Растительная клетка и ее органоиды. Органоиды (органеллы) клетки. Цитоплазматические образования – органеллы

Все в этом мире состоит разных частиц, которые составляют единую картину, так и живая клетка состоит из органоидов. «Единица жизни» покрыта защитным барьером – мембраной, которая разграничивает внешний мир от внутреннего содержимого. Строение органоидов клетки представляет собой целую систему, в которой предстоит разобраться.

Эукариоты и прокариоты

В природе существует огромное количество видов клетки, только в организме человека их более 200, а вот типа клеточной организации известно всего 2 – это эукариотический и прокариотический. Оба упомянутых типа возникли посредством эволюции. Эукариоты и прокариоты имеют клеточную мембрану, но на этом их сходства заканчиваются.

Клетки прокариотического вида имеют маленький размер и не могут похвастаться хорошо развитой мембраной. Главное отличие – отсутствие ядра. В отдельных случаях, присутствуют плазмиды, которые представляют собой кольцо молекул ДНК. Органоиды в таких клетках практически отсутствуют – встречаются лишь рибосомы. К прокариотам относятся бактерии и археи. Монеры – именно так ранее называли одноклеточных бактерий, которые не имеют ядра. Сегодня данный термин вышел из употребления.

Клетка эукариотичского типа намного крупнее прокариотов, включает в себя структуру, названную органоидами. В отличие от своего простейшего «родственника», клетка эукариот имеет линейную ДНК, которая находится в ядре. Еще одно интересное отличие этих двух видов – митохондрии и пластиды, которые находятся внутри эукариотической клетки, поразительно напоминают своим строением и жизнедеятельностью бактерий. Ученые выдвинули предположение, что эти органоиды являются потомками прокариотов, иными словами, ранее прокариоты вступили в симбиоз с эукариотами.

«Устройство» эукариотической клетки

Органоиды клетки – это ее маленькие части, которые выполняют важные функции, например, хранение генетической информации, синтез, деление и другие.

К органеллам относятся:

  • Клеточная мембрана;
  • Комплекс Гольджи;
  • Рибосомы;
  • Микрофиламенты;
  • Хромосомы;
  • Митохондрии;
  • Эндоплазматическая сеть;
  • Микротрубочки;
  • Лизосомы.

Строение органоидов клеток животных, растений и человека одинаково, но у каждого из них существуют свои особенности. Для животных клеток характерны микрофибриллы и центриоли, а для растительных – пластиды. Собрать информацию воедино поможет таблица строения органоидов клетки.

Часть ученых относит ядро клетки к ее органоидам. Ядро располагается в центре и имеет овальную или круглую форму. Его пористая оболочка состоит из 2 мембран. У оболочки встречаются две фазы – интерфаза и деление.

У клеточного ядра две функции – хранение генетической информации и синтез белка. Таким образом, ядро – это не только «хранилище», но и место, где материал воспроизводится и функционирует.

Таблица: строение органоидов клеток

Органеллы клетки Строение органоида Функции органоида
1. Органоиды, имеющие мембрану

Эндоплазматическая сеть (ЭПС).

Развитая система каналов и разных полостей, которые пронизывают все цитоплазму. Одномембранное строение. Соединение клеточных мембранных структур.ЭПС – «поверхность», на которой происходят внутриклеточные процессы. По системе сети осуществляется транспортировка веществ.
Комплекс Гольджи. располагается около ядра. Клетка может иметь несколько комплексов Гольджи.

Комплекс представляет собой систему мешочков, которые уложены в стопку.

Транспортировка липидов и белков, которые поступают из ЭПС. Перестройка этих веществ, «упаковка» и накопление.

Лизосомы.

Пузырьки с одной мембраной, в которых заключены ферменты. Расщепляют молекулы, тем самым участвуют в пищеварении клетки.

Митохондрии.

Форма митохондрий может быть палочковидная или овальная. Имеют две мембраны. Внутри митохондрий содержится матрикс, внутри которого заключены молекула ДНК и РНК.

Митохондрии отвечают за синтез источника энергии – АТФ.

Пластиды. Они присутствуют только в клетках растений. Чаще всего пластиды встречают овальной формы. Имеют две мембраны.

Имеют три вида пластид: лейкопласты, хлоропласты и хромопласты.

Лейкопласты накапливают органические вещества. Хлоропласты отвечают за фотосинтез. Хромопласты «окрашивают» растение.

2. Органоиды, не имеющие мембраны
Рибосомы присутствуют во всех клетках. Располагаются в цитоплазме или соединяются с мембраной эндоплазматической сети. Состоят из нескольких молекул РНК и белка. Поддерживают структуру рибосом ионы магния. Рибосомы выглядят как небольшие тела в форме сферы. Производят синтез полипептидных цепочек.
Клеточный центр присутствует в клетках животных, кроме ряда простейших, а также обнаружен у некоторых растений. Клеточный центр из двух цилиндрических органоидов – центриолей. Участвует в делении ахроматинового веретера. Органоиды, из которых состоит клеточный центр, производят жгутики и реснички.

Мирофиламенты, микротрубочки.

Представляют собой сплетение нитей, которые пронизывают всю цитоплазму. Сформированы эти нити из сократительных белков. Являются частью цитоскелета клетки. Отвечают за движение органоидов, сокращение волокон.

Клеточные органеллы – видео

Органоиды (органеллы) - вцитологиипостоянные специализированные структуры в клетках живых организмов. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки сорганами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ.

Иногда органоидами считают только постоянные структуры клетки, расположенные в еёцитоплазме. Частоядрои внутриядерные структуры (например,ядрышко) не называют органоидами.Клеточную мембрану,ресничкии жгутикитоже обычно не причисляют к органоидам.

Рецепторыи прочие мелкие, молекулярного уровня, структуры, органоидами не называют. Граница между молекулами и органоидами не очень четкая. Так, рибосомы, которые обычно однозначно относят к органоидам, можно считать и сложным молекулярным комплексом. Элементы цитоскелета (микротрубочки, толстые филаменты поперечнополосатых мышц и т. п.) обычно к органоидам не относят.

Во многом набор органоидов, перечисляемый в учебных руководствах, определяется традицией.

Клеточные органоиды (имеющие мембранное строение)

Наименование

Животная клетка

Растительная клетка

Ядро

Система генетической детерминации и регуляции белкового обмена

Эндоплазмати-ческая сеть гранулярная (ЭПС)

Синтез гормонов, ферментов, белков плазмы, мембран; сегрегация (обособление) синтезированных белков; образование мембран вакуолярной системы, плазмолеммы, синтез фосфолипидов

Эндоплазмати-ческая сеть гладкая (ЭПС)

Метаболизм липидов и некоторых внутриклеточных полисахаридов

Пластинчатый комплекс Гольджи

синтез полисахаридов

Секреция, сегрегация и накопление продуктов, синтезированных в ЭПС,

синтез полисахаридов

Лизосомы первичные

Гидролиз биополимеров

Гидролиз биополимеров

Лизосомы вторичные (см. вакуоль)

Результат фагоцитоза, пиноцитоза, трнсмембранный транспорт веществ

Аутолизосома

Аутолиз клеточных компонентов

Пероксисомы

Окисление аминокислот, образование перекисей

Окисление аминокислот, образование перекисей, защитная функция

Митохондрии

Синтез АТФ

Синтез АТФ

Кинетопласт

Комплексная функция: движение и энергообеспечение движения

Пластиды:

хлоропласты

хроматофоры лейкопласты хромопласты

Фотосинтез, синтез и гидролиз вторичного крахмала (амилопласты); масла (элайопласты); белка (протеинопласты, протеопласты)

Вакуоль

Внутриклеточное пищеварение

Накопления воды и питательных веществ

Клеточные органоиды (имеющие немембранное строение)

Наименование

Животная клетка

Растительная клетка

Ядрышко

Место образования рибосомных РНК

Центриоли (центросомы)

Формирование веретена деления

Рибосомы

Синтез белка

Синтез белка

Микротрубочки

Цитоскелет, участие в транспорте веществ и органоидов

Микро-филаменты

Сократимые элементы цитоскелета, подвижность клетки, внутриклеточное движение веществ

Микрофибриллы

Сократительная функция клетки и внутриклеточного перемещения органоидов

Жгутики

Органы движения

Органы движения

Реснички

Увеличение всасывающей поверхности

Органы движения, защиты

Диктиосомы, десмосомы

Высоко контактные мембраны

Орган межклеточного контакта

Органоиды эукариот

(общая информация)

Органелла

Основная функция

Структура

Организмы

Примечания

Хлоропласт

(Пластиды)

фотосинтез

двух-мембранная

растения,

протисты

имеют собственную ДНК; предполагают что хлоропласты возникли из цианобактерийв результате симбиогенеза

Эндоплазма-тический ретикулум

трансляция и свёртывание новых белков (гранулярный эндоплазматический ретикулум), синтезлипидов

(агранулярный эндоплазматический ретикулум)

одно-мембранная

все эукариоты

на поверхности гранулярного эндоплазма-тического ретикулума находится большое количество рибосом, свёрнут как мешок; агранулярный эндоплазма-тический ретикулум свёрнут в трубочки

Аппарат Гольджи

сортировка и преобразование белков

одно-мембранная

все

эукариоты

асимметричен - цистерны, располагающиеся ближе к ядру клетки, содержат наименее зрелые белки, а от цистерн, располагающихся дальше от ядра, отпочковываются пузырьки, содержащие полностью зрелые белки

Митохондрия

энергетическая

двух-мембранная

большинство эукариот

имеют свою собственную митохонд-риальную ДНК; предполагают, что митохондрии возникли в результате симбиогенеза

Вакуоль

запас, поддержаниегомеостаза, в клетках растений - поддержание формы клетки (тургор)

одномембранная

эукариоты, более выражена у растений

Ядро

Хранение ДНК,транскрипцияРНК

двухмембранная

всеэукариоты

содержит основную частьгенома

Рибосомы

синтезбелкана основе матричных РНКпри помощи транспортныхРНК

РНК/белок

эукариоты,

прокариоты

Везикулы

запасают или транспортируют питательные вещества

одномембранная

всеэукариоты

Лизосомы

мелкие лабильные образования, содержащие ферменты, в частности гидролазы, принимающие участие в процессах переваривания фагоцитированнойпищи и автолиза (саморастворение органелл)

одномембранная

большинство эукариот

Центриоли (клеточный центр)

Центр организациицитоскелета. Необходим для процесса клеточного деления (равномерно распределяет хромосомы)

немембранная

эукариоты

Меланосома

хранение пигмента

одномембранная

животные

Миофибриллы

сокращение мышечных волокон

сложно организованный пучок белковых нитей

животные

Предполагают, чтомитохондрии ипластиды - это бывшиесимбионтысодержащих их клеток, некогда самостоятельныепрокариоты

Органоиды - постоянно присутствующие в цитоплазме, специализированные для выполнения определенных функций структуры. По принципу организации выделяют мембранные и немембранные органоиды клетки.

Мембранные органоиды клетки

1. Эндоплазматическая сеть (ЭПС) - система внутренних мембран цитоплазмы, образующих крупные полости - цистерны и многочисленные канальцы; занимает центральное положение в клетке, вокруг ядра. ЭПС составляет до 50% объема цитоплазмы. Каналы ЭПС связывают все органоиды цитоплазмы и открываются в перинуклеарное пространство ядерной оболочки. Таким образом, ЭПС представляет собой внутриклеточную циркуляционную систему. Различают два вида мембран эндоплазматической сети - гладкую и шероховатую (гранулярную). Однако необходимо понимать, что они являются частью одной непрерывной эндоплазматической сети. На гранулярных мембранах расположены рибосомы, здесь идет синтез белка. На гладких мембранах упорядоченно расположены ферментные системы, участвующие в синтезе жиров и углеводов.

2. Аппарат Гольджи представляет собой систему цистерн, канальцев и пузырьков, образованных гладкими мембранами. Эта структура расположена на периферии клетки по отношению к ЭПС. На мембранах аппарата Гольджи упорядоченно расположены ферментные системы, участвующие в образовании более сложных органических соединений из белков, жиров и углеводов, синтезированных в ЭПС. Здесь происходит сборка мембран, образование лизосом. Мембраны аппарата Гольджи обеспечивают накопление, концентрацию и упаковку секрета, выделяемого из клетки.

3. Лизосомы - мембранные органоиды, содержащие до 40 протеолитических ферментов, способных расщеплять органические молекулы. Лизосомы участвуют в процессах внутриклеточного пищеварения и апоптоза (запрограммированной гибели клетки).

4. Митохондрии - энергетические станции клетки. Двухмембранные органоиды, имеющие гладкую наружную и внутреннюю мембрану, образующую кристы - гребни. На внутренней поверхности внутренней мембраны упорядоченно расположены ферментные системы, участвующие в синтезе АТФ. В митохондриях находится кольцевая молекула ДНК, сходная по строению с хромосомой прокариот. Имеется много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Однако генов, заключенных в кольцевидной молекуле ДНК, недостаточно для обеспечения всех аспектов жизнедеятельности митохондрий, и они являются полуавтономными структурами цитоплазмы. Увеличение их числа происходит за счет деления, чему предшествует удвоение кольцевой молекулы ДНК.

5. Пластиды, - органоиды, характерные для растительных клеток. Существуют лейкопласты - бесцветные пластиды, хромопласты, имеющие красно-оранжевую окраску, и хлоропласты. - зеленые пластиды. Все они обладают единым планом строения и образованы двумя мембранами: наружной (гладкой) и внутренней, образующей перегородки - тилакоиды стромы. На тилакоидах стромы расположены граны, состоящие из уплощенных мембранных пузырьков - тилакоидов граны, уложенных один на другой по типу монетных столбиков. Внутри тилакоидов граны находится хлорофилл. Световая фаза фотосинтеза проходит именно здесь - в гранах, а реакции темновой фазы - в строме. В пластидах имеется кольцевидная молекула ДНК, сходная по строению с хромосомой прокариот, и много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Пластиды могут переходить из одного вида в другой (хлоропласты в хромопласты и лейкопласты), они являются полуавтономными органоидами клетки. Увеличение числа пластид идет за счет их деления надвое и почкования, которым предшествует редупликация кольцевой молекулы ДНК.

Немембранные органоиды клетки

1. Рибосомы - округлые образования из двух субъединиц, состоящие на 50% из РНК и 50% из белков. Субъединицы образуются в ядре, в ядрышке, а в цитоплазме в присутствии ионов Са 2+ объединяются в целостные структуры. В цитоплазме рибосомы расположены на мембранах эндоплазматической сети (гранулярная ЭПС) или свободно. В активном центре рибосом происходит процесс трансляции (подбор антикодонов тРНК к кодонам иРНК). Рибосомы, перемещаясь по молекуле иРНК с одного конца на другой, последовательно делают доступными кодоны иРНК для контакта с антикодонами тРНК.

2. Центриоли (клеточный центр) представляют собой цилиндрические тельца, стенкой которых являются 9 триад белковых микротрубочек. В клеточном центре центриоли расположены под прямым углом друг к другу. Они способны к самовоспроизведению по принципу самосборки. Самосборка - образование при помощи ферментов структур, подобных существующим. Центриоли принимают участие в образовании нитей веретена деления. Обеспечивают процесс расхождения хромосом во время деления клеток.

3. Жгутики и реснички - органоиды движения; они имеют единый план строения - наружная часть жгутика обращена в окружающую среду и покрыта участком цитоплазматической мембраны. Они представляют собой цилиндр: его стенкой являются 9 пар белковых микротрубочек, а в центре расположены две осевые микротрубочки. В основании жгутика, расположенного в эктоплазме - цитоплазме, лежащей непосредственно под клеточной мембраной, к каждой паре микротрубочек добавляется еще одна короткая микротрубочка. В результате образуется базальное тельце, состоящее из девяти триад микротрубочек.

4. Цитоскелет представлен системой белковых волокон и микротрубочек. Обеспечивает поддержание и изменение формы тела клетки, образование псевдоподий. Отвечает за амебоидное движение, образует внутренний каркас клетки, обеспечивает передвижение клеточных структур по цитоплазме.

Основные группы органелл. Органеллы — постоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы делятся на две группы: мембранные и немембранные. Мембранные органеллы представлены двумя вариантами: двумембранным и одномем-бранным. Двумембранными компонентами являются пластиды, митохондрии и клеточное ядро. К одномембранным относятся органеллы вакуолярной системы — эндоплазматический рети-кулум, комплекс Гольджи, лизосомы, вакуоли растительных и грибных клеток, пульсирующие вакуоли и др. К немембранным орга-неллам принадлежат рибосомы и клеточный центр, постоянно присутствующие в клетке. Выраженность элементов цитоскелета (постоянного компонента клетки) может значительно меняться в течение клеточного цикла — от полного исчезновения одного компонента (например, цитоплазматических трубочек во время деления клетки) до появления новых структур (веретена деления).

Общим свойством мембранных органелл является то, что все они построены из липопротеидных пленок (биологических мембран), замыкающихся сами на себя так, что образуются замкнутые полости, или отсеки. Внутреннее содержимое этих отсеков всегда отличается от гиалоплазмы.

Двумембранные органеллы. К двумебранным органеллам относятся пластиды и митохондрии. Пластиды —характерные органеллы клеток автотрофных эукариотических организмов. Их окраска, форма и размеры весьма разнообразны. Различают хло-ропласты, хромопласты и лейкопласты.

Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента — хлорофилла. Хлоропласты содержат также вспомогательные пигменты — каротиноиды (оранжевого цвета). По форме хлоропласты — это овальные линзовидные тельца размером (5—10) х (2—4) мкм. В одной клетке листа может находиться 15—20 и более хлоропластов, а у некоторых водорослей — лишь 1 -2 гигантских хлоропласта (хроматофора) различной формы.

Хлоропласты ограничены двумя мембранами — наружной и внутренней (рис. 1.8).

Рис. 1.8 . Схема строения хлоропласта: I наружная мембрана; 2 рибосомы; 3 пластоглобулы; 4 — граны; 5 —тилакоиды; 6 матрице; 7 ДНК; 8 — внутренняя мембрана; 9 межмембранное пространство.

Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа.

Внутренняя мембрана хлоропласта образует впячивания внутрь стромы —тилакоиды, или ламеллы, которые имеют форму уплощенных мешочков (цистерн). Несколько таких тилакои-дов, лежащих друг над другом, образуют грану, и в этом случае они называются тилакоидами граны. Именно в мембранах тила-коидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света.

Хлоропласты в клетке осуществляют процесс фотосинтеза.

Лейкопласты — мелкие бесцветные пластиды различной формы. Они бывают шаровидными, эллипсоидными, гантелевид-ными, чашевидными и т. д. По сравнению с хлоропластами у них слабо развита внутренняя мембранная система.

Лейкопласты в основном встречаются в клетках органов, скрытых от солнечного света (корней, корневищ, клубней, семян). Они осуществляют вторичный синтез и накопление запасных питательных веществ — крахмала, реже жиров и белков.

Хромопласты отличаются от других пластид своеобразной формой (дисковидной, зубчатой, серповидной, треугольной, ром-

бической и др.) и окраской (оранжевые, желтые, красные). Хромопласты лишены хлорофилла и поэтому не способны к фотосинтезу. Внутренняя мембранная структура их слабо выражена.

Хромопласты присутствуют в клетках лепестков многих растений (лютиков, калужниц, нарциссов, одуванчиков и др.), зрелых плодов (томаты, рябина, ландыш, шиповник) и корнеплодов (морковь, свекла), а также листьев в осеннюю пору. Яркий цвет этих органов обусловлен различными пигментами, относящимися к группе каргиноидов, которые сосредоточены в хромопластах.

Все типы пластид генетически родственны друг другу, и одни их виды могут превращаться в другие:

Таким образом, весь процесс взаимопревращений пластид можно представить в виде ряда изменений, идущих в одном направлении — от пропластид до хромопластов.

Митохондрии—неотъемлемые компоненты всех эукариоти-ческих клеток. Они представляют собой гранулярные или нитепо-добные структуры толщиной 0,5 мкм и длиной до 7—10 мкм.

Митохондрии ограничены двумя мембранами — наружной и внутренней (рис. 1.9). Между внешней и внутренней мембранами имеется так называемое перимитохондриалъное пространство, которое является местом скопления ионов водорода Н + Наружная митохондриальная мембрана отделяет ее от гиало-плазмы. Внутренняя мембрана образует множество впячиваний внутрь митохондрий — так называемых крист. На мембране крист или внутри нее располагаются ферменты, в том числе переносчики электронов и ионов водорода Н + , которые участвуют в кислородном дыхании. Наружная мембрана отличается высокой проницаемостью, и многие соединения легко проходят через нее. Внутренняя мембрана менее проницаема. Ограниченное ею внутреннее содержимое митохондрии {матрикс) по составу близко к цитоплазме. Матрикс содержит различные белки, в том числе ферменты, ДНК (кольцевая молекула), все типы РНК, аминокислоты, рибосомы, ряд витаминов. ДНК обеспечивает некоторую генетическую автономность митохондрий, хотя в целом их работа координируется ДНК ядра.

Рис. 1.9. Схема строения митохондрии: а — продольный разрез; 6 схема трехмерного строения; 1 внешняя мембрана; 2 матрикс; 3 межмембранное пространство; 4 гранула; 5 ДНК; 6 внутренняя мембрана; 7 рибосомы.

В митохондриях осуществляется кислородный этап клеточного дыхания.

Одномембранные органеллы. В клетке синтезируется огромное количество различных веществ. Часть из них потребляется на собственные нужды (синтез АТФ, построение органелл, накопление питательных веществ), часть выводится из клетки и используется на построение оболочки (клетки растений и грибов), глико-каликса (животные клетки). Клеточными секретами являются также ферменты, гормоны, коллаген, кератин и т. д. Накопление этих веществ и перемещение их из одной части клетки в другую либо выведение за ее пределы происходит в системе замкнутых цитоплазматических мембран — эндоплазматической сети, или эндоплазматическом ретикулуме, и комплексе Гольджи, составляющих транспортную систему клеток.

Эндоплазматический ретикулум был открыт с помощью электронного микроскопа в 1945 г. Он представляет собой систему разветвленных каналов, цистерн (вакуолей), пузырьков, создающих подобие рыхлой сети в цитоплазме (рис. 1.10). Стенки каналов и полостей образованы элементарными мембранами.

В клетке существует два типа эндоплазматического ретикулу-ма: гранулярный (шероховатый) и агранулярный (гладкий). Гранулярный эндоплазматический ретикулум густо усеян рибосомами, на которых осуществляется биосинтез белка. Синтезируемые белки проходят через мембрану в каналы и полости эндоплазматического ретикулума, изолируются от цитоплазмы, накапливаются там, дозревают и перемещаются в другие части клетки либо в комплекс Гольджи в специальных мембранных пузырьках, которые отшнуровываются от цистерн эндоплазмати-ческого ретикулума.

Рис. 1.10. Схема строения шероховатого (1) и гладкого (2) эндоплазматического ретикулума.

Функции эндоплазматического ретикулума следующие:

  1. В мембранах гранулярного эндоплазматического ретикулума накапливаются и изолируются белки, которые после их синтеза могли оказаться вредными для клетки. Например, синтез гидролитических ферментов и их свободный выход в цитоплазму привел бы к самоперевариванию клетки и ее гибели. Однако этого не происходит, потому что подобные белки надежно изолированы в полостях эндоплазматического ретикулума.
  2. На рибосомах гранулярного эндоплазматического ретикулума синтезируются также интегральные и периферические белки мембран клетки и некоторая часть белков цитоплазмы.
  3. Цистерны шероховатого эндоплазматического ретикулума связаны с ядерной оболочкой, причем некоторые из них являются прямым продолжением последней. Считается, что после деления клетки оболочки новых ядер образуются из цистерн эндоплазматического ретикулума.
  4. На мембранах гладкого эндоплазматического ретикулума протекают процессы синтеза липидов и некоторых углеводов (например, гликогена).

Комплекс (аппарат) Голъджи открыт в 1898 г. итальянским ученым К. Гольджи. Он представляет собой систему плоских дисковидных замкнутых цистерн, которые располагаются одна над другой в виде стопки и образуют диктиосому. От цистерн отходят во все стороны мембранные трубочки и пузырьки (рис. 1.11). Число диктиосом в клетках варьирует от одной до нескольких десятков в зависимости от типа клеток и фазы их развития.

Рис 1.11 . Схема строения аппарата Голъджи: 1 пузырьки; 2 цистерны.

К комплексу Гольджи доставляются вещества, синтезируемые в эндоплазматическом ретикулуме. От цистерн эндоплазматического ретикулума отшнуровываются пузырьки, которые соединяются с цистернами комплекса Гольджи, где эти вещества модифицируются и дозревают.

Пузырьки комплекса Гольджи участвуют в формировании цитоплазматической мембраны и стенок клеток растений после деления, а также в образовании вакуолей и первичных лизосом.

Зрелые цистерны диктиосомы отшнуровывают пузырьки или вакуоли Гольджи, заполненные секретом. Содержимое таких пузырьков либо используется самой клеткой, либо выводится за ее пределы. В последнем случае пузырьки Гольджи подходят к плазматической мембране, соединяются с ней и изливают свое содержимое наружу, а их мембрана включается в плазматическую мембрану и таким образом происходит ее обновление.

Цистерны комплекса Гольджи активно извлекают моносахариды из цитоплазмы и синтезируют из них более сложные олиго- и полисахариды. У растений в результате этого образуются пектиновые вещества, гемицеллюлоза и целлюлоза, используемые для построения клеточной стенки, слизь корневого чехлика. У животных подобным образом синтезируются гликопротеины и гликолипиды гликокаликса, вырабатываются секрет поджелудочной железы, амилаза слюны, пептидные гормоны гипофиза, коллаген.

Комплекс Гольджи участвует в образовании лизосом, белков молока в молочных железах, желчи в печени, веществ хрусталика, зубной эмали и г. п.

Комплекс Гольджи и эндоплазматический ретикулум тесно связаны между собой; их совместная деятельность обеспечивает синтез и преобразование веществ в клетке, их изоляцию, накопление и транспорт.

Лизосомы — это мембранные пузырьки величиной до 2 мкм. Внутри лизосом содержатся гидролитические ферменты, способные переваривать белки, липиды, углеводы, нуклеиновые кислоты. Лизосомы образуются из пузырьков, отделяющихся от комплекса Гольджи, причем предварительно на шероховатом эн до плазматическом ретикулуме синтезируются гидролитические ферменты.

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (вторичная лизосома), где происходит расщепление органических веществ до составляющих их мономеров. Последние через мембрану пищеварительной вакуоли поступают в цитоплазму клетки. Именно так происходит, например, обезвреживание бактерий в клетках крови — нейтрофилах.

Вторичные лизосомы, в которых закончился процесс переваривания, практически не содержат ферментов. В них находятся лишь непереваренные остатки, т. е. негидролизуемый материал, который либо выводится за пределы клетки, либо накапливается в цитоплазме.

Расщепление лизосомами чужеродного, поступившего путем эндоцитоза материала называетсягетерофагией. Лизосомы участвуют также в разрушении материалов клетки, например запасных питательных веществ, а также макромолекул и целых орга-нелл, утративших функциональную активность (аутофагия). При патологических изменениях в клетке или ее старении мембраны лизосом могут разрушаться: ферменты выходят в цитоплазму, и осуществляется самопереваривание клетки —автолиз. Иногда с помощью лизосом уничтожаются целые комплексы клеток и органы. Например, когда головастик превращается в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

Вакуоли — крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает до 70—90% объема клетки и может быть пронизана тяжами цитоплазмы (рис. 1.12).

Рис. 1.12 . Вакуоль в растительной клетке: 1 вакуоль; 2 цитопяаз-матические тяжи; 3 ядро; 4 хлоропласты.

Содержимое вакуолей —клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Большинство из них являются продуктами метаболизма протопласта, которые могут появляться и исчезать в различные периоды жизни клетки. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растений, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всего сахароза, глюкоза, фруктоза), органические кислоты (яблочная, лимонная, щавелевая, уксусная и др.), аминокислоты, белки. Эти вещества являются промежуточными продуктами метаболизма, временно выведенными из обмена веществ клетки в вакуоль. Они являются запасными веществами клетки.

Помимо запасных веществ, которые могут вторично использоваться в метаболизме, клеточный сок содержит фенолы, танины (дубильные вещества), алкалоиды, антоцианы, которые выводятся из обмена в вакуоль и таким путем изолируются от цитоплазмы.

Танины особенно часто встречаются в клеточном соке (а также в цитоплазме и оболочках) клеток листьев, коры, древесины, незрелых плодов и семенных оболочек. Алкалоиды присутствуют, например, в семенах кофе (кофеин), плодах мака (морфин) и белены (атропин), стеблях и листьях люпина (люпинин) и др. Считается, что танины с их вяжущим вкусом, алкалоиды и токсичные полифенолы выполняют защитную функцию: их ядовитый (чаще горький) вкус и неприятный запах отталкивают растительноядных животных, что предотвращает поедание этих растений.

В вакуолях также часто накапливаются конечные продукты жизнедеятельности клеток (отходы). Таким веществом для клеток растений является щавелевокислый кальций, который откладывается в вакуолях в виде кристаллов различной формы.

В клеточном соке многих растений содержатся пигменты, придающие клеточному соку разнообразную окраску. Пигменты и определяют окраску венчиков цветков, плодов, почек и листьев, а также корнеплодов некоторых растений (например, свеклы).

Клеточный сок некоторых растений содержит физиологически активные вещества — фитогормоны (регуляторы роста), фитонциды, ферменты. В последнем случае вакуоли действуют как лизосомы. После гибели клетки мембрана вакуоли теряет избирательную проницаемость, и ферменты, высвобождаясь из нее, вызывают автолиз клетки.

Функции вакуолей следующие:

  1. Вакуоли играют главную роль в поглощении воды растительными клетками. Вода путем осмоса через ее мембрану поступает в вакуоль, клеточный сок которой является более концентрированным, чем цитоплазма, и оказывает давление на цитоплазму, а следовательно, и на оболочку клетки. В результате в клетке развивается тургорное давление, определяющее относительную жесткость растительных клеток и обусловливающее растяжение клеток во время их роста.
  2. В запасающих тканях растений вместо одной центральной часто бывает несколько вакуолей, в которых скапливаются запасные питательные вещества (жиры, белки). Сократительные (пульсирующие) вакуоли служат для осмотической регуляции, прежде всего, у пресноводных простейших, так как в их клетки путем осмоса непрерывно поступает вода из окружающего гипотонического раствора (концентрация веществ в речной или озерной воде значительно ниже, чем концентрация веществ в клетках простейших). Сократительные вакуоли поглощают избыток воды и затем выводят ее наружу путем сокращений.

Немембранные органеллы. Клеточный центр. В клетках большинства животных, а также некоторых грибов, водорослей, мхов и папоротников имеются центриоли. Расположены они обычно в центре клетки, что и определило их название (рис.1.13).

Центриоли представляют собой полые цилиндры длиной не более 0,5 мкм. Они располагаются парами перпендикулярно одна к другой (рис. 1.14). Каждая центриоль построена из девяти триплетов микротрубочек.

Основная функция центриолей — организация микротрубочек веретена деления клетки.

Центриолям по структуре идентичны базальные тельца, которые всегда обнаруживаются в основании жгутиков и ресничек. По всей вероятности, базальные тельца образуются путем удвоения цен-триолей. Базальные тельца, как и центриоли, являются центрами организации микротрубочек, входящих в состав жгутиков и ресничек.

Жгутики и реснички — органеллы движения у клеток многих видов живых существ. Они представляют собой подвижные цитоплазм этические отростки, служащие либо для передвижения всего организма (многие бактерии, простейшие, ресничные черви) или репродуктивных клеток (сперматозоидов, зооспор), либо для транспорта частиц и жидкостей (например, реснички мерцательных клеток слизистой оболочки носовых полостей и трахеи, яйцеводов и т. д.).

Жгутики эукариотических клеток по всей длине содержат 20 микротрубочек: 9 периферических дуплетов и 2 центральные одиночные. У основания жгутика в цитоплазме располагается ба-зальное тельце.

Жгутики имеют длину около 100 мкм и более. Короткие жгутики (10—20 мкм), которых бывает много на одной клетке, называютсяресничками.

Скольжение микротрубочек, входящих в состав жгутиков или ресничек, вызывает их биение, что обеспечивает перемещение клетки либо продвижение частиц.

Рибосомы — это мельчайшие сферические гранулы диаметром 15—35 нм, являющиеся местом синтеза белка из аминокислот. Они обнаружены в клетках всех организмов, в том числе про-кариотических. В отличие от других органелл цитоплазмы (пластид, митохондрий, клеточного центра и др.) рибосомы представлены в клетке огромным числом: за клеточный цикл их образуется около 10 млн. штук.

В состав рибосом входит множество молекул различных белков и несколько молекул рРНК. Полная работающая рибосома состоит из двух неравных субъединиц (рис. 1.15). Малая субъедин ица имеет палочковидную форму с несколькими выступами. Большая субь-единица похожа на полусферу с тремя торчащими выступами. При объединении в рибосому малая субъединица ложится одним концом на один из выступов большой субъединицы. В состав малой субъединицы входит одна молекула РНК, в состав большой — три.

Рис. 1.15 , Схема строения рибосомы: 1 малая субъединица; 2 иРНК; 3 тРИК; 4 аминокислота; 5 большая субьединица; б мембрана эндоплазматической сети; 7 синтезируемая полипептид-ная цепь.

В цитоплазме десятки тысяч рибосом расположены свободно (поодиночке или группами) или прикреплены к нитям микротрабекуляр-ной системы, наружной поверхности мембраны ядра и эндоплазматической сети. Они имеются также в митохондриях и хлоропластах.

В процессе синтеза белка рибосома защищает синтезируемый белок от разрушающего действия клеточных ферментов. Механизм защитного действия заключается в том, что часть вновь синтезируемого белка находится в каналоподобной структуре большой субъединицы.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"

Тип урока : комбинированный.

Методы : словесный, наглядный, практический, проблемно-поисковый.

Цели урока

Образовательная: углубить знания учащихся о строении клеток эукариот, научить применять их на практических занятиях.

Развивающие: совершенствовать умения учащихся работать с дидактическим материалом; развивать мышление учащихся, предлагая задания для сравнения клеток прокариот и эукариот, клеток растений и клетки животных с выявлением схожих и отличительных признаков.

Оборудование : плакат «Строение цитоплазматической мембраны»; карточки-задания; раздаточный материал (строение прокариотической клетки, типичная растительная клетка, строение животной клетки).

Межпредметные связи : ботаника, зоология, анатомия и физиология человека.

План урока

I. Организационный момент

Проверка готовности к уроку.
Проверка списочного состава учащихся.
Сообщение темы и целей урока.

II. Изучение нового материала

Разделение организмов на про- и эукариоты

По форме клетки необычайно разнообразны: одни имеют округлую форму, другие похожи на звездочки со многими лучами, третьи вытянутые и т.д. Различны клетки и по размеру – от мельчайших, с трудом различимых в световом микроскопе, до прекрасно видимых невооруженным глазом (например, икринки рыб и лягушек).

Любое неоплодотворенное яйцо, в том числе гигантские окаменевшие яйца ископаемых динозавров, которые хранятся в палеонтологических музеях, тоже были когда-то живыми клетками. Однако, если говорить о главных элементах внутреннего строения, все клетки схожи между собой.

Прокариоты (от лат. pro – перед, раньше, вместо и греч. karyon – ядро) – это организмы, клетки которых не имеют ограниченного мембраной ядра, т.е. все бактерии, включая архебактерии и цианобактерии. Общее число видов прокариот около 6000. Вся генетическая информация прокариотической клетки (генофор) содержится в одной-единственной кольцевой молекуле ДНК. Митохондрии и хлоропласты отсутствуют, а функции дыхания или фотосинтеза, обеспечивающие клетку энергией, выполняет плазматическая мембрана (рис. 1). Размножаются прокариоты без выраженного полового процесса путем деления надвое. Прокариоты способны осуществлять целый ряд специфических физиологических процессов: фиксируют молекулярный азот, осуществляют молочнокислое брожение, разлагают древесину, окисляют серу и железо.

После вступительной беседы учащиеся рассматривают строение прокариотической клетки, сравнивая основные особенности строения с типами эукариотической клетки (рис. 1).

Эукариоты – это высшие организмы, имеющие четко оформленное ядро, которое оболочкой отделяется от цитоплазмы (кариомембраной). К эукариотам относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие. Ядерная ДНК у эукариот заключена в хромосомах. Эукариоты обладают клеточными органоидами, ограниченными мембранами.

Отличия эукариот от прокариот

– Эукариоты имеют настоящее ядро: генетический аппарат эукариотической клетки защищен оболочкой, схожей с оболочкой самой клетки.
– Включенные в цитоплазму органоиды окружены мембраной.

Строение клеток растений и животных

Клетка любого организма представляет собой сис-тему. Она состоит из трех взаимосвязанных между собой частей: оболочки, ядра и цитоплазмы.

При изучении ботаники, зоологии и анатомии человека вы уже знакомились со строением различных типов клеток. Кратко повторим этот материал.

Задание 1. Определите по рисунку 2, каким организмам и типам тканей соответствуют клетки под цифрами 1–12. Чем обусловлена их форма?

Строение и функции органоидов растительных и животных клеток

Используя рисунки 3 и 4 и пользуясь Биологическим энциклопедическим словарем и учебником, учащиеся заполняют таблицу, сравнивая животную и растительную клетки.

Таблица. Строение и функции органоидов растительных и животных клеток

Органоиды клетки

Строение органоидов

Функция

Присутствие органоидов в клетках

растений

животных

Хлоропласт

Представляет собой разновидность пластид

Окрашивает растения в зеленый цвет, в нем происходит фотосинтез

Лейкопласт

Оболочка состоит из двух элементарных мембран; внутренняя, врастая в строму, образует немногочисленные тилакоиды

Синтезирует и накапливает крахмал, масла, белки

Хромопласт

Пластиды с желтой, оранжевой и красной окраской, окраска обусловлена пигментами – каротиноидами

Красная, желтая окраска осенних листьев, сочных плодов и др.

Занимает до 90% объема зрелой клетки, заполнена клеточным соком

Поддержание тургора, накопление запасных веществ и продуктов обмена, регуляция осмотического давления и др.

Микротрубочки

Состоят из белка тубулина, расположены около плазматической мембраны

Участвуют в отложении целлюлозы на клеточных стенках, перемещении в цитоплазме различных органоидов. При делении клетки микротрубочки составляют основу структуры веретена деления

Плазматическая мембрана (ЦПМ)

Состоит из липидного бислоя, пронизанного белками, погруженными на различную глубину

Барьер, транспорт веществ, сообщение клеток между собой

Гладкий ЭПР

Система плоских и ветвящихся трубочек

Осуществляет синтез и выделение липидов

Шероховатый ЭПР

Название получил из-за множества рибосом, находящихся на его поверхности

Синтез белков, их накопление и преобразование для выделения из клетки наружу

Окружено двойной ядерной мембраной, имеющей поры. Наружная ядерная мембрана образует непрерывную структуру с мембраной ЭПР. Содержит одно или несколько ядрышек

Носитель наследственной информации, центр регуляции активности клетки

Клеточная стенка

Состоит из длинных молекул целлюлозы, собранных в пучки, называемые микрофибриллами

Внешний каркас, защитная оболочка

Плазмодесмы

Мельчайшие цитоплазматические каналы, которые пронизывают клеточные стенки

Объединяют протопласты соседних клеток

Митохондрии

Синтез АТФ (аккумуляция энергии)

Аппарат Гольджи

Состоит из стопки плоских мешочков – цистерн, или диктиосом

Синтез полисахаридов, формирование ЦПМ и лизосом

Лизосомы

Внутриклеточное пищеварение

Рибосомы

Состоят из двух неравных субъединиц –
большой и малой, на которые могут диссоциировать

Место биосинтеза белка

Цитоплазма

Состоит из воды с большим количеством растворенных в ней веществ, содержащих глюкозу, белки и ионы

В ней расположены другие органоиды клетки и осуществляются все процессы клеточного метаболизма

Микрофиламенты

Волокна из белка актина, обычно располагаются пучками вблизи поверхности клеток

Участвуют в подвижности и изменении формы клеток

Центриоли

Могут входить в состав митотического аппарата клетки. В диплоидной клетке содержится две пары центриолей

Участвуют в процессе деления клетки у животных; в зооспорах водорослей, мхов и у простейших образуют базальные тельца ресничек

Микроворсинки

Выступы плазматической мембраны

Увеличивают наружную поверхность клетки, микроворсинки в совокупности образуют кайму клетки

Выводы

1. Клеточная стенка, пластиды и центральная вакуоль присущи только растительным клеткам.
2. Лизосомы, центриоли, микроворсинки присутствуют в основном только в клетках животных организмов.
3. Все остальные органоиды характерны как для растительных, так и для животных клеток.

Строение оболочки клеток

Клеточная оболочка располагается снаружи клетки, отграничивая последнюю от внешней или внутренней среды организма. Ее основу составляет плазмалемма (клеточная мембрана) и углеводно-белковая составляющая.

Функции клеточной оболочки:

– поддерживает форму клетки и придает механическую прочность клетке и организму в целом;
– защищает клетку от механических повреждений и попадания в нее вредных соединений;
– осуществляет узнавание молекулярных сигналов;
– регулирует обмен веществ между клеткой и средой;
– осуществляет межклеточное взаимодействие в многоклеточном организме.

Функция клеточной стенки:

– представляет собой внешний каркас – защитную оболочку;
– обеспечивает транспорт веществ (через клеточную стенку проходит вода, соли, молекулы многих органических веществ).

Наружный слой клеток животных, в отличие от клеточных стенок растений, очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток называется гликокаликсом , выполняет функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами, опорной роли не выполняет.

Под гликокаликсом животной и клеточной стенкой растительной клетки расположена плазматическая мембрана, граничащая непосредственно с цитоплазмой. В состав плазматической мембраны входят белки и липиды. Они расположены упорядоченно за счет различных химических взаимодействий друг с другом. Молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной липидный бислой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину. Молекулы белков и липидов подвижны.

Функции плазматической мембраны:

– образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды;
– обеспечивает транспорт веществ;
– обеспечивает связь между клетками в тканях многоклеточных организмов.

Поступление веществ в клетку

Поверхность клетки не сплошная. В цитоплазматической мембране есть многочисленные мельчайшие отверстия – поры, через которые с помощью или без помощи специальных белков, внутрь клетки могут проникать ионы и мелкие молекулы. Кроме того, некоторые ионы и мелкие молекулы могут попадать в клетку непосредственно через мембрану. Поступление важнейших ионов и молекул в клетку не пассивная диффузия, а активный транспорт, требующий затрат энергии. Транспорт веществ носит избирательный характер. Избирательная проницаемость клеточной мембраны носит название полупроницаемости .

Путем фагоцитоза внутрь клетки поступают: крупные молекулы органических веществ, например белков, полисахаридов, частицы пищи, бактерии. Фагоцитоз осуществляется с участием плазматической мембраны. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в «мембранной капсуле» погружается внутрь клетки. Образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества.

Путем фагоцитоза питаются амебы, инфузории, лейкоциты животных и человека. Лейкоциты поглощают бактерии, а также разнообразные твердые частицы, случайно попавшие в организм, защищая его таким образом от болезнетворных бактерий. Клеточная стенка растений, бактерий и синезеленых водорослей препятствует фагоцитозу, и потому этот путь поступления веществ в клетку у них не реализуется.

Через плазматическую мембрану в клетку проникают и капли жидкости, содержащие в растворенном и взвешенном состоянии разнообразные вещества.Это явление было названо пиноцитозом . Процесс поглощения жидкости сходен с фагоцитозом. Капля жидкости погружается в цитоплазму в «мембранной упаковке». Органические вещества, попавшие в клетку вместе с водой, начинают перевариваться под влиянием ферментов, содержащихся в цитоплазме. Пиноцитоз широко распространен в природе и осуществляется клетками всех животных.

III. Закрепление изученного материала

На какие две большие группы разделяются все организмы по строению ядра?
Какие органоиды свойственны только растительным клеткам?
Какие органоиды свойственны только животным клеткам?
Чем различается строение оболочки клеток растений и животных?
Каковы два способа поступления веществ в клетку?
Каково значение фагоцитоза для животных?



Читайте также: