Минеральные вещества их роль в клетке. Минеральный состав клеток. Последствия нехватки минеральных соединений

Неорганические ионы, или минеральные вещества, выполняют в организме следующие функции:

1. Биоэлектрическая функция. Эта функция связана с воз­никновением разности потенциалов на клеточных мембранах. Градиент концентрации ионов по обе стороны мембраны создаёт в разных клетках потенциал порядка 60-80 мВ. Внутренняя сторона клеточной мембраны относительно наружной заряжена отрицательно. Электрический потен­циал мембраны тем выше, чем больше содержание белка и его иониза­ция (отрицательный заряд) внутри клетки и концентрация катионов вне клетки (диффузия ионов Na + и К + через мембрану внутрь клетки затруд­нена). Данная функция неорганических ионов используется для регуля­ции функций особенно возбудимых клеток (нервных, мышечных) и для проведения нервных импульсов.

2. Осмотическая функция используется для регуляции осмо­тического давления. Живая клетка подчиняется закону изоосмополярности: во всех средах организма, между которыми есть свободный обмен водой, устанавливается одинаковое осмотическое давление. Если число ионов в какой-то среде возрастает, то вслед за ними устремляется вода, пока не установится новое равновесие и новый уровень осмотического давления.

3. Структурная функция обусловлена комплексообразующими свойствами металлов. Ионы металлов взаимодействуют с анионными группами белков, нуклеиновых кислот и других макромолекул и тем са­мым обеспечивают наряду с другими факторами поддержание опреде­лённых конформаций этих молекул. Поскольку биологическая активность биополимеров зависит от их конформаций, то нормальное осуществление белками их функций, беспрепятственная реализация информации, зало­женной в нуклеиновых кислотах, образование надмолекулярных ком­плексов, формирование субклеточных структур и другие процессы не­мыслимы без участия катионов и анионов.

4. Регуляторная функция заключается в том, что ионы ме­таллов являются активаторами ферментов и тем самым регулируют ско­рость химических превращений в клетке. Это прямое регуляторное дей­ствие катионов. Косвенное заключается в том, что ионы металлов часто необходимы для действия другого регулятора, например, гормона. При­ведём несколько примеров. Формирование активной формы инсулина невозможно без ионов цинка. Третичная структура РНК в огромной сте­пени определяется ионной силой раствора, а такие катионы, как Сr 2+ , Ni 2+ , Fe 2+ , Zn 2+ ,Mn 2+ и другие, непосредственно участвуют в формирова­нии спиральной структуры нуклеиновых кислот. Концентрация ионов Мg 2+ влияет на формирование такой надмолекулярной структуры, как рибосомы.

5. Транспортная функция проявляется в участии некоторых металлов (в составе металлопротеидов) в переносе электронов или про­стых молекул. Например, катионы железа и меди входят в состав цитохромов, являющихся переносчиками электронов в дыхательной цепи, а железо в составе гемоглобина связывает кислород и участвует в его пе­реносе.

6. Энергетическая функция связана с использованием фос­фат-анионов в образовании АТФ и АДФ (АТФ - основной носитель энер­гии в живых организмах).

7. Механическая функция. Например, катион Са +2 и фосфат-анион входят в состав гидроксилапатита и фосфата кальция костей и определяют их механическую прочность.

8. Синтетическая функция. Многие неорганические ионы ис­пользуются в синтезах сложных молекул. Например, ионы йода I¯ участ­вуют в синтезе йодтиронинов в клетках щитовидной железы; анион (SО 4) 2- - в синтезе эфиросерных соединений (при обезвреживании в ор­ганизме вредных органических спиртов и кислот). Важное значение в механизме защиты от токсического действия пероксида имеет селен. Он образует селеноцистеин - аналог цистеина, в котором вместо атомов серы атомы селена. Селеноцистеин является составной частью фермента глутатион-пероксидазы, катализирующей восстановление пероксида во­дорода глутатионом (трипептид - γ-глутамил-цистеинилглицин)

Важно отметить, что в известных пределах возможна взаимоза­меняемость некоторых ионов. При недостатке какого-то иона металла он может заменяться ионом другого металла, близким по физико-химическим свойствам и ионному радиусу. Например, ион натрия заме­щается ионом лития; ион кальция - ионом стронция; ион молибдена - ионом ванадия; ион железа - ионом кобальта; иногда ионы магния - ио­нами марганца.

Благодаря тому, что минеральные вещества активируют дейст­вие ферментов, они влияют на все стороны обмена веществ. Рассмотрим, в чём выражается зависимость обмена нуклеиновых кислот, белков, уг­леводов и липидов от наличия тех или иных неорганических ионов.

Минеральные вещества – это один из важнейших компонентов нашего питания, без них невозможно правильное протекание жизненно важных процессов в организме, они обеспечивают правильное формирование химической структуры всех тканей человека и, разумеется, мышечной, в том числе. Все минеральные вещества , присутствующие в нашем организме, можно условно разделить на макроэлементы и микроэлементы.

Макроэлементы – минеральные вещества, содержащиеся в организме в, относительно, больших количествах, это: железо, кальций, натрий, фосфор, магний, калий, сера, хлор.

Микроэлементы – минеральные вещества, содержащиеся в организме в, относительно, малых количествах, это: цинк, марганец, медь, фтор, хром, никель, кобальт и другие.

Вещества

Местонахождение и преобразование

Свойства

Соединения азота

В клетках растений ионы аммония и нитратов восстанавливаются и включаются в синтез аминокислот. У животных аминокислоты идут на построение собственных белков. При отмирании организмов включаются в круговорот веществ в форме свободного азота.

Входят в состав белков, аминокислот, нуклеиновых кислот (ДНК, РНК) и АТФ

Соединения фосфора

Соли фтора(фосфаты)находясь в почве, растворяются корневыми выделениями растений и усваиваются. Остатки фосфорной кислоты при отмирании организмов минерализуются, образуя соли.

Входят в состав всех мембранных структур; нуклеиновых кислот, ДНК, РНК, АТФ, ферментов тканей (костной)

Соединения калия

Калий содержится во всех клетках в виде ионов калия, концентрация которых намного выше, чем в окружающей среде. После отмирания возвращается в окружающую среду в виде ионов калия.

"Калиевый насос" клетки способствует проникновению через мембрану. Активизирует жизнедеятельность клетки, проведение возбуждения и импульсов.

Соединения кальция

Кальций содержится в клетках в виде ионов и кристаллов солей.

Образует межклеточное вещество и кристаллы в клетках растений. Входит в состав костей, раковин, известковых скелетов

Жизнедеятельность клетки характеризуется непрерывно протекающими в ней процессами обмена веществ, причем цитоплазма избирательно реагирует на воздействие разных факторов внешней среды. В поглощении и выделении веществ большую роль играют процессы диффузии и осмоса. Избирательность транспорта через проницаемую мембрану ведет к возникновению в клетке осмотических явлений. Осмотическими называют явления, происходящие в системе, состоящей из двух растворов, разделенных полупроницаемой мембраной. В растительной клетке роль полупроницаемых пленок выполняют: плазмалемма - мембрана, разделяющая цитоплазму и внеклеточную среду, и тонопласт - мембрана, разделяющая цитоплазму и клеточный сок, представляющий собой содержимое вакуоли.

Осмос - диффузия воды через полупроницаемую мембрану из раствора с низкой концентрацией растворенного вещества в раствор с высокой концентрацией растворенного вещества. Давление, при котором диффузия жидкости прекращается, называется осмотическим давлением. Если осмотическое давление раствора больше, чем давление исследуемой жидкости, раствор называют гипертоническим ; если меньше - гипотоническим , если такое же - изотоническим .

Тургор растительной клетки. Если поместить взрослые клетки растений (в составе ткани, к примеру, эпидермиса) в гипотонические условия, они не лопнут, поскольку каждая клетка растения окружена более или менее толстой клеточной стенкой. Она служит ригидной структурой, не позволяющей притекающей воде разорвать клетку. Если бы клеточная стенка и плазматическая мембрана клетки могли растягиваться, вода входила бы в клетку до тех пор, пока концентрация осмотически активных веществ снаружи и внутри клетки не выровнялась бы. В реальности клеточная стенка - прочная нерастяжимая структура, и в гипотонических условиях входящая в клетку вода давит на клеточную стенку, плотно прижимая к ней плазмалемму. Давление протопласта изнутри на клеточную стенку называется тургорным давлением . Клетки растений обладают тургесцентностью . Тургорное давление препятствует дальнейшему поступлению воды в клетку. Состояние внутреннего напряжения клетки, обусловленное высоким содержанием воды и развивающимся давлением содержимого клетки на ее оболочку называется тургор .

1 слайд

Презентация по предмету «биология». Тема: «Минеральные вещества и их роль в клетке». Презентацию подготовила Ученица 10 класса Нойкова Е. Преподаватель: Данилкина О.Н.

2 слайд

К макроэлементам относят натрий, калий, кальций, магний, хлор, кремний, серу, железо и др. К микроэлементам относятся вещества, содержание которых в продуктах ничтожно мало - это йод, цинк, медь, фтор, бром, марганец и др. Несмотря на малое содержание, микроэлементы исключительно важны для питания человека. Наряду с органическими веществами - белками, углеводами, жирами - в клетках живых организмов содержатся соединения, составляющие обширную группу минеральных веществ. К ним относятся вода и различные соли, которые, находясь в растворенном состоянии, диссоциируют (распадаются) с образованием ионов: катионов (положительно заряженных) и анионов (отрицательно заряженных). Минеральные вещества входят в состав всех клеток, тканей, костей; они поддерживают кислотно-щелочное равновесие в организме и оказывают большое влияние на обмен веществ. Минеральные вещества в зависимости от их содержания в продуктах или организме человека условно подразделяют на макроэлементы и микроэлементы.

3 слайд

Многие минеральные вещества являются незаменимыми структурными элементами организма – кальция и фосфор слагают основную массу минерального вещества костей и зубов, натрий и хлор являются основными ионами плазмы, а калий, в больших количествах содержится внутри живых клеток. Поддержание постоянства внутренней среды (гомеостаза) организма и осмотического давления на мембранах клетки, предусматривает в первую очередь поддержание качественного и количественного содержания минеральных веществ в тканях органах на физиологическом уровне. Даже небольшие отклонения от нормы могут повлечь самые тяжелые последствия для здоровья организма или отдельно взятой клетки Вся совокупность макро и микроэлементов обеспечивает процессы роста и развития организма. Минеральные вещества играют важную роль в регуляции иммунных процессов, поддерживают целостность клеточных мембран, обеспечивают дыхание тканей.

4 слайд

Неорганические ионы: катионы и анионы Катионы – калий, натрий, магний и кальций. Анионы – хлорид анион, гидрокарбонат анион, гидрофосфат анион, дигидрофосфат анион, карбонат анион, фосфат анион и нитрат анион. Рассмотрим значение ионов. Ионы, располагаясь по разные стороны клеточных мембран, образуют так называемый трансмембранный потенциал. Многие ионы неравномерно распределены между клеткой и окружающей средой. Так, концентрация ионов калия (К+) в клетке в 20–30 раз выше, чем в окружающей среде; а концентрация ионов натрия (Na+) в десять раз ниже в клетке, чем в окружающей среде. Благодаря существованию градиентов концентрации, осуществляются многие жизненно важные процессы, такие как сокращение мышечных волокон, возбуждение нервных клеток, перенос веществ через мембрану. Катионы влияют на вязкость и текучесть цитоплазмы. Ионы калия уменьшают вязкость и увеличивают текучесть, ионы кальция (Са2+) обладают противоположным действием на цитоплазму клетки. Анионы слабых кислот – гидрокарбонат анион (НСО3-), гидрофосфат анион (НРО42-) – участвуют в поддержании кислотно-щелочного баланса клетки, то есть pH среды. По своей реакции растворы могут быть кислыми, нейтральными и основными.

5 слайд

рН среды и роль ионов в его поддержании Значение pH в клетке примерно равняется 7. Изменение pH в ту или иную сторону губительно действует на клетку, поскольку сразу же изменяются биохимические процессы, проходящие в клетке. Постоянство pH клетки поддерживается благодаря буферным свойствам её содержимого. Буферным называют раствор, который поддерживает постоянное значение pH среды. Обычно буферная система состоит из сильного и слабого электролита: соли и слабого основания или слабой кислоты, которые её образуют Действие буферного раствора заключается в том, что он противостоит изменениям pH среды. Изменение pH среды может возникнуть вследствие концентрирования раствора или разбавления его водой, кислотой или щелочью. Когда кислотность, то есть концентрация ионов водорода возрастает, свободные анионы, источником которых служит соль, взаимодействуют с протонами и удаляют их из раствора.

6 слайд

рН среды и роль ионов в его поддержании Когда кислотность снижается, то усиливается тенденция к освобождению протонов. Таким образом поддерживается pH на определенном уровне, то есть поддерживается концентрация протонов на определенном постоянном уровне. Некоторые органические соединения, в частности белки, также обладают буферными свойствами. Катионы магния, кальция, железа, цинка, кобальта, марганца входят в состав ферментов и витаминов Катионы металлов входят в состав гормонов. Цинк входит в состав инсулина. Инсулин – это гормон поджелудочной железы, который регулирует уровень глюкозы в крови. Магний входит в состав хлорофилла. Железо входит в состав гемоглобина. При недостатке этих катионов нарушается процессы жизнедеятельности клетки

7 слайд

Буферная система крови В организме человека всегда имеются определенные условия для сдвига нормальной реакции среды ткани, например, крови, в сторону ацидоза (закисления) или алкалоза (раскисления – смещения рН в большую сторону). В кровь поступают различные продукты, например, молочная кислота, фосфорная кислота, сернистая кислота, образующиеся в результате окисления фосфорорганических соединений либо серосодержащих белков. При этом реакция крови, может сдвигаться в сторону кислых продуктов. При употреблении мясных продуктов, в кровь поступают кислые соединения. При употреблении растительной пищи, в кровь поступают основания. Тем не менее, pH крови остается на определенном постоянном уровне. В крови имеются буферные системы, которые поддерживают pH на определенном уровне. К буферным системам крови относятся: - карбонатная буферная система, - фосфатная буферная система, - буферная система гемоглобина, - буферная система белков плазмы

Клетка состоит из органических и минеральных веществ.

Минеральный состав клеток

Из неорганических веществ в состав клетки входят 86 элементов Периодической таблицы, около 16-18 элементов жизненно необходимы для нормального существования живой клетки.

Среди элементов выделяют: органогены, макроэлементы, микроэлементы и ультрамикроэлементы.

Органогены

Это вещества, из которых состоят органические вещества: кислород, углерод, водород и азот.

Кислород (65-75%) - содержится в огромном количестве органических молекул - белках, жирах, углеводах, нуклеиновых кислотах. В виде простого вещества (О2) образуется в процессе оксигенного фотосинтеза (цианобактерии, водоросли, растения).

Функции: 1. Кислород - сильный окислитель (окисляет глюкозу в процессе клеточного дыхания, в процессе выделяется энергия)

2. Входит в состав органических веществ клетки

3. Входит в состав молекулы воды

Углерод (15-18%) - является основой строения всех органических веществ. В виде углекислого газа выделяется в процессе дыхания, а поглощается в процессе фотосинтеза. Может быть в виде СО - угарного газа. В виде карбоната кальция (СаСО3) входит в состав костей.

Водород (8 - 10%) - как и углерод входит в состав любого органического соединения. А еще входит в состав воды.

Азот (2 - 3%) - входит в состав аминокислот, а значит и белков, нуклеиновых кислот, некоторых витаминов и пигментов. Фиксируется бактериями из атмосферы.

Макроэлементы

Магний (0,02 - 0,03%)

1. В клетке - входит в состав ферментов, участвует в синтезе ДНК и энергетическом обмене

2. У растений - входит в состав хлорофилла

3. У животных - входит в состав ферментов, участвующих в функционировании мышечной, нервной и костной тканей.

Натрий (0,02 - 0,03%)

1. В клетке - входит в состав калиево-натриевых каналов и насосов

2. У растений - участвует в осмосе, что обеспечивает поглощение воды из почвы

3. У животных - участвует в работе почек, поддержании сердечного ритма, входит в состав крови (NaCl), помогает поддерживать кислотно-щелочной баланс

Кальций (0,04 - 2,0%)

1. В клетке - участвует в избирательной проницаемости мембраны, в процессе соединения ДНК с белками

2. У растений - образует соли пектиновых веществ, придает твердость межклеточному веществу, соединяющему растительные клетки, а также участвует в формировании межклеточных контактов

3. У животных - входит в состав костей позвоночных, раковин моллюсков и коралловых полипов, участвует в образовании желчи, повышает рефлекторную возбудимость спинного мозга и центра слюноотделения, участвует в синаптической передаче нервного импульса, в процессах свертывания крови, является необходимым фактором сокращения поперечно-полосатой мускулатуры

Железо (0,02%)

1. В клетке - входит в состав цитохромов

2. У растений - участвует в синтезе хлорофилла, входит в состав ферментов, участвующих в дыхании, входят в состав цитохромов

3. У животных - входит в состав гемоглобина

Калий (0,15 - 0,4%)

1. В клетке - поддерживает коллоидные свойства цитоплазмы, входит в состав калиево-натриевых насосов и каналов, активизирует ферменты, участвующие в синтезе белка при гликолизе

2. У растений - участвует в регуляции водного обмена и фотосинтеза

3. Нужен для правильного сердечного ритма, участвует в проведении нервного импульса

Сера (0,15 - 0,2%)

1. В клетке - входит в состав некоторых аминокислот - цитина, цистеина и метионина, образует дисульфидные мостики в третичной структуре белка, входит в состав некоторых ферментов и кофермента А, входит в состав бактериохлорофилла, некоторые хемосинтетики используют соединения серы для получения энергии

2. У животных - входит в состав инсулина, витамина В1, биотина

Фосфор (0,2 - 1,0%)

1. В клетке - в виде остатков фосфорной кислоты входит в состав ДНК, РНК, АТФ, нуклеотидов, коферментов НАД, НАДФ, ФАД, фосфорилированных сахаров, фосфолипидов и многих ферментов, в составе фосфолипидов образует мембраны

2. У животных - входит в состав костей, зубов, у млекопитающих является компонентом буферной системы, поддерживает кислотный баланс тканевой жидкости относительно постоянным

Хлор (0,05 - 0,1%)

1. В клетке - участвует в поддержании электронейтральности клетки

2. У растений - участвует в регуляции тургорного давления

3. У животных - участвует в формировании осмотического потенциала плазмы крови, также в процессах возбуждения и торможения в нервных клетках, входит в состав желудочного сока в виде соляной кислоты

Микроэлементы

Медь

1. В клетке - входит в состав ферментов, участвующих в синтезе цитохромов

2. У растений - входит в состав ферментов, участвующих в реакциях темновой фазы фотосинтеза

3. У животных - участвует в синтезе гемоглобина, у беспозвоночных входит в состав гемоцианинов - переносчиков кислорода, у человека - входит в состав пигмента кожи - меланина

Цинк

1. Участвует в спиртовом брожении

2. У растений - входит в состав ферментов, участвующих в расщеплении угольной кислоты и в синтезе растительных гормонов-ауксинов

Йод

1. У позвоночных - входит в состав гормонов щитовидной железы (тироксин)

Кобальт

1. У животных - входит в состав витамина В12 (принимает участие в синтезе гемоглобина), его недостаток приводит к анемии

Фтор

1. У животных - придает прочность костям и зубной эмали

Марганец

1. В клетке - входит в состав ферментов, участвующих в дыхании, окислении жирных кислот, повышает активность карбоксилазы

2. У растений - в составе ферментов участвует в темновых реакциях фотосинтеза и в восстановлении нитратов

3. У животных - входит в состав фосфатаз-ферментов, необходимых для роста костей

Бром

1. В клетке - входит в состав витамина В1, который участвует в расщеплении пировиноградной кислоты

Молибден

1. В клетке - в составе ферментов участвует в фиксации атмосферного азота

2. У растений - в составе ферментов участвует в работе устьиц и ферментов, участвующих в синтезе аминокислот

Бор

1. Влияет на рост растений

Из этого урока вы узнаете о роли минеральных соединений микро - и макроэлементов в жизнедеятельности живых организмов. Вы познакомитесь с водородным показателем среды - рН, узнаете, как этот показатель связан с физиологией организма, каким образом в организме поддерживается постоянный рН среды. Выясните роль неорганических анионов и катионов в процессах обмена веществ, узнаете подробности о функциях катионов Na, K и Са в организме, а также какие другие металлы входят в состав нашего тела и каковы их функции.

Введение

Тема: Основы цитологии

Урок: Минеральные вещества и их роль в жизнедеятельности клетки

1. Введение. Минеральные вещества в клетке

Минеральные вещества составляют от 1 до 1,5% от сырой массы клетки, и находятся в клетки в виде солей дислоцированных на ионы, либо в твердом состоянии (рис. 1).

Рис. 1. Химический состав клеток живых организмов

В цитоплазме любой клетки находятся кристаллические включения, которые представлены слаборастворимыми солями кальция и фосфора; кроме них могут находиться оксид кремния и другие неорганические соединения, которые участвуют в образовании опорных структур клетки - в случае минерального скелета радиолярий - и организма, то есть образуют минеральное вещество костной ткани.

2. Неорганические ионы: катионы и анионы

Неорганические ионы, имеют значение для жизнедеятельности клетки (рис. 2).

Рис. 2. Формулы основных ионов клетки

Катионы - калий, натрий, магний и кальций.

Анионы - хлорид анион, гидрокарбонат анион, гидрофосфат анион, дигидрофосфат анион, карбонат анион, фосфат анион и нитрат анион.

Рассмотрим значение ионов.

Ионы, располагаясь по разные стороны клеточных мембран, образуют так называемый трансмембранный потенциал. Многие ионы неравномерно распределены между клеткой и окружающей средой. Так, концентрация ионов калия (К+) в клетке в 20-30 раз выше, чем в окружающей среде; а концентрация ионов натрия (Na+) в десять раз ниже в клетке, чем в окружающей среде.

Благодаря существованию градиентов концентрации , осуществляются многие жизненно важные процессы, такие как сокращение мышечных волокон, возбуждение нервных клеток, перенос веществ через мембрану.

Катионы влияют на вязкость и текучесть цитоплазмы. Ионы калия уменьшают вязкость и увеличивают текучесть, ионы кальция (Са2+) обладают противоположным действием на цитоплазму клетки.

Анионы слабых кислот - гидрокарбонат анион (НСО3-), гидрофосфат анион (НРО42-) - участвуют в поддержании кислотно-щелочного баланса клетки, то есть pH среды . По своей реакции растворы могут быть кислыми , нейтральными и основными .

Кислотность или основность раствора определяется концентрацией в нем ионов водорода (рис. 3).

Рис. 3. Определение кислотности раствора при помощи универсального индикатора

Эту концентрацию выражают с помощью водородного показателя pH, протяженность шкалы от 0 до 14. Нейтральная среда pH - около 7. Кислая - меньше 7. Основная - больше 7. Быстро определить pH среды можно с помощью индикаторных бумажек, или полосок (см. видео).

Мы опускаем индикаторную бумажку в раствор, затем полоску вынимаем и сразу же сравниваем окрашивание индикаторной зоны полоски с цветами стандартной шкалы сравнения, которая входит в комплект, оценивая схожесть окрашивания и определяя значение pH (см. видео).

3. рН среды и роль ионов в его поддержании

Значение pH в клетке примерно равняется 7.

Изменение pH в ту или иную сторону губительно действует на клетку, поскольку сразу же изменяются биохимические процессы, проходящие в клетке.

Постоянство pH клетки поддерживается благодаря буферным свойствам её содержимого. Буферным называют раствор, который поддерживает постоянное значение pH среды. Обычно буферная система состоит из сильного и слабого электролита: соли и слабого основания или слабой кислоты, которые её образуют.

Действие буферного раствора заключается в том, что он противостоит изменениям pH среды. Изменение pH среды может возникнуть вследствие концентрирования раствора или разбавления его водой, кислотой или щелочью. Когда кислотность, то есть концентрация ионов водорода возрастает, свободные анионы, источником которых служит соль, взаимодействуют с протонами и удаляют их из раствора. Когда кислотность снижается, то усиливается тенденция к освобождению протонов. Таким образом поддерживается pH на определенном уровне, то есть поддерживается концентрация протонов на определенном постоянном уровне.

Некоторые органические соединения, в частности белки, также обладают буферными свойствами.

Катионы магния, кальция, железа, цинка, кобальта, марганца входят в состав ферментов и витаминов (см. видео).

Катионы металлов входят в состав гормонов.

Цинк входит в состав инсулина. Инсулин - это гормон поджелудочной железы, который регулирует уровень глюкозы в крови.

Магний входит в состав хлорофилла.

Железо входит в состав гемоглобина.

При недостатке этих катионов нарушается процессы жизнедеятельности клетки.

4. Ионы металлов как кофакторы

Значение ионов натрия и калия

Ионы натрия и калия распределены по всему объему организма, при этом ионы натрия входят, в основном, в состав межклеточной жидкости, а ионы калия содержатся внутри клеток: 95% ионов калия содержатся внутри клеток , а 95% ионов натрия содержатся в межклеточных жидкостях (рис. 4).

С ионами натрия связано осмотическое давление жидкостей, удержание воды тканями, а также перенос, или транспорт таких веществ как аминокислот и сахара через мембранну.

Значение кальция в организме человека

Кальций является одним из самых распространенных элементов в организме человека. Основная масса кальция входит в состав костей и зубов. Фракция вне костного кальция составляет 1% от общего количества кальция в организме. Внекостный кальций влияет на свертываемость крови, а также нервно-мышечную возбудимость и сокращение мышечных волокон.

Фосфатная буферная система

Фосфатная буферная система играет роль в поддержании кислотно-щелочного баланса организма, кроме этого она поддерживает баланс в просвете канальцев почек, а также внутриклеточной жидкости.

Фосфатная буферная система состоит из дигидрофосфата и гидрофосфата. Гидрофосфат связывает, то есть нейтрализует протон. Дигидрофосфат высвобождает протон и взаимодействует с поступившими в кровь щелочными продуктами.

Фосфатная буферная система входит в буферную систему крови (Рис. 5).

Буферная система крови

В организме человека всегда имеются определенные условия для сдвига нормальной реакции среды ткани, например, крови, в сторону ацидоза (закисления) или алкалоза (раскисления - смещения рН в большую сторону).

В кровь поступают различные продукты, например, молочная кислота, фосфорная кислота, сернистая кислота, образующиеся в результате окисления фосфорорганических соединений либо серосодержащих белков. При этом реакция крови, может сдвигаться в сторону кислых продуктов.

При употреблении мясных продуктов, в кровь поступают кислые соединения. При употреблении растительной пищи, в кровь поступают основания.

Тем не менее, pH крови остается на определенном постоянном уровне.

В крови имеются буферные системы , которые поддерживают pH на определенном уровне.

К буферным системам крови относятся:

Карбонатная буферная система,

Фосфатная буферная система,

Буферная система гемоглобина,

Буферная система белков плазмы (Рис. 6).

Взаимодействие этих буферных систем создает определенное постоянное pH крови.

Таким образом, сегодня мы с вами рассмотрели минеральные вещества и их роль в жизнедеятельности клетки.

Домашнее задание

Какие химические вещества называют минеральными? Каково значение минеральных веществ для живых организмов? Из каких веществ в основном состоят живые организмы? Какие катионы входят в состав живых организмов? Каковы их функции? Какие анионы входят в состав живых организмов? Какова их роль? Что такое буферная система? Какие буферные системы крови вам известны? С чем связано содержание минеральных веществ в организме?

1. Химический состав живых организмов.

2. Википедия.

3. Биология и медицина.

4. Образовательный центр.

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.



Читайте также: