Функции углеводов в клетке человека. Простые и сложные углеводы

Вступление.

  1. Строение,свойства и функции белков.

    Обмен белков.

    Углеводы.

    Строение,свойства и функции углеводов.

    Обмен углеводов.

    Строение,свойства и функции жиров.

10)Обмен жиров.

Список литературы

ВСТУПЛЕНИЕ

Нормальная деятельность организма возможна при непрерывном поступлении пищи. Входящие в состав пищи жиры, белки, углеводы, минеральные соли, вода и витамины необходимы для жизненных процессов организма.

Питательные вещества являются как источником энергии, покрывающем расходы организма, так и строительным материалом, который используется в процессе роста организма и воспроизведения новых клеток, замещающих отмирающие. Но питательные вещества в том виде, в каком они употребляются в пищу, не могут всосаться и быть использованными организмом. Только вода, минеральные соли и витамины всасываются и усваиваются в том виде, в каком они поступают.

Питательными веществами называются белки, жиры и углеводы. Эти вещества являются необходимыми составными частями пищи. В пищеварительном тракте белки, жиры и углеводы подвергаются как физическим воздействиям (измельчаются и перетираются), так и химическим изменениям, которые происходят под влиянием особых веществ - ферментов, содержащихся в соках пищеварительных желёз. Под влиянием пищеварительных соков питательные вещества расщепляются на более простые, которые всасываются и усваиваются организмом.

БЕЛКИ

СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

"Во всех растениях и животных присутствует некое вещество, которое без сомнения является наиболее важным из всех известных веществ живой природы и без которого жизнь была бы на нашей планете невозможна. Это вещество я наименовал - протеин". Так писал еще в 1838 году голландский биохимик Жерар Мюльдер, который впервые открыл существование в природе белковых тел и сформулировал свою теорию протеина. Слово "протеин" (белок) происходит от греческого слова "протейос", что означает "занимающий первое место". И в самом деле, все живое на земле содержит белки. Они составляют около 50% сухого веса тела всех организмов. У вирусов содержание белков колеблется в пределах от 45 до 95%.

Белки являются одними из четырех основных органических веществ живой материи (белки, нуклеиновые кислоты, углеводы, жиры), но по своему значению и биологическим функциям они занимают в ней особое место. Около 30% всех белков человеческого тела находится в мышцах, около 20% - в костях и сухожилиях и около 10% - в коже. Но наиболее важными белками всех организмов являются ферменты, которые, холя и присутствуют в их теле и в каждой клетке тела в малом количестве, тем не менее управляют рядом существенно важных для жизни химических реакций. Все процессы, происходящие в организме: переваривание пищи, окислительные реакции, активность желез внутренней секреции, мышечная деятельность и работа мозга регулируется ферментами. Разнообразие ферментов в теле организмов огромно. Даже в маленькой бактерии их насчитываются многие сотни.

Белки, или, как их иначе называют, протеины, имеют очень сложное строение и являются наиболее сложными из питательных веществ. Белки - обязательная составная часть всех живых клеток. В состав белков входят: углерод, водород, кислород, азот, сера и иногда фосфор. Наиболее характерно для белка наличие в его молекуле азота. Другие питательные вещества азота не содержат. Поэтому белок называют азотосодержащис веществом.

Основные азотосодержащие вещества, из которых состоят белки, - это аминокислоты. Количество аминокислот невелико - их известно только 28. Все громадное разнообразие содержащихся в природе белков представляет собой различное сочетание известных аминокислот. От их сочетания зависят свойства и качества белков.

При соединении двух или нескольких аминокислот образуется более сложное соединение - полипептид . Полипептиды, соединяясь, образуют еще более сложные и крупные частицы и в итоге - сложную молекулу белка.

Когда в пищеварительном тракте или в эксперименте белки расщепляются на более простые соединения, то через ряд промежуточных стадий (альбумоз и пептонов) они расщепляются на полипептиды и, наконец, на аминокислоты. Аминокислоты в отличие от белков легко всасываются и усваиваются организмом. Они используются организмом для образования собственного специфического белка. Если же вследствие избыточного поступления аминокислот их расщепление в тканях продолжается, то они окисляются до углекислого газа и воды.

Большинство белков растворяется в воде. Молекулы белков в силу их больших размеров почти не проходят через поры животных или растительных мембран. При нагревании водные растворы белков свертываются. Есть белки (например, желатина), которые растворяются в воде только при нагревании.

При поглощении пища сначала попадает в ротовую полость, а затем по пищеводу в желудок. Чистый желудочный сок бесцветен, имеет кислую реакцию. Кислая реакция зависит от наличия соляной кислоты, концентрация которой составляет 0,5%.

Желудочный сок обладает свойством переваривать пищу, что связано с наличием в нем ферментов. Он содержит пепсин - фермент, расщепляющий белок. Под влиянием пепсина белки расщепляются на пептоны и альбумозы. Железами желудка пепсин вырабатывается в неактивном виде, переходит в активную форму при воздействии на него соляной кислоты. Пепсин действует только в кислой среде и при попадании в щелочную среду становится не гативным.

Пища, поступив в желудок, более или менее длительное время задерживается в нем - от 3 до 10 часов. Срок пребывания пищи в желудке зависит от ее характера и физического состояния - жидкая она или твердая. Вода покидает желудок немедленно после поступления. Пища, содержащая большее количество белков, задерживается в желудке дольше, чем углеводная; еще дольше остается в желудке жирная пища. Передвижение пищи происходит благодаря сокращению желудка, что способствует переходу в пилорическую часть, а затем в двенадцатиперстную кишку уже значительно переваренной пищевой кашицы.

Пищевая кашица, поступившая в двенадцатиперстную кишку, подвергается дальнейшему перевариванию. Здесь на пищевую кашицу изливается сок кишечных желез, которыми усеяна слизистая оболочка кишки, а также сок поджелудочной железы и желчь. Под влиянием этих соков пищевые вещества - белки, жиры и углеводы - подвергаются дальнейшему расщеплению и доводятся до такого состояния, когда могут всосаться в кровь и лимфу.

Поджелудочный сок бесцветен и имеет щелочную реакцию. Он содержит ферменты, расщепляющие белки, углеводы и жиры.

Одним из основных ферментов является трипсин, находящийся в соке поджелудочной железы в недеятельном состоянии в виде трипсиногена. Трипсиноген не может расщеплять белки, если не будет переведен в активное состояние, т.е. в трипсин. Трипсиноген переходит в трипсин при соприкосновении с кишечным соком под влиянием находящегося в кишечном соке вещества энтерокиназы. Энтерокиназа образуется в слизистой оболочке кишечника. В двенадцатиперстной кишке действие пепсина прекращается, так как пепсин действует только в кислой среде. Дальнейшее переваривание белков продолжается уже под влиянием трипсина.

Трипсин очень активен в щелочной среде. Его действие продолжается и в кислой среде, но активность падает. Трипсин действует на белки и расщепляет их до аминокислот; он также расщепляет образовавшиеся в желудке пептоны и альбумозы до аминокислот.

В тонких кишках заканчивается переработка пищевых веществ, начавшаяся в желудке и двенадцатиперстной кишке. В желудке и двенадцатиперстной кишке белки, жиры и углеводы расщепляются почти полностью, только часть их остается непереваренной. В тонких кишках под влиянием кишечного сока происходит окончательное расщепление всех пищевых веществ и всасывание продуктов расщепления. Продукты расщепления попадают в кровь. Это происходит через капилляры, каждый из которых подходит к ворсинке, расположенной на стенке тонких кишков.

ОБМЕН БЕЛКОВ

После расщепления белков в пищеварительном тракте образовавшиеся аминокислоты всасываются в кровь. В кровь всасывается также незначительное количество полипептидов - соединений, состоящих из нескольких аминокислот. Из аминокислот клетки нашего тела синтезируют белок, причем белок, который образуется в клетках человеческого организма, отличается от потребленного белка и характерен для человеческого организма.

Образование нового белка в организме человека и животных идет беспрерывно, так как в течении всей жизни взамен отмирающих клеток крови, кожи, слизистой оболочки, кишечника и т. д. создаются новые, молодые клетки. Для того чтобы клетки организма синтезировали белок, необходимо, чтобы белки поступали с пищей в пищеварительный канал, где они подвергаются расщиплению на аминокислоты, и уже из всосавшихся аминокислот будет образован белок.

Если же, минуя пищеварительный тракт, ввести белок непосредственно в кровь, то он не только не может быть использован человеческим организмом, он вызывает ряд серьезных осложнений. На такое введение белка организм отвечает резким повышением температуры и некоторыми другими явлениями. При повторном введении белка через 15-20 дней может наступить даже смерть при параличе дыхания, резком нарушение сердечной деятельности и общих судорогах.

Белки не могут быть заменены какими-либо другими пищевыми веществами, так как синтез белка в организме возможен только из аминокислот.

Для того чтобы в организме мог произойти синтез присущего ему белка, необходимо поступление всех или наиболее важных аминокислот.

Из известных аминокислот не все имеют одинаковую ценность для организма. Среди них есть аминокислоты, которые могут быть заменены другими или синтезированными в организме из других аминокислот; наряду с этим есть и незаменимые аминокислоты, при отсутствии которых или даже одной из них белковый обмен в организме нарушается.

Белки не всегда содержат все аминокислоты: в одних белках содержится большее количество необходимых организму аминокислот, в других - незначительное. Разные белки содержат различные аминокислоты и в разных соотношениях.

Белки, в состав которых входят все необходимые организму аминокислоты, называются полноценными; белки, не содержащие всех необходимых аминокислот, являются неполноценными белками.

Для человека важно поступление полноценных белков, так как из них организм может свободно синтезировать свои специфические белки. Однако полноценный белок может быть заменен двумя или тремя неполноценными белками, которые, дополняя друг друга, дают в сумме все необходимые аминокислоты. Следовательно, для нормальной жизнедеятельности организма необходимо, чтобы в пище содержались полноценные белки или набор неполноценных белков, по аминокислотному содержанию равноценных полноценным белкам.

Поступление полноценных белков с пищей крайне важно для растущего организма, так как в организме ребенка не только происходит восстановление отмирающих клеток, как у взрослых, но и в большом количестве создаются новые клетки.

Обычная смешанная пища содержит разнообразные белки, которые в сумме обеспечивают потребность организма в аминокислотах. Важна не только биологическая ценность поступающих с пищей белков, но и их количество. При недостаточном количестве белков нормальный рост организма приостанавливается или задерживается, так как потребности в белке не покрываются из-за его недостаточного поступления.

К полноценным белкам относятся преимущественно белки животного происхождения, кроме желатины, относящейся к неполноценным белкам. Неполноценные белки - преимущественно растительного происхождения. Однако некоторые растения (картофель, бобовые и др.) содержат полноценные белки. Из животных белков особенно большую ценность для организма представляют белки мяса, яиц, молока и др.

УГЛЕВОДЫ

СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

Углеводы или сахариды - одна из основных групп органических соединений организма. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других веществ в растениях (органические кислоты, аминокислоты), а также содержатся в клетках всех других живых организмов. В животной клетке содержание углеводов колеблется в пределах 1-2%, в растительной оно может достигать в некоторых случаях 85-90% массы сухого вещества.

Углеводы состоят из углерода, водорода и кислорода, причем у большинства углеводов водород и кислород содержатся в том же соотношении, что и в воде (отсюда их название - углеводы). Таковы, например, глюкоза С6Н12О6 или сахароза С12Н22О11. В состав производных углеводов могут входить и другие элементы. Все углеводы делятся на простые (моносахариды) и сложные (полисахариды).

Среди моносахаридов по числу углеродных атомов различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С) и гептозы (7С). Моносахариды с пятью и более атомами углерода, растворяясь в воде, могут приобретать кольцевую структуру. В природе наиболее часто встречаются пентозы (рибоза, дезоксирибоза, рибулоза) и гексозы (глюкоза, фруктоза, галактоза). Рибоза и дезоксирибоза играют важную роль в качестве составных частей нуклеиновых кислот и АТФ. Глюкоза в клетке служит универсальным источником энергии. С превращением моносахаридов связаны не только обеспечение клетки энергией, но и биосинтез многих других органических веществ, а также обезвреживание и выведение из организма ядовитых веществ, проникающих извне или образующихся в процессе обмена веществ, например, при распаде белков.

Ди - и полисахариды образуются путем соединения двух и более моносахаридов, таких, как глюкоза галактоза маноза, арабиноза или ксилоза. Так, соединяясь между собой с выделением молекулы воды, две молекулы моносахаридов образуют молекулу дисахарида. Типичными представителями этой группы веществ являются сахароза (тростниковый сахар), мальтаза (солодовый сахар), лактоза (молочный сахар). Дисахариды по своим свойствам близки к моносахаридам. Например, и те, и другие хорошо растворимы в воде и имеют сладкий вкус. К числу полисахаридов принадлежит крахмал, гликоген, целлюлоза, хитин, каллоза и др.

Основная роль углеводов связана с их энергетической функцией. При их ферментативном расщеплении и окислении выделяется энергия, которая используется клеткой. Полисахариды играют главным образом роль запасных продуктов и легко мобилизуемых источников энергии (например, крахмал и гликоген), а также используются в качестве строительного материала (целлюлоза, хитин). Полисахариды удобны в качестве запасных веществ по ряду причин: будучи нерастворимы в воде, они не оказывают на клетку ни осмотического, ни химического влияния, что весьма важно при длительном хранении их в живой клетке: твердое, обезвоженное состояние полисахаридов увеличивает полезную массу продуктов запаса за счет экономии их объема. При этом существенно уменьшается вероятность потребления этих продуктов болезнетворными бактериями и другими микроорганизмами, которые, как известно, не могут заглатывать пищу, а всасывают вещества всей поверхностью тела. И наконец, при необходимости запасные полисахариды легко могут быть превращены в простые сахара путем гидролиза.

ОБМЕН УГЛЕВОДОВ

Углеводы, как уже говорилось выше, играют очень важную роль в организме, являясь основным источником энергии. Углеводы поступают к нам в организм в виде сложных полисахаридов - крахмала, дисахаридов и моносахаридов. Основное количество углеводов поступает в виде крахмала. Расщепившись до глюкозы, углеводы всасываются и через ряд промежуточных реакций распадаются на углекислый газ и воду. Эти превращения углеводов и окончательное окисление сопровождаются освобождением энергии, которая и используется организмом.

Расщепление сложных углеводов - крахмала и солодового сахара, начинается уже в полости рта, где под влиянием птиалина и мальтазы крахмал расщепляется до глюкозы. В тонких кишках все углеводы расщепляются до моносахаридов.

Угле воды всасываются преимущественно в виде глюкозы и только отчасти в виде других моносахаридов (галактозы, фруктозы). Их всасывание начинается уже в верхних отделах кишечника. В нижних отделах тонких кишок в пищевой кашице углеводов почти не содержится. Углеводы через ворсинки слизистой оболочки, к которым подходят капилляры, всасываются в кровь, и с кровью, оттекающей от тонкого кишечника, попадают в воротную вену. Кровь воротной вены проходит через печень. Если концентрация сахара в крови человека равна 0,1%, то углеводы проходят печень и поступают в общий кровоток.

Количество сахара в крови все время поддерживается на определенном уровне. В плазме содержание сахара составляет в среднем 0,1%. В сохранении постоянного уровня сахара в крови большую роль играет печень. При обильном поступлении сахара в организм его излишек откладывается в печени и вновь поступает в кровь, когда содержание сахара в крови падает. В печени углеводы содержатся в виде гликогена.

При употреблении в пищу крахмала уровень сахара в крови заметным изменениям не подвергается, так как расщепление крахмала в пищеварительном тракте длятся продолжительное время и образовавшиеся при этом моносахариды всасываются медленно. При поступлении значительного количества (150-200г) обычного сахара или глюкозы уровень сахара в крови резко повышается.

Такое повышение сахара в крови называется пищевой или алиментарной гипергликемией. Избыток сахара выводится почками, и в моче появляется глюкоза.

Выведение сахара почками начинается в том случае, когда уровень сахара в крови составляет 0,15-0,18%. Такая алиментарная гипергликемия наступает обычно после употребления большого количества сахара и вскоре проходит, не вызывая каких-либо нарушений в деятельности организма.

Однако при нарушении внутрисекреторной деятельности поджелудочной железы наступает заболевание, известное под названием сахарной болезни или сахарного диабета. При этом заболевании уровень сахара в крови повышается, печень теряет способность заметно удерживать сахар, и начинается усиленное выделение сахара с мочой.

Гликоген откладывается не только в печени. Значительное его количество содержатся также в мышцах, где он потребляется в цепи химических реакций, протекающих в мышцах при сокращении.

При физической работе потребление углеводов усиливается, и их количество в крови увеличивается. Повышенная потребность в глюкозе удовлетворяется как расщеплением гликогена печени на глюкозу и поступлением последней в кровь, так и гликогеном, содержащимся в мышцах.

Значение глюкозы для организма не исчерпывается ее ролью как источника энергии. Этот моносахарид входит в состав протоплазмы клеток и, следовательно, необходим при образовании новых клеток, особенно в период роста. Большое значение имеет глюкоза в деятельности центральной нервной системы. Достаточно, чтобы концентрация сахара в крови понизилась до 0,04%, как начинаются судороги, теряется сознание и т.д.; иначе говоря, при понижении сахара в крови в первую очередь нарушается деятельность центральной нервной системы. Достаточно такому больному ввести в кровь глюкозу или дать поесть обычного сахара, как все нарушения исчезают. Более резкое и длительное понижение уровня сахара в крови - глипогликемия, может повлечь за собой резкие нарушения деятельности организма и привести к смерти.

При небольшом поступлении углеводов с пищей они образуются из белков и жиров. Таким образом, полностью лишить организм углеводов не удается, так как они образуются и из других пищевых веществ.

ЖИРЫ

СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ

В состав жиров входят углерод, водород и кислород. Жир имеет сложное строение; его составными частями является глицерин (С3Н8О3) и жирные кислоты, при соединении которых и образуются молекулы жира. Наиболее распространенными являются три жирных кислоты: олеиновая (С18Н34О2), пальмитиновая (С16Н32О2) и стеариновая (С18Н36О2). От сочетания этих жирных кислот при их соединении с глицерином зависит образование того или другого жира. При соединении глицерина с олеиновой кислотой образуется жидкий жир, например, растительное масло. Пальмитиновая кислота образует более твердый жир, входит в состав сливочного масла и является главной составляющей частью человеческого жира. Стеариновая кислота входит в состав еще более твердых жиров, например, сала. Для того, чтобы человеческий организм мог синтезировать специфический жир, необходимо поступление всех трех жирных кислот.

В процессе пищеварения жир расщепляется на составные части - глицерин и жирные кислоты. Жирные кислоты нейтрализуются щелочами, в результате чего образуются их соли - мыла. Мыла растворяются в воде и легко всасываются.

Жиры являются составной частью протоплазмы и входят в состав всех органов, тканей и клеток организма человека. Кроме того, жиры представляют собой богатый источник энергии.

Расщепление жиров начинается в желудке. В желудочном соке содержится такое вещество как липаза. Липаза расщепляет жиры на жирные кислоты и глицерин. Глицерин растворяется в воде и легко всасывается, а жирные кислоты не растворяются в воде. Желчь способствует их растворению и всасыванию. Однако в желудке расщепляется только жир, раздробленный на мелкие частицы, например жир молока. Под влиянием желчи действие липазы усиливается в 15-20 раз. Желчь способствует тому, чтобы жир распался на мельчайшие частицы.

Из желудка пища попадает в двенадцатиперстную кишку. Здесь на нее изливается сок кишечных желез, а также сок поджелудочной железы и желчь. Под влиянием этих соков жиры подвергаются дальнейшему расщиплению и доводятся до такого состояния, когда могут всосаться в кровь и лимфу. Затем, по пищеварительному тракту пищевая кашица попадает в тонкий кишечник. Там, под влиянием кишечного сока происходит окончательное расщепление и всасывание.

Жир под влиянием фермента липазы расщепляется на глицерин и жирные кислоты. Глицерин растворяется и легко всасывается, а жирные кислоты нерастворимы в кишечном содержимом и не могут всосаться.

Жирные кислоты входят в соединение со щелочами и желчными кислотами и образуют мыла, которые легко растворяются и поэтому без затруднений проходят через кишечную стенку. В отличие от продуктов расщепления углеводов и белков продукты расщепления жиров всасываются не в кровь, а в лимфу, причем глицерин и мыла, проходя через клетки слизистой оболочки кишечника, вновь соединяются и образуют жир; поэтому уже в лимфатическом сосуде ворсинки находятся капельки вновь образованного жира, а не глицерин и жирные кислоты.

ОБМЕН ЖИРОВ

Жиры, как и углеводы, являются в первую очередь энергетическим материалом и используются организмом как источник энергии.

При окислении 1г жира количество освобождающейся энергии в два с лишним раза больше, чем при окислении такого же количества углеродов или белков.

В органах пищеварения жиры расщепляются на глицерин и жирные кислоты. Глицерин всасывается легко, а жирные кислоты только после омыления.

При прохождении через клетки слизистой оболочки кишечника из глицерина и жирных кислот вновь синтезируется жир, который поступает в лимфу. Образовавшийся при этом жир отличается от потребленного. Организм синтезирует жир, свойственный данному организму. Так, если человек потребляет разные жиры, содержащие олеиновую, пальмитиновую стеариновую жирные кислоты, то его организм синтезирует специфический для человека жир. Однако если в пище человека будет содержаться только какая-то одна жирная кислота, например олеиновая, если она будет преобладать, то образовавшийся при этом жир будет отличаться от человеческого и приближаться к более жидким жирам. При употреблении же в пищу преимущественно бараньего сала жир будет более твердый. Жир по своему характеру отличается не только у различных животных, но и в разных органах одного и того же животного.

Жир используется организмом не только как богатый источник энергии, он входит в состав клеток. Жир является обязательной составной частью протоплазмы, ядра и оболочки. Остаток поступившего в организм жира после покрытия его потребности откладывается в запас в виде жировых капель.

Жир откладывается преимущественно в подкожной клетчатке, сальнике, вокруг почек, образуя почечную капсулу, а также в других внутренних органах и в некоторых других участках тела. Значительное количество запасного жира содержится в печени и мышцах. Запасной жир является в первую очередь источником энергии, который мобилизуется, когда расход энергии превышает его поступление. В таких случаях жир окисляется до конечных продуктов распада.

Кроме энергетического значения, запасной жир играет и другую роль в организме; например, подкожный жир препятствует усиленной отдаче тепла, околопочечный - предохраняет почку от ушибов и т. д. Жира в организме может откладываться в запас довольно значительное количество. У человека он составляет в среднем 10-20% веса. При ожирении, когда нарушаются обменные процессы в организме, количество отложенного жира доходит до 50% веса человека.

Количество отложившегося жира зависит от ряда условий: от пола, возраста, условий работы, состояния здоровья и т.д. При сидячем характере работы отложение жира происходит более энергично, поэтому вопрос о составе и количестве пищи людей, ведущих сидячий образ жизни, имеет очень важное значение.

Жир синтезируется организмом не только из поступившего жира, но и из белков и углеводов. При полном исключении жира из пищи он все же образуется и в довольно значительном количестве может откладываться в организме. Основным источником образования жира в организме служат преимущественно углеводы.

СПИСОК ЛИТЕРАТУРЫ

1. В.И. Товарницкий: Молекулы и вирусы;

2. А.А. Маркосян: Физиология;

3. Н.П. Дубинин: Гинетика и человек;

4. Н.А. Лемеза: Биология в экзаменационных вопросах и ответах.

Углеводы и их роль в жизнедеятельности клетки


1. Какие вещества, относящиеся к углеводам, вам известны?
2. Какую роль играют углеводы в живом организме?

Углеводы и их классификация.

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Роль углеводов в клетке

  • 1. Клетка 3
  • 2. Состав клетки 3
  • 3. Углеводы 5
  • 4. Функции углеводов 7
  • 5. Роль углеводов в клетке 7
  • Список литературы 10
  • 1. Клетка
  • Современная клеточная теория состоит из следующих обобщений.
  • Клетка - это элементарная частица жизни. Проявление жизни возможно только на уровне не ниже клеточного.
  • Клетки всех живых существ имеют единый план строения. Он включает в себя цитоплазму с различными органеллами и мембрану. Функциональную основу любой клетки составляют белки и нуклеиновые кислоты.
  • Клетка происходит только от клетки (Р. Вирхов, 1858) в результате деления.
  • Клетки многоклеточных организмов отличаются деталями строения, что вызвано выполнением ими различных функций. Клетки, имеющие общее происхождение, строение и выполняющие одинаковые функции в организме, образуют ткань (нервная, мышечная, покровная). Ткани образуют различные органы.
  • 2. Состав клетки
  • В состав любой клетки входят более 60 элементов периодической таблицы Менделеева. По частоте встречаемости элементы можно поделить на три группы:
  • Основные элементы. Это углерод (С), водород (Н), азот (N), кислород (О). Их содержание в клетке превышает 97%. Они входят в состав всех органических веществ (белков, жиров, углеводов, нуклеиновых кислот) и составляют их основу.
  • Макроэлементы. К ним относятся железо (Fe), сера (S), кальций (Ca), калий (K), натрий (Na), фосфор (P), хлор (Cl). На долю макроэлементов приходится около 2%. Они входят в состав многих органических и неорганических веществ.
  • Микроэлементы. Имеют самое большое разнообразие (их более 50-ти), но в клетке даже взятые все вместе они не превышают 1%. Микроэлементы в чрезвычайно малых количествах входят в состав многих ферментов, гормонов или специфичных тканей, но определяют их свойства. Так, фтор (F), входит в состав зубной эмали, укрепляя ее.
  • Йод (I) участвует в строении гормона щитовидной железы тироксина, магний (Mg) входит в состав хлорофилла растительной клетки, медь (Cu) и селен (Se) встречаются в ферментах, защищающих клетки от мутаций, цинк (Zn) связан с процессами памяти.
  • Все элементы клетки входят в состав различных молекул, образуют вещества, которые делятся на два класса: неорганические и органические.
  • Органические вещества клетки представлены различными биохимическими полимерами, то есть такими молекулами, которые состоят из многочисленных повторений более простых, сходных по структуре участков (мономеров). Органическими составляющими клетки являются углеводы, жиры и жироподобные вещества, белки и аминокислоты, нуклеиновые кислоты и нуклеиновые основания.
  • К углеводам относятся органические вещества, имеющие общую химическую формулу C n (H 2 O) n . По строению углеводы делят на моносахара, олигосахара и полисахара. Моносахара представляют собой молекулы в виде одного кольца, включающего, как правило, пять или шесть атомов углерода. Пятиуглеродные сахара - рибоза, дезоксирибоза. Шестиуглеродные сахара - глюкоза, фруктоза, галактоза. Олигосахара - это результат объединения небольшого числа моносахаров (дисахара, трисахара и т.п.) наиболее распространенными являются, например, тростниковый (свекловичный) сахар - сахароза, состоящая из двух молекул глюкозы и фруктозы; солодовый сахар - мальтоза, образованная двумя молекулами глюкозы; молочный сахар - лактоза, образован молекулой галактозы и молекулой глюкозы.
  • Полисахара - крахмал, гликоген, целлюлоза, состоят из огромного количества моносахаров, связанных между собой в более или менее разветвленные цепи.
  • 3. Углеводы
  • Углеводы - органические вещества, с общей формулой Cn(H2O)m.
  • В животной клетке углеводы находятся в количествах не превышающих 5% . Наиболее богаты углеводами растительные клетки, где их содержание достигает до 90% сухой массы(картофель, семена и т.д.)
  • Углеводы делят на простые (моносахариды и дисахариды) и сложные (полисахариды).
  • Моносахариды - такие вещества, как глюкоза, пентоза, фруктоза, рибоза. дисахариды - сахар, сахароза (состоит из глюкозы и фруктозы.
    • Полисахариды - образованны многими моносахаридами. Мономерами таких полисахаридов, как крахмал, гликоген, целлюлоза является глюкоза.
    • Углеводы играют роль основного источника энергии в клетке. в процессе окисления 1 г углеводов освободждается 17,6 кДж. Крахмал у растений и гликоген у животных, откладывается в клетках, служат энергетическим резервом.
    • Углеводы - это органические соединения, в состав которых входят водород (Н), углерод (С) и кислород (О), причем количество атомов водорода в большинстве случаев вдвое превышает число атомов кислорода. Общая формула углеводов: Cn(H2O)n, где n не меньше трех. Углеводы образуются из воды (Н2О) и углекислого газа (СО2) в процессе фотосинтеза, происходящего в хлоропластах зеленых растений (у бактерий в процессе бактериального фотосинтеза или хемосинтеза). Обычно в клетке животных организмов содержится около 1 % углеводов (в клетках печени до 5 %), а в растительных клетках до 90 % (в клубнях картофеля).
    • Все углеводы подразделяют на 3 группы:
    • Моносахариды чаще содержат пять (пентозы) или шесть (гексозы) атомов углерода, столько же кислорода и вдвое больше водорода (например, глюкоза - С6Н12О6). Пентозы (рибоза и дезоксирибоза) входят в состав нуклеиновых кислот и АТФ. Гексозы (фруктоза и глюкоза) постоянно присутствуют в клетках плодов растений, придавая им сладкий вкус. Глюкоза содержится в крови и служит источником энергии для клеток и тканей животных;
    • Дисахариды объединяют в одной молекуле два моносахарида. Пищевой сахар (сахароза) состоит из молекул глюкозы и фруктозы, молочный сахар (лактоза) включает глюкозу и галактозу.
    • Все моно- и дисахариды хорошо растворимы в воде и имеют сладкий вкус.
    • Полисахариды (крахмал, клетчатка, гликоген, хитин) образованы десятками и сотнями мономерных единиц, которыми являются молекулы глюкозы. Полисахариды практически нерастворимы в воде и не обладают сладким вкусом. Основные полисахариды - крахмал (в растительных клетках) и гликоген (в клетках животных) откладываются в виде включений и служат запасными энергетическими веществами.
    • 4. Функции углеводов
    • Углеводы выполняют две основные функции: энергетическую и строительную. Например, целлюлоза образует стенки растительных клеток (клетчатка), хитин - главный структурный компонент наружного скелета членистоногих.
    • Углеводы выполняют следующие функции:
    • - они являются источником энергии (при распаде 1 г глюкозы освобождается 17,6 кДж энергии);
    • - выполняют строительную (структурную) функцию (целлюлозная оболочка в растительных клетках, хитин в скелете насекомых и в стенке клеток грибов);
    • - запасают питательные вещества (крахмал в растительных клетках, гликоген - в животных);
    • - являются составными частями ДНК, РНК и АТФ.
    • 5. Роль углеводов в клетке
    • Энергетическая. Моно - и олигосахара являются важным источником энергии для любой клетки. Расщепляясь, они выделяют энергию, которая запасается в виде молекул АТФ, которые используется во многих процессах жизнедеятельности клетки и всего организма. Конечными продуктами расщепления всех углеводов являются углекислый газ и вода.
    • Запасательная. Моно- и олигосахара благодаря своей растворимости быстро усваиваются клеткой, легко мигрируют по организму, поэтому непригодны для длительного хранения. Роль запаса энергии играют огромные нерастворимые в воде молекулы полисахаров. У растений, например, это - крахмал, а у животных и грибов - гликоген. Для использования этих запасов организм должен сначала превратить полисахара в моносахара.
    • Строительная. Подавляющее большинство растительных клеток имеют плотные стенки из целлюлозы, обеспечивающей растениям прочность, упругость и защиту от большой потери влаги.
    • Структурная. Моносахара могут соединяться с жирами, белками и другими веществами. Например, рибоза входит в состав всех молекул РНК, а дезоксирибоза - в ДНК.
    • Источниками углеводов в питании служат главным образом продукты растительного происхождения - хлеб, крупы, картофель, овощи, фрукты, ягоды. Из продуктов животного происхождения углеводы содержаться в молоке (молочный сахар). Пищевые продукты содержат различные углеводы. Крупы, картофель содержат крахмал - сложное вещество (сложный углевод), нерастворимое в воде, но расщепляющееся под действием пищеварительных соков на более простые сахара. Во фруктах, ягодах и некоторых овощах углеводы содержаться в виде различных более простых сахаров - фруктовый сахар, свекловичный сахар, тростниковый сахар, виноградный сахар (глюкоза) и др. Эти вещества растворимы в воде и хорошо усваиваются в организме. Растворимые в воде сахара быстро всасываются в кровь. Целесообразно вводить не все углеводы в виде сахаров, а основную их массу вводить в виде крахмала, которым богат, например, картофель. Это способствует постепенной доставке сахара тканям. Непосредственно в виде сахара рекомендуется вводить лишь 20-25% от общего количества углеродов, содержащихся в суточном рационе питания. В это число входит и сахар, содержащийся в сладостях, кондитерских изделиях, фруктах и ягодах.
    • Если углеводы поступают с пищей в достаточном количестве, они откладываются главным образом в печени и мышцах в виде особого животного крахмала - гликогена. В дальнейшем запас гликогена расщепляется в организме до глюкозы и, поступая в кровь и другие ткани, используются для нужд организма. При избыточном же питании углеводы переходят в организме в жир. К углеводам обычно относят и клетчатку (оболочку растительных клеток), которая мало используется организмом человека, но необходима для правильных процессов пищеварения.

    Список литературы

    1. Химия, пер. с англ., 2 изд., М., 1956; Химия углеводов, М., 1967

    2. Степаненко Б.Н., Углеводы. Успехи в изучении строения и метаболизма, М., 1968

    4. Алабин В. Г., Скрежко А. Д. Питание и здоровье. - Минск, 1994

    5. Сотник Ж.Г., Заричанская Л.А. Белки, жиры и углеводы. - М., Приор, 2000

Подобные документы

    Клетка–элементарная единица жизни на Земле. Химический состав клетки. Неорганические и органические вещества: вода, минеральные соли, белки, углеводы, кислоты. Клеточная теория строения организмов. Обмен веществ и преобразование энергии в клетке.

    реферат , добавлен 13.12.2007

    Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация , добавлен 04.04.2012

    Результат расщепления и функции белков, жиров и углеводов. Состав белков и их содержание в пищевых продуктах. Механизмы регулирования белкового и жирового обмена. Роль углеводов в организме. Соотношение белков, жиров и углеводов в полноценном рационе.

    презентация , добавлен 28.11.2013

    Специфические свойства, структура и основные функции, продукты распада жиров, белков и углеводов. Переваривание и всасывание жиров в организме. Расщепление сложных углеводов пищи. Параметры регулирования углеводного обмена. Роль печени в обмене веществ.

    курсовая работа , добавлен 12.11.2014

    Понятие и классификация углеводов, основные функции в организме. Краткая характеристика эколого-биологической роли. Гликолипиды и гликопротеины как структурно-функциональные компоненты клетки. Наследственные нарушения обмена моносахаридов и дисахаридов.

    контрольная работа , добавлен 03.12.2014

    Энергетическая, запасающая и опорно-строительная функции углеводов. Свойства моносахаридов как основного источника энергии в организме человека; глюкоза. Основные представители дисахаридов; сахароза. Полисахариды, образование крахмала, углеводный обмен.

    доклад , добавлен 30.04.2010

    Роль и значение белков, жиров и углеводов для нормального протекания всех жизненно важных процессов. Состав, структура и ключевые свойства белков, жиров и углеводов, их важнейшие задачи и функции в организме. Основные источники данных пищевых веществ.

    презентация , добавлен 11.04.2013

    Понятие, сущность, значение, источники и роль углеводов. Применение углеводов в медицине: при парентеральном питании, при диетическом питании. Сущность фруктозы. Общая характеристика химической структуры клетчатки.

    реферат , добавлен 13.12.2008

    Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

    реферат , добавлен 06.07.2010

    Биологическое значение нуклеиновых кислот. Строение ДНК, взгляд на нее с химической точки зрения. Обмен веществ и энергии в клетке. Совокупность реакций расщепления, пластический и энергетический обмены (реакции ассимиляции и диссимиляции) в клетке.

), не ограничиваются выполнением какой-то одной функции в организме человека. Помимо того, что обеспечение энергией основная функциональная роль углеводов , они так же необходимы для нормальной деятельности сердца, печени, мышц и центральной нервной системы. Являются важной составляющей в регуляции обмена белков и жиров.

Основные биологические функции углеводов, для чего они необходимы в организме

  1. Энергетическая функция.
    Главная функция углеводов в организме человека. Являются основным энергетическим источником для всех видов работ, происходящих в клетках. При расщеплении углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма и все энергетические расходы мозга (мозг поглощает около 70% глюкозы, выделяемой печенью). При окислении 1 г углеводов выделяется 17,6 кДж энергии. В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена.
  2. Пластическая (строительная) функция.
    Углеводы (рибоза, дезоксирибоза) используются для построения АДФ, АТФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.
  3. Запасающая функция.
    Углеводы запасаются (накапливаются) в скелетных мышцах (до 2%), печени и других тканях в виде гликогена. При полноценном питании в печени может накапливаться до 10% гликогена, а при неблагоприятных условиях его содержание может снижаться до 0,2% массы печени.
  4. Защитная функция.
    Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.
  5. Регуляторная функция.
    Входят в состав мембранных рецепторов гликопротеидов. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови. Клетчатка из пищи не расщепляется (переваривается) в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Группы углеводов

  • Простые (быстрые) углеводы
    Различают два вида сахаров: моносахариды и дисахариды. Моносахариды содержат одну сахарную группу, как, например, глюкоза, фруктоза или галактоза. Дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой. Быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом.
  • Сложные (медленные) углеводы
    Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К данному виду углеводов относятся, в частности, декстрины, крахмалы, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи. Постепенно повышают содержание глюкозы и имеют низкий гликемический индекс.
  • Неусваиваемые (волокнистые)
    Клетчатка (пищевые волокна), не обеспечивают организм энергией, но играет огромную роль в его жизнедеятельности. Содержится главным образом в растительных продуктах с низким или очень низким содержанием сахара. Следует заметить, что клетчатка замедляет усвоение углеводов, белков и жиров (может быть полезным при похудении). Является источником питания для полезных бактерий кишечника (микробиом)

Виды углеводов

Моносахариды

  • Глюкоза
    Моносахарид, бесцветное кристаллическое вещество сладкого вкуса, содержится практически в каждой углеводной цепочке.
  • Фруктоза
    Фруктовый сахар в свободном виде присутствует почти во всех сладких ягодах и плодах, самый сладкий из сахаров.
  • Галактоза
    Не встречается в свободной форме; в связанном с глюкозой виде он образует лактозу, молочный сахар.

Дисахариды

  • Сахароза
    Дисахарид, состоящий из комбинации фруктозы и глюкозы, имеет высокую растворимость. Попадая в кишечник, распадается на данные компоненты, которые затем всасываются в кровь.
  • Лактоза
    Молочный сахар, углевод группы дисахаридов, содержится в молоке и молочных продуктах.
  • Мальтоза
    Солодовый сахар, легко усваивается организмом человека. Образуется в результате объединения двух молекул глюкозы. Мальтоза возникает в результате расщепления крахмалов в процессе пищеварения.

Полисахариды

  • Крахмал
    Порошок белого цвета, нерастворимый в холодной воде. Крахмал является наиболее распространенным углеводом в рационе человека и содержится во многих основных продуктах питания.
  • Клетчатка
    Сложные углеводы, представляющие собой жесткие растительные структуры. Составная часть растительной пищи, которая не переваривается в организме человека, но играет огромную роль в его жизнедеятельности и пищеварении.
  • Мальтодекстрин
    Порошок белого или кремового цвета, со сладковатым вкусом, хорошо растворим в воде. Представляет собой промежуточный продукт ферментного расщепления растительного крахмала, в результате чего молекулы крахмала делятся на фрагменты – декстрины.
  • Гликоген
    Полисахарид, образованный остатками глюкозы; основной запасной углевод, нигде кроме организма не встречается. Гликоген, образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы в организме человека.

Для нормального функционирования человеческому организму необходимы фундаментальные вещества, из которых и строятся все структурные части клетки, ткани и вообще весь организм. Это такие соединения, как:

Все они очень важны. Нельзя выделить среди них более или менее значимые, ведь недостаток любого ведет организм к неминуемой гибели. Рассмотрим, что представляют собой такие соединения, как углеводы, и какую роль играют они в клетке.

Общее понятие об углеводах

С точки зрения химии углеводами называются сложные кислородсодержащие органические соединения, состав которых выражается общей формулой C n (H 2 O) m . При этом индексы должны быть либо равны, либо больше четырех.

Функции углеводов в клетке схожи для растений, животных и человека. Какие они, рассмотрим ниже. Кроме того, сами по себе данные соединения очень различны. Существует целая классификация, которая объединяет их все в одну группу и делит при этом на разные ветви в зависимости от строения и состава.

и свойства

Каково же строение молекул этого класса? Ведь именно это и будет определять, каковы функции углеводов в клетке, какую роль они будут играть в ней. С химической точки зрения все рассматриваемые вещества - это альдегидоспирты. В состав их молекулы входит альдегидная группировка -СОН, а также спиртовые функциональные группы -ОН.

Существует несколько вариантов формул, с помощью которых можно изобразить


Глядя на последние две формулы, можно спрогнозировать функции углеводов в клетке. Ведь станут понятны их свойства, а отсюда и роль.

Химические свойства, которые проявляют сахара, объясняются наличием двух разных функциональных групп. Так, например, как и углеводы способны давать качественную реакцию со свежеосажденным гидроксидом меди (II), а как альдегиды, окисляются до в результате реакции серебряного зеркала.

Классификация углеводов

Так как рассматриваемых молекул большое разнообразие, то химиками была создана единая классификация, которая объединяет все схожие соединения в определенные группы. Так, выделяют следующие типы сахаров.

  1. Простые, или моносахариды. Содержат одну субъединицу в составе. Среди них выделяют пентозы, гексозы, гептозы и прочие. Самые важные и распространенные - рибоза, галактоза, глюкоза и фруктоза.
  2. Сложные . Состоят из нескольких субъединиц. Дисахариды - из двух, олигосахариды - от 2 до 10, полисахариды - больше 10. Самые важные среди них: сахароза, мальтоза, лактоза, крахмал, целлюлоза, гликоген и прочие.

Функции углеводов в клетке и организме очень важны, поэтому значение имеют все перечисленные варианты молекул. Для каждой из них отводится своя роль. Какие же это функции, рассмотрим ниже.

Функции углеводов в клетке

Их несколько. Однако существуют те, которые можно назвать основными, определяющими, и есть второстепенные. Чтобы лучше разобраться в данном вопросе, следует все их перечислить более структурировано и понятно. Так мы выясним функции углеводов в клетке. Таблица, приведенная ниже, нам в этом поможет.

Очевидно, что переоценить значение рассматриваемых веществ сложно, так как именно они лежат в основе многих жизненно важных процессов. Рассмотрим некоторые функции углеводов в клетке более подробно.

Энергетическая функция

Одна из самых важных. Никакие продукты питания, потребляемые человеком, не способны дать ему такое количество килокалорий, как углеводы. Ведь именно 1 грамм данных веществ расщепляется с высвобождением 4,1 ккал (38,9 кДж) и 0,4 грамма воды. Такой выход способен обеспечить энергией работу всего организма.

Поэтому с уверенностью можно сказать, что углеводы в клетке выполняют функции поставщиков или источников силы, энергии, возможности к существованию, к осуществлению любого вида деятельности.

Давно замечено, что именно сладости, которые являются углеводами по большей части, способны быстро восстановить силы и придать энергии. Это касается не только физических тренировок, нагрузок, но и мыслительной деятельности. Ведь чем больше человек думает, решает, размышляет, учит и прочее, тем больше биохимических процессов происходит в его головном мозге. А для их осуществления нужна энергия. Где ее взять? Ответ вернее, продукты, которые их содержат, дадут ее.

Энергетическая функция, которую выполняют рассматриваемые соединения, позволяет не только двигаться и думать. Энергия нужна и на многие другие процессы:

  • построения структурных частей клетки;
  • газообмена;
  • пластического обмена;
  • выделения;
  • кровообращения и проч.

Все жизненно важные процессы требуют источника энергии для своего существования. Это и обеспечивают для живых существ углеводы.

Пластическая

Другое название данной функции - строительная, или структурная. Оно говорит само за себя. Углеводы принимают активное участие в построении важных макромолекул в организме, таких как:

  • АДФ и прочие.

Именно благодаря рассматриваемым нами соединениям происходит формирование гликолипидов - одних из важнейших молекул клеточных мембран. Кроме того, из целлюлозы, то есть полисахарида, построена растений. Она же - основная часть древесины.

Если же говорить о животных, то у членистоногих (ракообразных, пауков, клещей), протистов в состав клеточной мембраны входит хитин - же компонент встречается в клетках грибов.

Таким образом, углеводы в клетке выполняют функции строительного материала и позволяют формироваться многим новым структурам и распадаться старым с высвобождением энергии.

Запасающая

Данная функция очень важна. Не вся энергия, поступающая в организм с пищей, тратится сразу. Часть остается заключенной в молекулах углеводов и откладывается в виде запасных питательных веществ.

У растений это крахмал, или инулин, в клеточной стенке - целлюлоза. У человека и животных - гликоген, или животный жир. Это происходит для того, чтобы всегда был запас энергии на случай голодания организма. Так, например, верблюды запасают жир не только для получения энергии при его расщеплении, а, по большей части, для высвобождения необходимого количества воды.

Защитная функция

Наряду с описанными выше, функции углеводов в клетке живых организмов еще и защитные. В этом легко убедиться, если проанализировать качественный состав смолы и камеди, образующейся в месте ранения структуры дерева. По своей химической природе это моносахариды и их производные.

Такая вязкая жидкость не позволяет посторонним патогенным организмам проникать внутрь дерева и вредить ему. Так получается, что осуществляется выполнение защитной функции углеводов.

Также примером данной функции могут служить такие образования у растений, как шипы, колючки. Это - мертвые клетки, которые состоят преимущественно из целлюлозы. Они защищают растение от поедания животными.

Основная функция углеводов в клетке

Из тех функций, что мы перечислили, безусловно, можно выделить самую главную. Ведь все же задача каждого продукта, содержащего рассматриваемые вещества, - усвоиться, расщепиться и дать организму необходимую для жизни энергию.

Поэтому основная функция углеводов в клетке - энергетическая. Без достаточного количества жизненных сил не сможет нормально протекать ни один процесс, как внутренний, так и наружный (движение, мимика лица и прочее). А больше, чем углеводы, ни одно вещество не может дать энергетический выход. Поэтому мы и обозначаем данную роль как самую важную и значимую.

Продукты, содержащие углеводы

Еще раз обобщим. Функции углеводов в клетке следующие:

  • энергетическая;
  • структурная;
  • запасающая;
  • защитная;
  • рецепторная;
  • теплоизоляционная;
  • каталитическая и прочие.

Какие же продукты необходимо употреблять, чтобы организм получал достаточное количество этих веществ каждый день? Небольшой список, в котором собраны только наиболее богатые углеводами продукты, поможет нам в этом разобраться.

  1. Растения, клубни которых богаты крахмалом (картофель, топинамбур и другие).
  2. Крупы (рис, перловка, гречка, пшено, овес, пшеница и прочие).
  3. Хлеб и все хлебобулочные изделия.
  4. Тростниковый или - это дисахарид в чистом виде.
  5. Макароны и все их разновидности.
  6. Мед - на 80% состоит из рацемической смеси глюкозы и фруктозы.
  7. Сладости - любые кондитерские изделия, которые сладки на вкус, являются источниками углеводов.

Однако злоупотреблять перечисленными продуктами также не стоит, ведь это может привести к излишнему отложению гликогена и, как следствие, ожирению, а также сахарному диабету.



Читайте также: