Какую систему счисления использовала машина паскаля. Счетная машина блеза паскаля. Калькулятор Лейбница История создания

| Суммирующая машина Паскаля

Паскалина (суммирующая машина Паскаля) - механическая счётная машина, изобретённая гениальный французским учёным Блезом Паскалем (1623-1662) в 1642 году.

Паскаль стал первым изобретателем механических счётных машин. Блез начал работу над машиной в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты.

Для своего времени Паскалина имела, конечно, довольно футуристический вид: механический «ящичек» с кучей шестерёнок. За десять лет Паскалю удалось собрать более 50 различных вариантов устройства. Складываемые числа вводились в машину при помощи поворотов наборных колёсиков, на каждое из которых были нанесены деления от 0 до 9, т.к. одно колёсико соответствовало одному десятичному разряду числа. Тем самым, чтобы ввести число, колесики прокручивались до соответствующей цифры . При совершении полного оборота, избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая рядом расположенное колесо на 1 позицию.

Первые экземпляры машины Паскаля имели пять зубчатых колёс, спустя время их число увеличилось до шести, а ещё чуть позже до восьми, что позволяло работать с многоразрядными числами, вплоть до 9 999 999. Ответ арифметических операций был виден в верхней части металлического корпуса устройства. Вращение колёс было возможно только в одном направлении, тем самым, исключая возможность работать с отрицательными числами. Примечательно, что машина Паскаля умела выполнять как сложение, так и другие операции, однако требовала при этом применения довольно неудобной процедуры повторных сложений. Вычитание выполнялось дополнениями до девятки, которые в качестве помощи считавшему появлялись в окошке, расположенном над выставленным оригинальным значением.

Преимущества автоматических вычислений никак не изменили ситуацию, т.к. использование десятичной машины для финансовых расчётов в рамках действовавшей во Франции до 1799 года денежной системы было занятием не из простых. Расчёты проводились в ливрах, су и денье. В «ливре» насчитывалось 20 «су», в то время как в «су» - 12 «денье». Похожая система была и в Великобритании. В результате использование десятичной системы счисления в недесятичных финансовых расчётах усложняло и без того трудный процесс вычислений.

Несмотря на вызываемый Паскалиной огромный восторг, машина не озолотила своего создателя. Техническая сложность и высокая стоимость машины в сочетании с небольшими даже для тех лет вычислительными способностями служили серьёзным барьером для её широкого распространения. И всё же, Машина Паскаля заслуженно вошла в историю, ведь заложенный в её основу принцип связанных колёс почти на 300 лет стал основой для большинства создаваемых вычислительных машин.

Суммирующая машина Паскаля

Француз Блез Паскаль начал создавать суммирующую машину «Паскалину» в 1642 году в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты. Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при помощи соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9.
При вводе числа, колесики прокручивались до соответствующей цифры. Совершив полный оборот, избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию. Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9999999. Ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее, машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений. Вычитание выполнялось при помощи дополнений до девятки, которые для помощи считавшему появлялись в окошке, размещённом над выставленным оригинальным значением. Несмотря на преимущества автоматических вычислений использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах, су и денье. В ливре насчитывалось 20 су, в су - 12 денье. Использование десятичной системы в не десятичных финансовых расчётах усложняло и без того нелёгкий процесс вычислений.
Тем не менее, примерно за 10 лет Паскаль построил около 50 и даже сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий восторг, машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными способностями служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств. Машина Паскаля стала вторым реально работающим вычислительным устройством после Считающих часов Вильгельма Шикарда, созданных в 1623 году.

Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Более \(1500\) лет тому назад для счёта использовались счётные палочки, камешки.

Обрати внимание!

Первым изобретателем механических счётных машин, стал гениальный француз Блез Паскаль.

Сын сборщика налогов, Паскаль задумал построить вычислительное устройство, наблюдая бесконечные утомительные расчёты своего отца.

В \(1642\) г., когда Паскалю было всего \(19\) лет, он начал работать над созданием суммирующей машины. Паскаль умер в возрасте \(39\) лет, но, несмотря на столь короткую жизнь, навечно вошел в историю как выдающийся математик, физик, писатель и философ.

В его честь назван один из самых распространенных современных языков программирования.

Суммирующая машина Паскаля, «П аскалина », представляла собой механическое устройство - ящик с многочисленными шестерёнками.

Всего приблизительно за десятилетие он построил более \(50\) различных вариантов машины.

При работе на «Паскалине» складываемые числа вводились путем соответствующего поворота наборных колёсиков. Каждое колёсико с нанесёнными на него делениями от \(0\) до \(9\) соответствовало одному десятичному разряду числа - единицам, десяткам, сотням и т. д.

Избыток над \(9\) колёсико «переносило», совершая полный оборот и продвигая соседнее слева «старшее» колёсико на \(1\) вперёд.

Другие операции выполнялись при помощи довольно неудобной процедуры повторных сложений.

«Паскалина» вызвала всеобщий восторг, она не принесла Паскалю богатства. Тем не менее, изобретённый им принцип связанных колёс явился основой, на которой строилось большинство вычислительных устройств на протяжении следующих трёх столетий.

Следующего этапного результата добился выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц .

В \(1672\) г., находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство, которое облегчило бы расчёты.

Поскольку это недостойно таких замечательных людей, - писал Лейбниц, - подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины.

В \(1673\) г. он изготовил механический калькулятор.

Сложение производилось на нём по существу так же, как и на «Паскалине», однако Лейбниц включил в конструкцию движущуюся часть и ручку, с помощью которой можно было крутить ступенчатое колесо или - в последующих вариантах машины - цилиндры, расположенные внутри аппарата. Этот механизм с движущимся элементом позволял ускорить повторяющиеся операции сложения, необходимые для перемножения или деления чисел.

Само повторение тоже было автоматическим.

Машина Лейбница требовала для установки специального стола, так как имела внушительные размеры.

Лейбниц продемонстрировал свою машину в Французской академии наук и Лондонском королевском обществе. Один экземпляр машины Лейбница попал к Петру Великому, который подарил её китайскому императору, желая поразить того европейскими техническими достижениями.

В \(1812\) году английский математик Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы.

Паскалин

Первое вычислительное устройство, получившее известность еще при жизни автора, было «Паскалин» или, как его иногда называют, «Паскалево колесо». Оно было создано в 1644 году Блезом Паскалем (19.06.1623-19.08.1662) и на столетия заняло место первой счетной машины, так как в то время о «Вычисляющих часах» Шиккарда было известно крайне узкому кругу людей.

Создание «Паскалины» было вызвано желанием Паскаля помочь своему отцу. Дело в том, что отец великого ученого Этьен Паскаль в 1638 году возглавлял группу рантьеров, протестовавших против решения правительства отменить выплату ренты, за что и впал в немилость кардиналу Ришелье, приказавшему арестовать бунтовщика. Отцу Паскаля пришлось бежать.

Четвертого апреля 1939 года, благодаря Жаклин, младшей дочери отца ученого, и герцогине д"Эгийон, удалось выпросить прощение кардинала. Этьен Паскаль был назначен на пост интенданта Руанского генеральства, и 2 января 1640 года семейство Паскалей прибыло в Руан. Отец Паскаля сразу же погрузился в работу, день и ночь просиживая над подсчетами налоговых сборов. В 1642 году, в возрасте 19 лет, Блез Паскаль, желая облегчить работу своего отца, начал работу над суммирующей машиной.

Первая созданная модель его не удовлетворила, и он немедля преступил к ее улучшению. Всего было создано около 50 различных моделей вычислительных устройств. Паскаль так писал о своем труде: «Я не экономил ни времени, ни труда, ни средств, чтобы довести ее до состояния быть тебе полезной... Я имел терпение сделать до 50 различных моделей: одни деревянные, другие из слоновой кости, из эбенового дерева, из меди…». Окончательный вариант устройства был создан в 1645 году.

Впервые описание «Паскалины» появилось в «Энциклопедии» Дидро в 18 веке.

Она представляла собой небольшой латунный ящик размером 36х13х8 см, содержащий внутри множество связанных между собой шестеренок и имеющий несколько наборных колесиков с делениями от 0 до 9, при помощи которых осуществлялось управление – ввод чисел для операций над ними и отображение результатов операций в окошках.

Каждое наборное колесико соответствовало одному разряду числа. Первые варианты устройства были пятиразрядными, впоследствии Паскаль создал шести- и даже восьмиразрядные варианты.

Два младших разряда восьмиразрядной «Паскалины» были приспособлены для оперирования с денье и су, т.е. первый разряд был двадцатеричным, а второй двенадцатеричным, потому что в те времена французская монетная система была сложнее современной. В ливре было 12 денье, а в денье – 20 су. При выполнении обычных десятичных операций можно было отключать разряды, предназначенные для разменной монеты. Шести- и пятиразрядные версии машин могли работать только с десятичными цифрами.


Наборные колесики поворачивались вручную с помощью ведущего штифта, который вставлялся между зубчиками, количество которых для десятичных разрядов было десять, для двенадцатеричных – двенадцать, а для двадцатеричных – двадцать. Для удобства ввода данных использовали неподвижный упор, закрепленный снизу наборного колесика, чуть левее цифры 0.

Поворот наборного колесика передавался счетному барабану с помощью специального приспособления, изображенного на рисунке слева. Наборное колесико (А) жестко соединялось с корончатым колесом (С) с помощью стержня (В). Корончатое колесо (С) входило в зацепление с корончатым колесом (D), располагающимся под прямым углом относительно корончатого колеса (С). Так передавалось вращение наборного колесика (А) корончатому колесу (D), которое жестко соединялось со стержнем (E), на котором закреплялось корончатое колесо (F), используемое для передачи переполнения в старший разряд с помощью зубцов (F1) и для приема переполнения от младшего разряда с помощью зубцов (F2). Также на стержне (Е) закреплялось корончатое колесо (G), используемое для передачи вращения наборного колесика (А) счетному барабану (J) с помощью зубчатого колеса (H).

При полном повороте наборного колесика в старший разряд «Паскалины» передавался результат переполнения с помощью механизма, изображенного на рисунках «Механизм переноса переполнения в «Паскалине».

Для передачи переполнения использовались два корончатых колеса (B и H) соседних разрядов. На корончатом колесе (B) младшего разряда имелись два стержня (С), которые могли входить в зацепления с вилкой (A), закрепленной на двухколенчатом рычагом D. Этот рычаг свободно вращался вокруг оси (E) старшего разряда. Также на этом рычаге закреплялась подпружиненная собачка (F).

Когда наборное колесико младшего разряда достигало цифры 6, стержни (С) входили в зацепление с вилкой (А). В момент, когда наборное колесико переходило от цифры 9 к цифре 0, вилка выходила из зацепления со стержнями (С) и под действием собственного веса падала вниз, при этом собачка входила в зацепление со стержнями (G) корончатого колеса (E) старшего разряда и передвигала его на один шаг вперед.

Принцип работы механизма переноса переполнения в «Паскалине» иллюстрируется на анимации снизу.

Основным назначением устройства было сложение. Для сложения нужно было проделать ряд несложных операций:

1. Сбросить предыдущий результат, вращая наборные колесики, начиная с младшего разряда до тех пор, пока в каждом из окошек не появятся нули.

2. С помощью этих же колесиков вводится первое слагаемое, начиная с младшего разряда.

На анимации внизу иллюстрируется работа «Паскалины» на примере сложения 121 и 32.

Вычитание производилось немного сложнее, так как перенос разрядов переполнения происходил только при вращении наборных колесиков по часовой стрелке. Для предотвращения вращения наборных колесиков против часовой стрелки использовался стопорный рычаг (I).

Подобное устройство переноса разряда переполнения привело к проблеме в реализации вычитания на Паскалине, путем вращения наборных колесиков в обратном направлении, как это было сделано в «Счетных часах» Шикарда. Поэтому Паскаль заменил операцию вычитания на сложение с дополнением до девяти.

Поясню способ, используемый Паскалем, на примере. Допустим, необходимо решить уравнение Y=64-37=27. С помощью метода дополнения представим число 64 как разность чисел 99 и 35 (64=99-35), таким образом наше уравнение сводится к следующему виду: У=64-37=99-35-37=99-(35+37)=27. Как видно из преобразования, вычитание частично заменилось на сложение и вычитание результата сложения из 99, что есть преобразование обратное дополнению. Следовательно, Паскалю оставалось решить задачу автоматического дополнения до девяти, для чего он на счетном барабане ввел два ряда цифр так, чтобы сумма двух цифр, располагающихся друг под другом, всегда равнялась 9. Таким образом, число, отображаемое в верхнем ряду окошка результата вычислений, представляло собой дополнение числа нижнего ряда до 9.

В развернутом виде ряды, нанесенные на цилиндр, изображены на рисунке слева.

Нижний ряд использовался при сложении, а верхний ряд при вычитании. Для того, чтобы неиспользуемый ряд не отвлекал от вычислений его прикрывали планкой.

Рассмотрим работу Паскалины на примере вычитания 132 из 7896 (7896-132=7764):

1. Закрываем нижний ряд окошек, используемый для сложения.

2. Поворачиваем наборные колесики так, чтобы в верхнем ряду отобразилось число 7896, при этом в нижнем закрытом ряду будет отображено число 992103.

3. Вводим вычитаемое так же, как вводим слагаемые при сложении. Для числа 132 это делается так:

Устанавливается штифт напротив цифры 2 младшего разряда «Паскалины», и по часовой стрелки поворачивается наборное колесико, пока штифт не упрется в упор.

Устанавливается штифт напротив цифры 3 второго разряда «Паскалины», и по часовой стрелки поворачивается наборное колесико, пока штифт не упрется в упор.

Устанавливается штифт напротив цифры 1 третьего разряда «Паскалины», и по часовой стрелки поворачивается наборное колесико, пока штифт не упрется в упор.

Остальные разряды не изменяются.

4. В верхнем ряду окошек будет отображен результат вычитания 7896-132=7764.

Умножение в устройстве выполнилось в виде многократного сложения, для деления числа можно было использовать многократное вычитание.

При разработке счетной машины Паскаль столкнулся со множеством проблем, наиболее острым из которых было изготовление узлов и шестеренок. Рабочие плохо понимали идеи ученого, и технология приборостроения была низка. Иногда Паскалю самому приходилось брать в руки инструменты и доводить до ума те или иные детали машины, или упрощать их конфигурацию, чтобы мастера могли их изготовить.

Одну из первых удачных моделей «Паскалины» изобретатель подарил канцлеру Сегье, что помогло ему 22 мая 1649 года получить королевскую привилегию, подтверждавшую авторство изобретения и закрепляющую за Паскалем право на производство и продажу машины. За 10 лет было создано примерно 50 моделей вычислительной машины и продано около дюжины. До нашего времени дошли 8 образцов.

Хотя машина и была революционна для своего времени и вызывала всеобщий восторг, она не принесла богатство создателю, так как практического применения не получила, хотя о них много говорилось и писалось. Возможно, потому что клерки, в помощь которым предназначалась машина, боялись потерять из-за нее работу, а работодатели скупились покупать дорогое устройство, предпочитая дешевую рабочую силу.

Тем не менее, идеи, заложенные в основу построения «Паскалины», стали основой для развития вычислительной техники. У Паскаля были и непосредственные преемники. Так Родригес Перейра, известный своей системой обучения глухонемых, сконструировал две счетные машины, основанные на принципах работы «Паскалины», но в результате ряда доработок, оказавшимися более совершенными.


Гениальные люди гениальны во всем. Это расхожее утверждение в полной мере применимо к французскому ученому Блезу Паскалю. В исследовательские интересы изобретателя входила физика и математика, литература и философия. Именно Паскаля считают одним из основателей математического анализа, автором основного закона гидродинамики. Известен он и в качестве первого создателя механических вычислительных машин. Эти устройства — прототипы современных ЭВМ.

На тот момент модели были во многом уникальны. По своим техническим особенностям они превзошли многие аналоги, придуманные до Блеза Паскаля. Какова история "Паскалины"? Где можно встретить эти конструкции сейчас?

Первые прототипы

Попытки провести автоматизацию вычислительных процессов проводились давно. Сильнее всего в этих вопросах преуспели арабы и китайцы. Именно они считаются первооткрывателями такого приспособления, как абак. Принцип действия достаточно прост. Для проведения расчета необходимо переложить кости с одной части на другую. Изделия дополнительно позволяли проводить операции вычитания. Неудобства первых арабских и китайских абаков были связаны только с тем, что камни легко рассыпались во время переноса. В некоторых магазинах в глубинке до сих пор можно встретить простейшие виды арабских абаков, правда, сейчас их называют счетами.

Актуальность проблемы

Свою машину Паскаль начал проектировать в 17 лет. На мысли о необходимости автоматизировать рутинные вычислительные процессы подростка натолкнул опыт собственного отца. Дело в том, что родитель гениального ученого работал сборщиком налогов и долгое время просиживал за утомительными расчетами. Само проектирование заняло долгое время и потребовало от ученого больших физических, умственных и материальных вложений. В последнем случае помощь Блезу Паскалю оказал собственный отец, который быстро понял преимущества разработки сына.

Конкуренты

Естественно, в то время о применении каких-либо электронных средств вычисления и речи не шло. Все осуществлялось только за счет механики. Использовать вращение колес для проведения операции сложения было предложено задолго до Паскаля. Например, не меньшей популярностью в свое время пользовалось устройство, созданное в 1623 году Однако в машине Паскаля были предложены определенные технические новшества, заметно упрощающие процесс сложения. Например, французский изобретатель разработал схему автоматического переноса единицы при переходе числа в высший разряд. Это позволило складывать многозначные цифры без вмешательства человека в счетный процесс, что практически исключило риск ошибок и неточностей.

Внешний вид и принцип действия

Визуально первая суммирующая машина Паскаля напоминала обыкновенный металлический ящик, в котором располагались связанные друг с другом шестеренки. Пользователь через поворот наборных колес устанавливал необходимые ему значения. На каждое из них наносились цифры от 0 до 9. При совершении полного оборота шестерня сдвигала соседнюю (соответствующую более высокому разряду) на одну единицу.

Самая первая модель обладала всего пятью зубчатыми колесами. Впоследствии счетная машина Блеза Паскаля претерпела некоторые изменения, касающиеся увеличения количества шестерен. Их появилось 6, затем это число возросло до 8. Такое нововведение позволило проводить исчисления вплоть до 9 999 999. Ответ же появлялся в верхней части устройства.

Операции

Колеса в счетной машине Паскаля могли вращаться только в одну-единственную сторону. В результате чего пользователь был способен провести исключительно операции сложения. При некоторой сноровке устройства адаптировали и под умножение, но выполнить расчеты в этом случае было заметно сложнее. Возникала необходимость несколько раз подряд складывать одни и те же числа, что было крайне неудобно. Невозможность осуществить вращение колеса в обратную сторону не позволяла проводить вычисления с отрицательными числами.

Распространение

С момента создания прототипа ученый сделал около 50 устройств. Механическая машина Паскаля вызвала небывалый интерес во Франции. К сожалению, широкого распространения изделие так и не смогло завоевать, даже несмотря на резонанс у широкой общественности и в научных кругах.

Главная проблема изделий заключалась в их дороговизне. Производство было затратным, естественно, это отрицательным образом складывалось и на итоговой цене всего прибора. Именно сложности с выпуском привели к тому, что ученый за всю свою жизнь смог продать не более 16 моделей. Люди по достоинству оценили все преимущества автоматического исчисления, но брать приборы не хотели.

Банки

Основной акцент при реализации Блез Паскаль ставил именно на банки. Но финансовые учреждения в большей своей массе отказались приобретать машину для автоматических расчетов. Проблемы возникли из-за сложной денежной политики Франции. В стране на тот момент существовали ливры, денье и су. Одна ливра состояла из 20 су, а су из 12 денье. То есть, десятичная система исчисления отсутствовала как таковая. Именно поэтому использовать машину Паскаля в банковской сфере в реальности было практически невозможно. На принятую в других странах систему исчисления Франция перешла только в 1799 году. Однако и после этого времени применение автоматизированного устройства было заметно осложнено. Это уже касалось упомянутых ранее трудностей в производстве. Труд в основном был ручным, поэтому каждая машина требовала кропотливой работы. В итоге их просто перестали изготавливать в принципе.

Поддержка властей

Одну из первых автоматических счетных машин Блез Паскаль подарил канцлеру Сегье. Именно этот государственный деятель оказал поддержку начинающему ученому на первых этапах создания автоматического устройства. При этом канцлер сумел добиться от короля привилегий на выпуск данного агрегата именно для Паскаля. Хоть изобретение машины всецело принадлежало самому ученому, патентное право в то время во Франции было не развито. Привилегия от монаршей особы была получена в 1649 году.

Продажи

Как было сказано выше, большого распространения машина Паскаля не завоевала. Сам ученый занимался только изготовлением устройств, за продажу отвечал его друг Роберваль.

Развитие

Принцип вращения механических шестерен, реализованный в вычислительной машине Паскаля, был взят за основу и при разработке других аналогичных устройств. Первое удачное усовершенствование приписывают немецкому профессору математики Лейбницу. Создание арифмометра датировано 1673 годом. Сложения чисел выполнялись также в десятичной системе, но само устройство отличалось большим функционалом. Дело в том, что с его помощью можно было не только проводить сложение, но также умножать, вычитать, делить и даже извлекать квадратный корень. Ученый добавил в конструкцию специальное колесо, которое позволяло ускорять повторяющиеся операции по сложению.

Свое изделие Лейбниц презентовал во Франции и Англии. Одна из машин даже попала к русскому императору Петру Первому, который подарил ее китайскому монарху. Изделие было далеко от совершенства. Колесо, которое изобрел Лейбниц для проведения вычитания, впоследствии стало использоваться и в других арифмометрах.

Первый коммерческий успех механических датирован 1820 годом. Калькулятор создал французский изобретатель Шарль Ксавье Томас де Кольмар. Принцип действия во многом напоминает машину Паскаля, но само устройство отличается меньшими размерами, оно немного проще в изготовлении и дешевле. Именно это и предопределило успех у коммерсантов.

Судьба творения

В течение всей свой жизни ученый создал около 50 машин, до наших дней "дожили" единицы. Сейчас достоверно можно отследить судьбу всего 6 устройств. Четыре модели находятся на постоянном хранении в Парижском музее искусств и ремесел, еще две в музее в Клермоне. Оставшиеся вычислительные устройства нашли свое пристанище в частных коллекциях. О том, кто сейчас ими владеет достоверно не известно. Под большим вопросом находится и исправность агрегатов.

Мнения

Некоторые биографы связывают разработку и создание суммирующей машины Паскаля с пошатнувшимся здоровьем самого изобретателя. Как было сказано выше, первые работы ученый начал еще в молодости. Они требовали от автора колоссального напряжения умственных и физических сил. Труд велся на протяжении практически 5 лет. В результате этого Блеза Паскаля начали преследовать сильные головные боли, которые затем сопровождали его всю оставшуюся жизнь.



Читайте также: