Воздействие эми на электронику. Мощный электромагнитный импульс: воздействие на электронные средства и методы защиты. Что поместить в клетку Фарадея

Вас достала слишком громкая музыка соседей или просто хотите сделать какой-нибудь интересный электротехнический прибор самостоятельно? Тогда можете попробовать собрать простой и компактный генератор электромагнитных импульсов, который способен выводить из строя электронные устройства поблизости.



Генератор ЭМИ, представляет собой устройство, способное генерировать кратковременное электромагнитное возмущение, которое излучается наружу от своего эпицентра, нарушая при этом работу электронных приборов. Некоторые всплески ЭМИ встречаются в природе, например, в виде электростатического разряда. Также существуют искусственные всплески ЭМИ, к таким можно отнести ядерный электромагнитный импульс.


В данном материале будет показано, как собрать элементарный генератор ЭМИ, используя обычно доступные элементы: паяльник, припой, одноразовый фотоаппарат, \кнопка-переключатель, изолированный толстый медный кабель, проволока с эмалированным покрытием, и сильноточный фиксируемый переключатель. Представленный генератор будет не слишком сильным по мощности, поэтому у него может не получиться вывести из строя серьезную технику, но на простые электроприборы он повлиять в состоянии, поэтому данный проект следует рассматривать как учебный для новичков в электротехнике.


Итак, во-первых, нужно взять одноразовый фотоаппарат, например, Kodak. Далее нужно вскрыть его. Откройте корпус и найдите большой электролитический конденсатор. Делайте это в резиновых диэлектрических перчатках, чтобы не получить удар током при разряде конденсатора. При полной зарядке на нем может быть до 330 В. Проверьте вольтметром напряжение на нем. Если заряд еще имеется, то снимите его, замкнув выводы конденсатора отверткой. Будьте осторожны, при замыкании появится вспышка с характерным хлопком. Разрядив конденсатор, вытащите печатную плату, на которой он установлен, и найдите маленькую кнопку включения/выключения. Отпаяйте ее, а на ее место запаяйте свою кнопку-переключатель.



Припаяйте два изолированных медных кабеля к двум контактам конденсатора. Один конец этого кабеля подключите к сильноточному переключателю. Другой конец оставьте пока свободным.


Теперь нужно намотать нагрузочную катушку. Оберните проволоку с эмаль-покрытием от 7 до 15 раз вокруг круглого объекта диаметром 5 сантиметров. Сформировав катушку, оберните ее клейкой лентой для большей безопасности при ее эксплуатации, но оставьте два выступающих провода для подключения к клеммам. Используйте наждачную бумагу или острое лезвие, чтобы удалить эмалевое покрытие с концов проволоки. Один конец соедините с выводом конденсатора, а другой с сильноточным переключателем.



Теперь можно сказать, что простейший генератор электромагнитных импульсов готов. Чтобы зарядить его, просто подключите батарею к соответствующим контактам на печатной плате с конденсатором. Поднесите к катушке какое-нибудь портативное электронное устройство, которое не жалко, и нажмите переключатель.

Поражающее действие электромагнитного импульса (ЭМИ) обусловлено возникновением наведённых напряжений и токов в различных проводниках. Действие ЭМИ проявляется, прежде всего, по отношению к электрической и радиоэлектронной аппаратуре. Наиболее уязвимы линии связи, сигнализации и управления. При этом может произойти пробой изоляции, повреждение трансформаторов, порча полупроводниковых приборов и т. п.

ИСТОРИЯ ВОПРОСА И СОВРЕМЕННОЕ СОСТОЯНИЕ ЗНАНИЙ В ОБЛАСТИ ЭМИ

Для того, чтобы понять всю сложность проблем угрозы ЭМИ и мер по защите от нее, необходимо кратко рассмотреть историю изучения этого физического явления и современное состояние знаний в этой области.

То, что ядерный взрыв будет обязательно сопровождаться электромагнитным излучением, было ясно физикам-теоретикам еще до первого испытания ядерного устройства в 1945 году. Во время проводившихся в конце 50-х - начале 60-х годов ядерных взрывов в атмосфере и космическом пространстве наличие ЭМИ было зафиксировано экспериментально.Однако количественные характеристики импульса измерялись в недостаточной степени, во-первых, потому что отсутствовала контрольно-измерительная аппаратура, способная регистрировать чрезвычайно мощное электромагнитное излучение, существующее чрезвычайно короткое время (миллионные доли секунду), во-вторых, потому что в те годы в радиоэлектронной аппаратуре использовались исключительно электровакуумные приборы, которые мало подвержены воздействию ЭМИ, что снижало интерес к его изучению.

Создание полупроводниковых приборов, а затем и интегральных схем, особенно устройств цифровой техники на их основе, и широкое внедрение средств в радиоэлектронную военную аппаратуру заставили военных специалистов по иному оценить угрозу ЭМИ. С 1970 года вопросы защиты оружия и военной техники от ЭМИ стали рассматриваться министерством обороны как имеющие высшую приоритетность.

Механизм генерации ЭМИ заключается в следующем. При ядерном взрыве возникают гамма и рентгеновское излучения и образуется поток нейтронов. Гамма-излучение, взаимодействуя с молекулами атмосферных газов, выбивает из них так называемые комптоновские электроны. Если взрыв осуществляется на высоте 20-40 км., то эти электроны захватываются магнитным полем Земли и, вращаясь относительно силовых линий этого поля создают токи, генерирующие ЭМИ. При этом поле ЭМИ когерентно суммируется по направлению к земной поверхности, т.е. магнитное поле Земли выполняет роль, подобную фазированной антенной решетки. В результате этого резко увеличивается напряженность поля, а следовательно, и амплитуда ЭМИ в районах южнее и севернее эпицентра взрыва. Продолжительность данного процесса с момента взрыва от 1 - 3 до 100 нс.

На следующей стадии, длящейся примерно от 1 мкс до 1 с, ЭМИ создается комптоновскими электронами, выбитыми из молекул многократно отраженным гамма-излучением и за счет неупругого соударения этих электронов с потоком испускаемых при взрыве нейтронов.

Интенсивность ЭМИ при этом оказывается примерно на три порядка ниже, чем на первой стадии.

На конечной стадии, занимающей период времени после взрыва от 1 с до нескольких минут, ЭМИ генерируется магнитогидродинамическим эффектом, порождаемым возмущениями магнитного поля Земли токопроводящим огненным шаром взрыва. Интенсивность ЭМИ на этой стадии весьма мала и составляет несколько десятков вольт на километр.

Наибольшую опасность для радиоэлектронных средств представляет первая стадия генерирования ЭМИ, на которой в соответствии с законом электромагнитной индукции из-за чрезвычайно быстрого нарастания амплитуды импульса (максимум достигается на 3 - 5 нс после взрыва) наведенное напряжение может достигать десятков киловольт на метр на уровне земной поверхности, плавно снижаясь по мере удаления от эпицентра взрыва.

Амплитуда напряжения, наводимого ЭМИ в проводниках, пропорциональна длине проводника, находящегося в его поле, и зависит от его ориентации относительно вектора напряженности электрического поля. Так, напряженность поля ЭМИ в высоковольтных линиях электропередачи может достигать 50 кВ/м, что приведет к появлению в них токов силой до 12 тыс.ампер.

ЭМИ генерируются и при других видах ядерных взрывов - воздушном и наземном. Теоретически установлено, что в этих случаях его интенсивность зависит от степени ассимметричности пространственных параметров взрыва. Поэтому воздушный взрыв с точки зрения генерации ЭМИ наименее эффективен. ЭМИ наземного взрыва будет иметь высокую интенсивность, однако она быстро уменьшается по мере удаления от эпицентра.

Поскольку слаботочные цепи и радиоэлектронные приборы нормально действуют при напряжениях в несколько вольт и токах силой до нескольких десятков миллиампер, то для их абсолютно надежной защиты от ЭМИ требуется обеспечить снижение величины токов и напряжений в кабелях, до шести порядков.

ВОЗМОЖНЫЕ ПУТИ РЕШЕНИЯ ЗАДАЧИ ЗАЩИТЫ ОТ ЭМИ

Идеальной защитой от ЭМИ явилось бы полное укрытие помещения, в котором размещена радиоэлектронная аппаратура, металлическим экраном. Вместе с тем ясно, что практически обеспечить такую защиту в ряде случаев невозможно, т.к. для работы аппаратуры часто требуется обеспечить ее электрическую связь с внешними устройствами. Поэтому используются менее надежные средства защиты, такие, как токопроводящие сетки или пленочные покрытия для окон, сотовые металлические конструкции для воздухозаборников и вентиляционных отверстий и контактные пружинные прокладки, размещаемые по периметру дверей и люков.

Более сложной технической проблемой считается защита от проникновения ЭМИ в аппаратуру через различные кабельные вводы. Радикальным решением данной проблемы мог бы стать переход от электрических сетей связи к практически не подверженным воздействию ЭМИ волоконно-оптическим. Однако замена полупроводниковых приборов во всем спектре выполняемых ими функций электронно-оптическими устройствами возможно только в отдаленном будущем. Поэтому в настоящее время в качестве средств защиты кабельных вводов наиболее широко используются фильтры, в том числе волоконные, а также искровые разрядники, металлоокисные варисторы и высокоскоростные зенеровские диоды.

Все эти средства имеют как преимущества, так и недостатки. Так, емкостно-индуктивные фильтры достаточно эффективны для защиты от ЭМИ малой интенсивности, а волоконные фильтры защищают в относительно узком диапазоне сверхвысоких частот.Искровые разрядники обладают значительной инерционностью и в основном пригодны для защиты от перегрузок, возникающих под воздействием напряжений и токов, наводимых в обшивке самолета, кожухе аппаратуры и оплетке кабеля.

Металлоокисные варисторы, представляют собой полупроводниковые приборы, резко повышающие свою проводимость при высоком напряжении. Однако, при применении этих приборов в качестве средств защиты от ЭМИ следует учитывать их недостаточно высокое быстродействие и ухудшение характеристик при неоднократном воздействии нагрузок. Эти недостатки отсутствуют у высокоскоростных зенеровских диодов, действие которых основано на резком лавинообразном изменении сопротивления от относительно высокого значения практически до нуля при превышении приложенного к ним напряжения определенной пороговой величины. Кроме того в отличии от варисторов характеристики зенеровских диодов после многократных воздействий высоких напряжений и переключений режимов не ухудшаются.

Наиболее рациональным подходом к проектированию средств защиты от ЭМИ кабельных вводов является создание таких разъемов, в конструкции которых предусмотрены специальные меры, обеспечивающие формирование элементов фильтров и установку встроенных зенеровских диодов. Подобное решение способствует получению очень малых значений емкости и индуктивности, что необходимо для обеспечения защиты от импульсов, которые имеют незначительную длительность и, следовательно, мощную высокочастотную составляющую. Использование разъемов подобной конструкции позволит решить проблему органичения массо-габаритных характеристик устройства защиты.

Клетка Фарадея - устройство для экранирования аппаратуры от внешних электромагнитных полей. Обычно представляет собой заземлённую клетку, выполненную из хорошо проводящего материала.

Принцип работы клетки Фарадея очень простой - при попадании замкнутой электропроводящей оболочки в электрическое поле свободные электроны оболочки начинают двигаться под воздействием этого поля. В результате противоположные стороны клетки приобретают заряды, поле которых компенсирует внешнее поле.

Клетка Фарадея защищает только от электрического поля. Статическое магнитное поле будет проникать внутрь. Изменяющееся электрическое поле создаёт изменяющееся магнитное, которое, в свою очередь, порождает изменяющееся электрическое. Поэтому если с помощью клетки Фарадея блокируется изменяющееся электрическое поле, то изменяющееся магнитное поле генерироваться также не будет.

Однако в области высоких частот действие такого экрана основано на отражении электромагнитных волн от поверхности экрана и затухании высокочастотной энергии в его толще вследствие тепловых потерь на вихревые токи.

Способность клетки Фарадея экранировать электромагнитное излучение определяется:
толщиной материала, из которого она изготовлена;
глубиной поверхностного эффекта;
соотношением размеров проёмов в ней с длиной волны внешнего излучения.
Для экранировки кабеля необходимо создать клетку Фарадея с хорошо проводящей поверхностью по всей длине экранируемых проводников. Для того чтобы клетка Фарадея эффективно работала, размер ячейки сетки должен быть значительно меньше длины волны излучения, защиту от которого требуется обеспечить. Принцип действия устройства основан на перераспределении электронов в проводнике под воздействием электромагнитного поля.

В иностранной печати подчеркивается, что отсутствие экспериментальных данных сильно затрудняет расчет поражающих факторов ЭМИ и определение мер по защите от него. В значительной степени этому будет способствовать математическое моделирование процессов генерации ЭМИ на ЭВМ. На рис. 3 представлен результат такого моделирования в виде трехмерного изображения ядерного взрыва в космическом пространстве. Путем такого моделирования, а также на основании теоретических расчетов зарубежные специалисты установили, что величина напряженности наводимой ЭМИ (50 кВ/м), может считаться максимально возможной. Это обстоятельство стало одним из критериев при проектировании средств защиты от ЭМИ. Другими критериями являются длительность переднего фронта ЭМИ (3-5 нс) и полная его длительность (примерно 1 мкс), вследствие чего время переходных процессов в средствах защиты от ЭМИ не должно превышать нескольких наносекунд, а их прочность на пробой должна быть такой, чтобы выдерживать напряжение в десятки киловольт в течение нескольких микросекунд. С учетом этих критериев в США был разработан военный стандарт MILSTD-2169, который представляет собой номограммы для расчета уровней ЭМИ в зависимости от высоты взрыва, его мощности и дальности защищаемого объекта от эпицентра взрыва. Для практического использования стандарта необходимо знать устойчивость различных приборов, устройств и схем к воздействию ЭМИ определенной интенсивности, а также эффективность средств защиты. Поскольку сбор таких данных при проведении подземных ядерных испытаний технически весьма сложен и дорогостоящ, то решение проблемы набора экспериментальных данных достигается методами и средствами физического моделирования.
Среди капиталистических стран передовые позиции в разработке и практическом использовании имитаторов ЭМИ ядерного взрыва занимают США.
Подобные имитаторы представляют собой электрогенераторы со специальными излучателями, создающими электромагнитное поле с параметрами, близкими к тем, которые характерны для реального ЭМИ. В зону действия излучателя помещаются испытываемый объект и приборы, регистрирующие интенсивность поля, его частотный спектр и длительность воздействия.
Один из таких имитаторов, развернутый на авиабазе ВВС США Киртленд (штат Нью-Мексико), показан на рис. 4. Предназначенный для моделирования условии воздействия ЭМИ на самолет и его аппаратуру в полете, он может использоваться для испытаний таких крупных летательных аппаратов, как
бомбардировщик В-52 или гражданский авиалайнер Боинг 747.
В настоящее время создано и действует большое количество имитаторов ЭМИ для испытаний авиационной, космической, корабельной и наземной военной техники. Однако считается, что все они не в полной мере воссоздают реальные условия воздействия ЭМИ ядерного взрыва вследствие ограничений, накладываемых характеристиками излучателей, генераторов и источников электропитания на частотный спектр излучения, его мощность и скорость нарастания импульса. Вместе с тем в зарубежной прессе отмечается, что и при этих ограничениях удается получить достаточно полные и надежные данные о появлении неисправностей в полупроводниковых приборах, сбоя в их функционировании и т. п., а также об эффективности действия различных защитных устройств. Кроме того, такие испытания позволили дать количественную оценку опасности различных путей воздействия ЭМИ на радиоэлектронную технику.
Теория электромагнитного поля показывает, что такими путями для наземной техники являются прежде всего различные антенные устройства и кабельные вводы системы электропитания, а для авиационной и космической техники - антенны, а также токи, наводимые в обшивке, и излучения, проникающие через остекление кабин и лючки из не токопроводящих материалов. Теоретически рассчитано и экспериментально подтверждено, что токи, наводимые ЭМИ в наземных и заглубленных кабелях электропитания протяженностью в сотни и тысячи километров, могут достигать тысяч ампер, а напряжения, возникающие в разомкнутых цепях таких кабелей, - миллионов вольт. В антенных вводах, длина которых не превышает десятков метров, наводимые ЭМИ токи могут иметь силу в несколько сотен ампер. ЭМИ, проникающий непосредственно через элементы сооружений из диэлектрических материалов (не экранированные стены, окна, двери и т.п.), может наводить во внутренней электропроводке токи силой в десятки ампер. Токи, наводимые в обшивке самолета и выпускаемой антенне сверхдлинноволновой связи, могут составлять до 1000А, что приводит к возникновению токов во внутренней бортовой сети силой 1 - 10 А. Поскольку слаботочные цепи и радиоэлектронные приборы нормально действуют при напряжениях в несколько вольт и токах силой до нескольких десятков миллиампер, то в иностранной прессе утверждается, что для их абсолютно надежной защиты от ЭМИ требуется обеспечить снижение величины токов и напряжений, наводимых в кабелях электропитания, до шести порядков. Идеальной защитой от ЭМИ явилось бы полное укрытие помещения или кожуха, в котором размещается радиоэлектронная аппаратура, металлическим экраном. Вместе с тем ясно, что практически обеспечить такую защиту в ряде случаев невозможно, так как для работы аппаратуры часто требуется обеспечить ее электрическую связь с внешними устройствами.
Поэтому используются менее надежные средства защиты, такие, как токопроводящие сетки или пленочные покрытия для окон, сотовые металлические конструкции для воздухозаборников и вентиляционных отверстий и контактные пружинные прокладки, размещаемые по периметру дверей и люков.
Более сложной технической проблемой считается защита от проникновения ЭМИ в аппаратуру через различные кабельные вводы. По взглядам зарубежных специалистов, радикальным решением данной проблемы мог бы стать переход от электрических сетей связи к практически не подверженным воздействию ЭМИ волоконно-оптическим. Однако замена полупроводниковых приборов во всем спектре выполняемых ими функций электронно-оптическими устройствами
возможна только в отдаленном будущем. Поэтому в настоящее время в качестве средств защиты кабельных вводов наиболее широко используются фильтры, в том числе волноводные, а также искровые разрядники, металлоокисные варисторы и высокоскоростные зенеровские диоды. Все эти средства имеют как преимущества, так и недостатки. Так, емкостно-индуктивные фильтры считаются достаточно эффективной защитой от ЭМИ малой интенсивности, а волноводные фильтры защищают в относительно узком диапазоне сверхвысоких частот. Искровые разрядники обладают значительной инерционностью и в основном пригодны для защиты от перегрузок, возникающих под воздействием напряжений и токов, наводимых в обшивке самолета, кожухе аппаратуры и оплетке кабеля.
Сравнительно недавно были созданы металлоокисные варисторы, представляющие собой полупроводниковые приборы, резко повышающие свою проводимость при высоком напряжении. Однако полагают, что при применении таких приборов в качестве средства защиты от ЭМИ следует учитывать их недостаточно высокое быстродействие и ухудшение характеристик при неоднократном воздействии нагрузок. Эти недостатки отсутствуют у высокоскоростных зенеровских диодов, действие которых основано на резком лавинообразном изменении сопротивления от относительно высокого значения практически до нуля (режим короткого замыкания) при превышении приложенного к ним напряжения определенной пороговой величины. Скорость такого процесса в современных зенеровских диодах составляет около 10E-9с, а теоретический предел может достигать даже 10E-12с. Кроме того, в отличие от варисторов характеристики зенеровского диода после многократных воздействий высоких напряжений и переключений режимов не ухудшаются. Как отмечает зарубежная печать, наиболее рациональным подходом к проектированию средств защиты от ЭМИ кабельных вводов является создание таких разъемов, в конструкции которых предусмотрены специальные меры, обеспечивающие формирование элементов фильтров и установку встроенных зенеровских диодов. Подобный разъем был создан фирмой «Интернэшнл телефон энд телеграф корпорейшн» для УР «Феникс» класса «воздух-воздух» (рис.5). На разрезе разъема хорошо видны крепление зенеровского диода непосредственно на токопроводящем контакте и конструктивные элементы разъема, формирующие частотный фильтр (каждый контакт проходит внутри ферритового кольца, выполняющего роль катушки индуктивности, с обеих сторон которого размещены «вафельные» конденсаторы емкостей фильтра). Такая конструкция способствует получению очень малых значений емкости и индуктивности, что необходимо для обеспечения защиты от импульсов, которые имеют незначительную длительность и, следовательно, мощную высокочастотную составляющую.
Полагают, что использование разъемов подобной конструкции позволит решить проблему ограничения массогабаритных характеристик устройства защиты. Насколько важно это обстоятельство, можно судить по следующему примеру, приведенному в западной печати. При применении обычных радиодеталей для создания устройства защиты четырех стандартных разъемов, каждый из которых имеет по 128 контактов (что считается типичным для современных средств вычислительной техники), потребовалась бы схема в составе 1024 конденсаторов, 512 катушек индуктивности и 512 диодов.
Приводится также пример практического использования новых разъемов авиационной радиоэлектронной аппаратуре. Промышленной фирмой было предложено модифицировать армейский вертолет для ВМС. В процессе испытаний выявилась невозможность осуществления его поездки на авианосец вследствие вывода в этой ситуации из строя бортовой аппаратуры мощными излучениями радиоэлектронных средств корабля. После замены в вертолетной аппаратуре ряда разъемов новыми, снабженными устройствами защиты от ЭМИ, проблема оказалась в значительной степени решенной.
Сложность решения задачи защиты от ЭМИ и высокая стоимость разработанных для этой цели средств и методов заставили американское командование пойти на первых порах по пути их выборочного применения в особо важных системах оружия и военной техники. Первыми целенаправленными работами в данном на правлении были программы защиты от ЭМИ ракетных систем «Минитмен», «Посейдон» и «Поларис».
По заявлению американских экспертов, эти системы имеют практически абсолютную защиту. В нестратегических системах оружия проблема решается
путем обеспечения надежной защиты, наиболее важных для их функционирования или подверженных воздействию ЭМИ устройств и элементов.
Такой же путь избран и для защиты имеющих большую протяженность систем управления и связи. Однако основным методом решения данной проблемы зарубежные специалисты считают создание так называемых распределенных сетей связи (типа «Гвен»), первые элементы которых уже развернуты на континентальной части США.
Современное состояние проблемы ЭМИ оценивается западной прессой следующим обрезом. Достаточно хорошо исследованы теоретически и подтверждены экспериментально механизмы генерации ЭМИ и параметры его поражающего действия. Разработаны стандарты защищенности аппаратуры и известны эффективные средства защиты. Однако для достижения достаточной уверенности в надежности защиты систем и средств от ЭМИ необходимо провести испытания с помощью имитатора. В частности, их уже проходят самолеты, ракеты, ИСЗ, отдельные средства корабельной техники, аппаратура систем связи и управления. Полагают, что возможности по испытаниям корабельной техники будут значительно расширены после завершения строительства специально размещенного на опытовом судне имитатора «Импресс-2». Что касается полномасштабных испытаний систем связи и управления, то эта задача, по оценкам зарубежных специалистов, вряд ли будет решена в обозримом будущем.
Согласно сообщениям иностранной печати, мощный ЭМИ можно создать не только в результате ядерного взрыва. В настоящее время в некоторых западных странах ведутся работы по генерации импульсов электромагнитного излучения магнитогидродинамическими устройствами, а также высоковольтными разрядами. Поэтому вопросы защищенности радиоэлектронной аппаратуры от воздействия ЭМИ будут оставаться в центре внимания научно-технических специалистов стран НАТО при любом исходе переговоров о ядерном разоружении.

Ядерный взрыв сопровождается электромагнитным излучением в виде мощного короткого импульса, поражающего главным образом, электрическую и электронную аппаратуру.

Источники возникновения электромагнитного импульса (ЭМИ). По природе ЭМИ с некоторыми допущениями можно сравнить с электромагнитным полем близкой молнии, создающим помехи для радиоприемников. Длина волн колеблется от 1 до 1000 м и более. Возникает ЭМИ в основном в результате взаимодействия гамма-излучения, образующегося во время взрыва, с атомами окружающей среды.

При взаимодействии гамма-квантов с атомами среды последним сообщается импульс энергии, небольшая доля которой тратится на ионизацию атомов, а основная - на сообщение поступательного движения электронам и ионам, образовавшимся в результате ионизации. Ввиду того, что электрону сообщается значительно больше энергии, чем иону, а также из-за большой разницы в массе электроны обладают более высокой скоростью по сравнению с ионами. Можно считать, что ионы практически остаются на месте, а электроны удаляются от них со скоростями, близкими к скорости света в радиальном направлении от центра взрыва. Таким образом, в пространстве на некоторое время происходит разделение положительных и отрицательных зарядов.

Вследствие того, что плотность воздуха в атмосфере уменьшается с высотой, в области, окружающей место взрыва, получается асимметрия в распределении электрического заряда (потока электронов). Асимметрия потока электронов может возникнуть также из-за несимметричности самого потока гамма-квантов ввиду различной толщины оболочки бомбы, а также наличия магнитного поля Земли и других факторов. Несимметричность электрического заряда (потока электронов) в месте взрыва в воздухе вызывает импульс тока. Он излучает электромагнитную энергию так же, как и прохождение его в излучающей антенне.

Район, где гамма-излучение взаимодействует с атмосферой, называется районом источника ЭМИ. Плотная атмосфера вблизи земной поверхности ограничивает область распространения гамма-квантов (сердняя длина свободного пробега составляет сотни метров). Поэтому при наземном взрыве район источника занимает площадь всего в несколько квадратных километров и примерно совпадает с районом, где воздействуют другие поражающие факторы ядерного взрыва.

При высотном ядерном взрыве гамма-кванты могут пройти сотни километров до взаимодействия с молекулами воздуха и вследствие его разреженности проникнуть глубоко в атмосферу. Поэтому размеры района источника ЭМИ получаются большими. Так, при высотном взрыве боеприпаса мощностью 0,5-2 млн. т может образоваться район источника ЭМИ диаметром до 1600-3000 км и толщиной около 20 км, нижняя граница которого пройдет на высоте 18-20 км (рис. 1.4).

Рис. 1.4. Основные варианты ЭМИ-обстановки: 1 - ЭМИ-обстановка района источника и образования полей излучения наземного и воздушного взрывов; 2 - подземная ЭМИ-обстановка на некотором расстоянии от взрыва вблизи поверхности; 3 - ЭМИ-обстановка высотного взрыва.

Большие размеры района источника при высотном взрыве порождают интенсивный ЭМИ, направленный вниз, над значительной частью земной поверхности. Поэтому очень большой район может оказаться в условиях сильного воздействия ЭМИ, где другие поражающие факторы ядерного взрыва практически не действуют.

Таким образом, при высотных ядерных взрывах объекты полиграфии, находящиеся и за пределами очага ядерного поражения, могут подвергнуться сильному воздействию ЭМИ.

Основными параметрами ЭМИ, определяющими поражающее действие, являются характер изменения напряженности электрического и магнитного полей во времени - форма импульса и максимальная напряженность поля - амплитуда импульса.

ЭМИ наземного ядерного взрыва на расстоянии до нескольких километров от центра взрыва представляет собой одиночный сигнал с крутым передним фронтом и длительностью в несколько десятков миллисекунд (рис. 1.5).

Рис. 1.5. Изменение напряженности поля электромагнитного импульса: а - начальная фаза; б - основная фаза; в - длительность первого квазиполупериода.

Энергия ЭМИ распространена в широком диапазоне частот от десятков герц до нескольких мегагерц. Однако высокочастотная часть спектра содержит незначительную долю энергии импульса; основная же часть его энергии приходится на частоты до 30 кГц.

Амплитуда ЭМИ в указанной зоне может достигать очень больших значений - в воздухе тысяч вольт на метр при взрыве боеприпасов малой мощности и десятков тысяч вольт на метр при взрывах боеприпасов большой мощности. В грунте амплитуда ЭМИ может доходить соответственно до сотен и тысяч вольт на метр.

Поскольку амплитуда ЭМИ быстро уменьшается с увеличением расстояния, ЭМИ наземного ядерного взрыва поражает только на расстоянии нескольких километров от центра взрыва; на больших расстояниях оно оказывает только кратковременное отрицательное воздействие на работу радиотехнической аппаратуры.

Для низкого воздушного взрыва параметры ЭМИ в основном остаются такими же, как и для наземного взрыва, но с увеличением высоты взрыва амплитуда импульса у поверхности земли уменьшается.

При низком воздушном взрыве мощностью 1 млн.т ЭМИ с поражающими величинами напряженности полей распространяются на площади с радиусом до 32 км, 10 млн. т - до 115 км.

Амплитуда ЭМИ подземного и подводного взрывов значительно меньше амплитуды ЭМИ при взрывах в атмосфере, поэтому поражающее действие его при подземном и подводном взрывах практически не проявляется.

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках, расположенных в воздухе, земле, на оборудовании других объектов.

Поскольку амплитуда ЭМИ быстро уменьшается с увеличением расстояния, его поражающее действие - несколько километров от центра (эпицентра) взрыва крупного калибра. Так, при наземном взрыве мощностью 1 Мт вертикальная составляющая электрического поля ЭМИ на расстоянии 4 км - 3 кВ/м, на расстоянии 3 км - 6 кВ/м, и 2 км - 13 кВ/м.

ЭМИ непосредственного действия на человека не оказывает. Приемники энергии ЭМИ - проводящие электрический ток тела: все воздушные и подземные линии связи, линии управления, сигнализации (так как они имеют электрическую прочность, не превышающую 2-4 кВ напряжения постоянного тока), электропередачи, металлические мачты и опоры, воздушные и подземные антенные устройства, наземные и подземные турбопроводы, металлические крыши и другие конструкции, изготовленные из металла. В момент взрыва в них на доли секунды возникает импульс электрического тока и появляется разность потенциала относительно земли. Под действием этих напряжений может происходить: пробой изоляции кабелей, повреждение входных элементов аппаратуры, подключенной к антеннам, воздушным и подземным линиям (пробой трансформаторов связи, выход из строя разрядников, предохранителей, порча полупроводниковых приборов и т.д., а также выгорание плавких вставок, включенных в линии для защиты аппаратуры. Высокие электрические потенциалы относительно земли, возникающие на экранах, жилах кабелей, антенно-фидерных линиях и проводных линиях связи могут представлять опасность для лиц, обслуживающих аппаратуру.

Наибольшую опасность ЭМИ представляет для аппаратуры, не оборудованной специальной защитой, даже если она находится в особо прочных сооружениях, способных выдерживать большие механические нагрузки от действия ударной волны ядерного взрыва. ЭМИ для такой аппаратуры является главным поражающим фактором.

Линии электропередач и их оборудование, рассчитанные на напряжение в десятки, сотни кВт, являются устойчивыми к воздействию электромагнитного импульса.

Необходимо также учитывать одновременность воздействия импульса мгновенного гамма-излучения и ЭМИ: под действием первого - увеличивается проводимость материалов, а под действием второго - наводятся дополнительные электрические токи. Кроме того, следует учитывать их одновременное воздействие на все системы, находящиеся в районе взрыва.

На кабельных и воздушных линиях, попавших в зону мощных импульсов электромагнитного излучения, возникают (наводятся) высокие электрические напряжения. Наведенное напряжение может вызывать повреждения входных цепей аппаратуры на довольно удаленных участках этих линий.

В зависимости от характера воздействия ЭМИ на линии связи и подключенную к ним аппаратуру рекомендуются следующие способы защиты: применение двухпроводных симметричных линий связи, хорошо изолированных между собой и от земли; исключение применения однопроводных наружных линий связи; экранирование подземных кабелей медной, алюминиевой, свинцовой облочкой; электромагнитное экранирование блоков и узлов аппаратуры; использование различного рода защитных входных устройств и грозозащитных средств.

И т. д.). Поражающее действие электромагнитного импульса (ЭМИ) обусловлено возникновением наведённых напряжений и токов в различных проводниках. Действие ЭМИ проявляется, прежде всего, по отношению к электрической и радиоэлектронной аппаратуре. Наиболее уязвимы линии связи, сигнализации и управления. При этом может произойти пробой изоляции, повреждение трансформаторов , порча полупроводниковых приборов и т. п. Высотный взрыв способен создать помехи в этих линиях на очень больших площадях. Защита от ЭМИ достигается экранированием линий энергоснабжения и аппаратуры.

См. также

Литература

  • В. М. Лобарев, Б. В. Замышлаев, Е. П. Маслин, Б. А. Шилобреев. Физика ядерного взрыва: Действие взрыва. - М .: Наука. Физматлит., 1997. - Т. 2. - 256 с. - ISBN 5-02-015125-4
  • Коллектив авторов. Ядерный взрыв в космосе, на земле и под землей. - Воениздат, 1974. - 235 с. - 12 000 экз.
  • Рикетс Л.У., Бриджес Дж.Э. Майлетта Дж. Электромагнитный импульс и методы защиты / Пер. с анг. - Атомиздат, 1979. - 328 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Электромагнитный импульс" в других словарях:

    См. Импульс электромагнитный. EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций

    электромагнитный импульс - ЭМИ Изменение уровня электромагнитной помехи в течение времени, соизмеримого со временем установления переходного процесса в техническом средстве, на которое это изменение воздействует. [ГОСТ 30372—95 ] Тематики электромагнитная… …

    электромагнитный импульс - elektromagnetinis impulsas statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Galingi trumpalaikiai elektromagnetiniai laukai, kurie atsiranda orinių ir aukštybinių branduolinių sprogimų metu; branduolinio sprogimo naikinamasis veiksnys … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

    электромагнитный импульс - elektromagnetinis impulsas statusas T sritis Standartizacija ir metrologija apibrėžtis Trumpalaikis elektromagnetinis laukas. atitikmenys: angl. electromagnetic impulse vok. elektromagnetischer Impuls, m rus. электромагнитный импульс, m pranc.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    электромагнитный импульс - elektromagnetinis impulsas statusas T sritis fizika atitikmenys: angl. electromagnetic impulse vok. elektromagnetischer Impuls, m rus. электромагнитный импульс, m pranc. impulsion électromagnétique, f … Fizikos terminų žodynas

    Электромагнитный импульс - кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Является поражающим фактором ядерного оружия;… … Словарь военных терминов

    Электромагнитный импульс - 1. Изменение уровня электромагнитной помехи в течение времени, соизмеримого со временем установления переходного процесса в техническом средстве, на которое это изменение воздействует Употребляется в документе: ГОСТ 30372 95 Совместимость… … Телекоммуникационный словарь

    Электромагнитный импульс (ЭМИ) поражающий фактор ядерного оружия, а также любых других источников ЭМИ (например молнии, специального электромагнитного оружия, короткого замыкания в электрооборудовании высокой мощности, или близкой вспышки… … Википедия

    Кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма излучения и нейтронов, испускаемых при ядерном взрыве, с атомами окружающей среды. Спектр частот электромагнитного импульса… … Морской словарь

    электромагнитный импульс от электростатических разрядов - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electrostatic discharge electromagnetic pulse … Справочник технического переводчика

Книги

  • , Гуревич Владимир Игоревич. Рассмотрена история развития военных ядерных программ в СССР и США, роли разведки в создании ядерного оружия в СССР, обнаружении электромагнитного импульса при ядерном взрыве (ЭМИ ЯВ),…
  • Электромагнитный импульс высотного ядерного взрыва и защита электрооборудования от него , Гуревич Владимир Игоревич. Рассказывается об истории развития военных ядерных программ в СССР и США, роли разведки в создании ядерного оружия в СССР, обнаружении электромагнитного импульсапри ядерном взрыве (ЭМИ ЯВ),…


Читайте также: