клетки, потому является лимитирующим фактором как для сухопутных организмов, так и для обитающих в воде, если в последнем случае ее количество подвержено резким изменениям (приливы, отливы) или происходит ее потеря организмом в очень соленой воде осмотическим путем.

В наземно-воздушной среде этот абиотический фактор характеризуется количеством осадков, влажностью, иссушающими свойствами воздуха и доступной площадью водных запасов.

Количество атмосферных осадков зависит от физико-географических условий и распределено по земному шару неравномерно. Для организмов важнейшим лимитирующим фактором является распределение осадков по сезонам года. В умеренных широтах даже при достаточном количестве суммарных годовых осадков их неравномерное распределение может приводить к гибели растений от засухи или, наоборот, от переувлажнения. В тропической зоне организмам приходится переживать влажные и сухие сезоны, регулирующие их сезонную активность при практически постоянной в течение года температуре.

Влажность воздушной среды измеряется обычно в показателях относительной влажности (процентное отношение реального давления водяного пара к давлению насыщенного пара при той же температуре). Величина влажности влияет на температурные эффекты: понижение влажности ниже определенного предела при данной температуре ведет к иссушающему воздействию воздуха.

Иссушающее действие воздуха наиболее важно для растений. Подавляющее большинство растений всасывает воду из почвы при помощи корневой системы. Иссушение почвы затрудняет всасывание. Растения адаптируются к иссушению почвы за счет увеличения всасывающей силы и активной поверхности корневой системы.

Вода расходуется на фотосинтез, около 0,5% воды всасывается клетками, а 97  99% ее расходуется на транспирацию  испарение воды через листву. При достатке воды и питательных веществ рост растений пропорционален транспирации. Основной формой адаптации растений к иссушению почвы является не снижение транспирации, а прекращение роста в период засухи.

В зависимости от способов адаптации растений к влажности выделяют несколько экологических групп , например: гигрофиты – наземные растения, живущие в очень влажных почвах и в условиях повышенной влажности (рис), мезофиты – растения, способные переносить незначительную засуху (древесные растения различных климатических зон, травянистые растения дубрав и др.), ксерофиты – растения сухих степей и пустынь. Ксерофиты, в свою очередь, подразделяются на суккуленты – растения, способные накапливать влагу в мясистых листьях и стеблях (алоэ, кактусы), и склерофиты – растения, обладающие высокой всасывающей способностью корневой системы и способные снижать транспирацию за счет узких мелких листьев.

Среди суккулентов наблюдается явление конвергенции – растения, относящиеся к разным видам, имеют практически одинаковую форму: африканский молочай и кактус имеют шарообразную форму, обеспечивающую минимальную поверхность испарения.

Среди животных по отношению к воде выделяют свои экологические группы : гигрофилы (влаголюбивые), мезофилы – промежуточная группа и ксерофилы (сухолюбивые). Способы регуляции водного баланса у животных делятся на поведенческие, морфологические и физиологические.

К поведенческим способам относятся миграция в более влажные места, периодическое посещение водопоя, переход к ночному образу жизни и др. К морфологическим способам адаптации – приспособления, задерживающие воду в организме: раковины наземных улиток, роговые покровы у рептилий и др. Физиологические приспособления обеспечивают образование метаболической воды , являющейся результатом обмена веществ и позволяющей организму обходиться без питьевой воды. Последний способ адаптации используется такими животными, как верблюды, овцы, собаки, которые выдерживают потери воды в существенных количествах (верблюды – до 27%). Человек погибает уже при 10%-ой потере воды. Пойкилотермные животные лучше выносят потерю воды, так как им не приходится использовать воду для охлаждения организма, как гомойотермным.

Находящиеся на территории ЗАТО г. Озерск, озера Иртяш, Большая Нанога и Малая Нанога входят в Иртяшско-Каслинскую систему озер. Единственным питьевым источником г. Озерска является озеро Иртяш, непосредственно связанное с озером Большая Нанога. Оно нижнее в цепочке озер Иртяшско-Каслинской системы, что существенно влияет на химический состав воды. Особенно заметно влияние озера Б. Нанога. Изменение качества воды оз. Б. Нанога влечет за собой изменение воды озера Иртяш.

Химический состав озёр Большая Нанога и Иртяш за последние 30 лет ухудшился, а озера Малая Нанога – остался без изменений. Ещё 30 лет назад химический состав озёр Б. Нанога и М. Нанога был почти идентичен, теперь видно, что в воде озера Б. Нанога концентрации: фосфат – иона в 48,5 раз Сульфат – иона в 33, 4 раза, хлорид – иона в 2,9 раза, азота аммонийного в 3, 47 раза выше, чем в воде озера М. Нанога. А когда количество содержащихся в ней инородных веществ, особенно тех, которые оказывают неблагоприятное влияние на человека, животных и растения, достигает критических значений, вода из блага превращается в зло. В настоящее время озеро Б. Нанога утратило своё значение, как рыбохозяйственный и питьевой водоём. Качество воды в нём не удовлетворяет требованиям даже предъявляемым к водоёмам культурно – бытового назначения.

Ухудшение качества воды связано с антропогенным фактором. С каждым годом увеличивается количество садов в водоохранной зоне озера. С ливневыми и талыми стоками в озеро поступают биогенные вещества, фосфаты, азотсодержащие вещества. В результате происходит массовое размножение фитопланктона, в первую очередь сине – зелёных, зелёных и красных водорослей, а также интенсивное развитие высших водорослей, что приводит к снижению содержания кислорода в воде.

Вода, окись водорода, H20, простейшее устойчивое в обычных условиях химическое соединение водорода с кислородом (11,19% водорода и 88,81% кислорода по массе), молекулярная масса 18,0160; бесцветная жидкость без запаха и вкуса (в толстых слоях имеет голубоватый цвет). Воде принадлежит важнейшая роль в геологической истории Земли и возникновении жизни, в формировании физической и химической среды, климата и погоды на нашей планете. Без воды невозможно существование живых организмов. Вода - обязательный компонент практически всех технологических процессов - как сельскохозяйственного, так и промышленного производства.

Вода – важнейший компонент всех экосистем, причем не только водных, но и наземных, поэтому наличие воды – непременное условие поддержания экологического равновесия и биоразнообразия как в водных объектах, так и на суше.

Вода является важным компонентом живой материи. В организме взрослого животного ее содержание составляет примерно 55-65%, а у новорожденных – 70-80%. Вода, как универсальный растворитель, образует дисперсные, молекулярнодисперсные и коллоиднодисперсные растворы (золи и гели в тканях). Эти свойства воды объясняются дипольным строением ее молекулы, а следовательно, высоким значением диэлектрической постоянной. Вода является не только средой для протекания различных химических реакций, но и сама участвует в реакциях гидролиза, гидратации и дегидратации, окисления и в некоторых синтетических процессах. От содержания воды в тканях зависит скорость гидролитических реакций в них.

Вода обладает высокой теплоемкостью и теплопроводностью, благодаря чему она активна в терморегуляции животного организма. Вода, обладая хорошей текучестью, способна быстро перемещаться в организме; смачивая трущиеся поверхности в тканях, она способствует улучшению скольжения в суставах и других подвижных участках организма.

Уникальность и ценность воды постоянно подвергается проверке. Человечество жестоко атакует воду и она, проявляя свое настроение, меняет все на земле, в виде циклонов, града, туманов, штормов, ураганов, тайфунов. Количество природных катаклизмов ежегодно возрастает. За последние 30 лет по их причине погибло 4 млн. Человек, а пострадало около 4 млрд.

Биогеохимические свойства тяжелых металлов

Тяжелые металлы - это элементы периодической системы с относительной молекулярной массой больше 40. Так сложилось, что термины "тяжелые металлы" и "токсичные металлы" стали синонимами. На сегодняшний день безоговорочно к числу токсичных относят кадмий, ртуть, свинец, сурьму. Деятельность значительной части остальных в живых организмах можно оценить только на "отлично". Действительно, металлы в ионной форме входят в состав витаминов, гормонов, регулируют активность ферментов. Установлено, что для белкового, углеводного и жирового обмена веществ необходимы Mo, Fe, V, Co, W, B, Mn, Zn; в синтезе белков участвуют Mg, Fe, Cu, Zn, Mn, Co; в кроветворении - Co, Cu, Mn, Ni, Zn; в дыхании - Mg, Fe, Cu, Zn, Mn, Co. Справедливо утверждение о том, что нет вредных веществ, есть вредные концентрации. Поэтому ионы меди, кобальта или даже хрома, если их содержание в живом организме не превышает естественного, можно именовать микроэлементами, если же они генеалогически связаны с заводской трубой, то это уже тяжелые металлы. Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк,) относятся к числу распространенных и весьма токсичных загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому, несмотря на очистные мероприятия, содержание соединения тяжелых металлов в промышленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, свинец и кадмий. Ртуть переносится в океан с материковым стоком и через атмосферу.

Согласно одной классификации, к группе тяжелых металлов принадлежит более 40 элементов с высокой относительной атомной массой и относительной плотностью больше 6. По другой классификации, в эту группу включают цветные металлы с плотностью большей, чем у железа (свинец, медь, цинк, никель, кадмий, кобальт, олово, сурьма, висмут, ртуть).

Согласно сведениям, представленным в "Справочнике по элементарной химии" под ред. А. Т. Пилипенко (1977), к тяжелым металлам отнесены элементы, плотность которых более 5 г/см3. Если исходить их этого показателя, тяжелыми следует считать 43 из 84 металлов Периодической системы элементов. Среди этих 43 металлов 10 обладают наряду с металлическими свойствами признаками неметаллов (представители главных подгрупп VI, V, IV, III групп Периодической системы, являющиеся р-элементами), поэтому более строгим был бы термин "тяжелые элементы", но в данной публикации мы будем пользоваться общепринятым в литературе термином "тяжелые металлы".

Таким образом, к тяжелым металлам относят более 40 химических элементов с относительной плотностью более 6. Число же опасных загрязнителей, если учитывать токсичность, стойкость и способность накапливаться во внешней среде, а также масштабы распространения указанных металлов, значительно меньше.

Прежде всего представляют интерес те металлы, которые наиболее широко и в значительных объемах используются в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят свинец, кадмий, цинк, кобальт, никель, медь, марганец.

В водных средах металлы присутствуют в трех формах: взвешенные частицы, коллоидные частицы и растворенные соединения. Последние представлены свободными ионами и растворимыми комплексными соединениями с органическими (гуминовые и фульвокислоты) и неорганическими (галогениды, сульфаты, фосфаты, карбонаты) лигандами. Большое влияние на содержание этих элементов в воде оказывает гидролиз, во многом определяющий форму нахождения элемента в водных средах. Значительная часть тяжелых металлов переносится поверхностными водами во взвешенном состоянии.

Сорбция тяжелых металлов донными отложениями зависит от особенностей состава последних и содержания органических веществ. В конечном итоге тяжелые металлы в водных экосистемах концентрируются в донных отложениях и биоте.

Материал и методика

Исследованию на содержание тяжелых металлов подвергались образцы воды озера и двух видов рыб, обитающих в нем: окунь и сиг. В лаборатории УГАВМ определялись содержание: меди, железа, кобальта, никеля, свинца, цинка, кадмия, марганца, магния.

Оказалось, что в воде озера для ряда элементов выражено превышение ПДК: меди в 56 раз, цинка в 16 раз, никеля в 4 раза и марганца в 2 раза, содержание железа было на верхнем уровне ПДК.

Результаты исследования девяти тяжелых металлов в тканях рыб, обитающих в озере Большая Нанага, свидетельствует о том, что их уровень в большинстве своем не превышает ПДК.

При системном подходе к этим результатам установлено, что организм рыб образует двух эшелонную пирамиду.

На первом уровне ее находится две подсистемы, в первой из которых содержалось три элемента. Ее активизация вызвана изменение содержания в тканях рыб железа, итогом деятельности подсистемы было существенное снижение кобальта.

В подсистеме второго порядка содержалось три элемента. Активизация происходила вследствие изменения содержания в тканях рыб цинка, итогом деятельности было стремление к снижению кадмия.

На втором эшелоне организмом рыб была образована одна подсистема. Элементом ее активизации являлось железо, итогом деятельности – достоверное снижение цинка.

Вне подсистемы, ввиду отсутствия управляющих механизмов оказался кадмий.

Таким образом, если состояние воды свидетельствует о значительном превышении ПДК четырех элементов из девяти (медь, цинк, никель и марганец), в организме рыб также четырех, но, несколько иных (кадмий, свинец, никель марганец), хотя ПДК для тканей рыб не превышало норму.



Читайте также: