Эволюция учения о локализации функций в коре больших полушарий. Учение И.П. Павлова об относительной и динамической локализации функций в коре больших полушарий. Локализация функций в коре больших полушарий. Функции лимбической системы Праксис и его расст

  • Глава 2. Анализаторы
  • 2.1. Зрительный анализатор
  • 2.1.1. Структурно-функциональная характеристика
  • 2.1.2. Механизмы, обеспечивающие ясное видение в различных условиях
  • 2.1.3. Цветовое зрение, зрительные контрасты и последовательные образы
  • 2.2. Слуховой анализатор
  • 2.2.1. Структурно-функциональная характеристика
  • 2.3. Вестибулярный и двигательный (кинестетический) анализаторы
  • 2.3.1. Вестибулярный анализатор
  • 2.3.2. Двигательный (кинестетический) анализатор
  • 2.4. Внутренние (висцеральные) анализаторы
  • 2.5. Кожные анализаторы
  • 2.5.1. Температурный анализатор
  • 2.5.2. Тактильный анализатор
  • 2.6. Вкусовой и обонятельный анализаторы
  • 2.6.1. Вкусовой анализатор
  • 2.6.2. Обонятельный анализатор
  • 2.7. Болевой анализатор
  • 2.7.1. Структурно-функциональная характеристика
  • 2.7.2. Виды боли и методы ее исследования
  • 1 _ Легкие; 2 – сердце; 3 – тонкая кишка; 4 – мочевой пузырь;
  • 2.7.3. Обезболивающая (антиноцицептивная) система
  • Глава 3. Системный механизм восприятия
  • ЧастьIii. Высшая нервная деятельность Глава 4. История. Методы исследования
  • 4.1. Развитие концепции рефлекса. Нервизм и нервный центр
  • 4.2. Развитие представлений о внд
  • 4.3. Методы исследования внд
  • Глава 5. Формы поведения организма и память
  • 5.1. Врожденные формы деятельности организма
  • 5.2. Приобретенные формы поведения (научение)
  • 5.2.1. Характеристика условных рефлексов
  • Отличия условных рефлексов от безусловных рефлексов
  • 5.2.2. Классификация условных рефлексов
  • 5.2.3. Пластичность нервной ткани
  • 5.2.4. Стадии и механизм образования условных рефлексов
  • 5.2.5. Торможение условных рефлексов
  • 5.2.6. Формы научения
  • 5.3. Память*
  • 5.3.1. Общая характеристика
  • 5.3.2. Кратковременная и промежуточная память
  • 5.3.3. Долговременная память
  • 5.3.4. Роль отдельных структур мозга в формировании памяти
  • Глава 6. Типы внд и темперамент в структуре индивидуальности
  • 6.1. Основные типы внд животных и человека
  • 6.2. Типологические варианты личности детей
  • 6.3. Основные положения по формированию типа вид и темперамента индивидуальности
  • 6.4. Влияние генотипа и среды на развитие нейрофизиологических процессов в онтогенезе
  • 6.5. Роль генома в пластических изменениях нервной ткани
  • 6.6. Роль генотипа и среды в формировании личности
  • Глава 7. Потребности, мотивации, эмоции
  • 7.1. Потребности
  • 7.2. Мотивации
  • 7.3. Эмоции (чувства)
  • Глава 8. Психическая деятельность
  • 8.1. Виды психической деятельности
  • 8.2. Электрофизиологические корреляты психической деятельности
  • 8.2.1. Психическая деятельность и электроэнцефалограмма
  • 8.2.2. Психическая деятельность и вызванные потенциалы
  • 8.3. Особенности психической деятельности человека
  • 8.3.1. Деятельность и мышление человека
  • 8.3.2. Вторая сигнальная система
  • 8.3.3. Развитие речи в онтогенезе
  • 8.3.4. Латерализация функций
  • 8.3.5. Социально-детерминированное сознание*
  • 8.3.6. Осознаваемая и подсознательная деятельность мозга
  • Глава 9. Функциональное состояние организма
  • 9.1. Понятия и нейроанатомия функционального состояния организма
  • 9.2. Бодрствование и сон. Сновидения
  • 9.2.1. Сон и сновидения, оценка глубины сна, значение сна
  • 9.2.2. Механизмы бодрствования и сна
  • 9.3. Гипноз
  • Глава 10. Организация поведенческих реакций
  • 10.1. Уровни интегративной деятельности мозга
  • 10.2. Концептуальная рефлекторная дуга
  • 10.3. Функциональная система поведенческого акта
  • 10.4. Основные структуры мозга, обеспечивающие формирование поведенческого акта
  • 10.5. Активность нейронов и поведение
  • 10.6. Механизмы управления движением
  • Приложение. Практикум по физиологии сенсорных систем и высшей нервной деятельности
  • 1. Физиология сенсорных систем*
  • Работа 1.1. Определение поля зрения
  • Границы полей зрения
  • Работа 1.2. Определение остроты зрения
  • Работа 1.3. Аккомодация глаза
  • Работа 1.4. Слепое пятно (опыт Мариотта)
  • Работа 1.5. Исследование цветового зрения
  • Работа 1.6. Определение критической частоты слияния мельканий (кчсм)
  • Работа 1.7. Стереоскопическое зрение. Диспарантность
  • Работа 1.8. Исследование слуховой чувствительности к чистым тонам у человека (тональная аудиометрия)
  • Работа 1.9. Исследование костной и воздушной проводимости звука
  • Работа 1.10. Бинауральный слух
  • Работа 1.11. Эстезиометрия кожи
  • Показатели пространственной тактильной чувствительности кожи
  • Работа 1.12. Определение порогов вкусовой чувствительности (густометрия)
  • Показатели порогов вкусовой чувствительности
  • Работа 1.13. Функциональная мобильность сосочков языка до и после приема пищи
  • Показатели функциональной мобильности вкусовых сосочков языка
  • Работа 1.14. Термоэстезиометрия кожи
  • Определение плотности расположения терморецепторов
  • Изучение функциональной мобильности холодовых рецепторов кожи
  • Показатели функциональной мобильности холодовых рецепторов кожи
  • Работа 1.15. Определение чувствительности обонятельного анализатора (ольфактометрия)
  • Пороги обоняния различных пахучих веществ
  • Работа 1.16. Изучение состояния вестибулярного анализатора с помощью функциональных проб у человека
  • Работа 1.17. Определение порогов различения
  • Пороги различения ощущения массы
  • 2. Высшая нервная деятельность
  • Работа 2.1. Выработка мигательного условного рефлекса на звонок у человека
  • Работа 2.2. Образование условного зрачкового рефлекса на звонок и на слово «звонок» у человека
  • Работа 2.3. Исследование биоэлектрической активности коры большого мозга – электроэнцефалография
  • Работа 2.4. Определение объема кратковременной слуховой памяти у человека
  • Набор цифр для исследования кратковременной памяти
  • Работа 2.5. Связь реактивностис личностными чертами – экстраверсией, интроверсией и нейротизмом
  • Работа 2.6. Роль словесных раздражителей в возникновении эмоций
  • Работа 2.7. Исследование изменений ээг и вегетативных показателей при эмоциональном напряжении человека
  • Изменения ээг и вегетативных показателей при эмоциональном напряжении человека
  • Работа 2.8. Изменение параметров вызванного потенциала (вп) на вспышку света
  • Влияние произвольного внимания на вызванные потенциалы
  • Работа 2.9. Отражение семантики зрительного образа в структуре вызванных потенциалов
  • Параметры вп при семантической нагрузке
  • Работа 2.10. Влияние цели на результат деятельности
  • Зависимость результата деятельности от поставленной цели
  • Работа 2.11. Влияние обстановочной афферентации на результат деятельности
  • Зависимость результата деятельности от обстановочной афферентации
  • Работа 2.12. Определение устойчивости и переключаемости произвольного внимания
  • Работа 2.13. Оценка трудоспособности человека при выполнении работы, требующей внимания
  • Корректурная таблица
  • Показатели функционального состояния испытуемого
  • Результаты трудовой деятельности испытуемого
  • Работа 2.14. Значение памяти и доминирующей мотивации в целенаправленной деятельности
  • Результаты суммирования цифр
  • Работа 2.15. Влияние умственного труда на функциональные показатели сердечно-сосудистой системы
  • Работа 2.16. Роль обратной афферентации в оптимизации режима деятельности оператора у компьютера
  • Работа 2.17. Автоматический анализ показателей сердечно-сосудистой системы на разных стадиях образования двигательного навыка
  • Работа 2.18. Анализ скорости обучения оператора в детерминированных средах
  • Работа 2.19. Применение компьютера для изучения кратковременной памяти
  • Рекомендуемая литература
  • Содержание
  • 2. Высшая нервная деятельность 167
  • Локализация функций в коре большого мозга

    Общая характеристика. В определенных участках коры большого мозга сосредоточены преимущественно нейроны, воспринимающие один вид раздражителя: затылочная область – свет, височная доля – звук и т. д. Однако после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются. Согласно теории И. П. Павлова в коре большого мозга имеется «ядро» анализатора (корковый конец) и «рассеянные» нейроны по всей коре. Современная концепция локализации функций базируется на принципе многофункциональности (но не равноценности) корковых полей. Свойство мультифункциональности позволяет той или иной корковой структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей, функцию (О.С. Адрианов). Степень мультифункциональности различных корковых структур неодинакова. В полях ассоциативной коры она выше. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытия афферентных возбуждений, особенно на таламическом и корковом уровнях, модулирующее влияние различных структур, например неспецифических ядер таламуса, базальных ганглиев на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения. С помощью микроэлектродной техники удалось зарегистрировать в различных областях коры большого мозга активность специфических нейронов, отвечающих на стимулы только одного вида раздражителя (только на свет, только на звук и т. п.), т. е. имеется множественное представительство функций в коре большого мозга.

    В настоящее время принято подразделение коры на сенсорные, двигательные и ассоциативные (неспецифические) зоны (области).

    Сенсорные зоны коры. Сенсорная информация поступает в проекционную кору, корковые отделы анализаторов (И.П. Павлов). Эти зоны расположены преимущественно в теменной, височной и затылочной долях. Восходящие пути в сенсорную кору поступают в основном от релейных сенсорных ядер таламуса.

    Первичные сенсорные зоны – это зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма (ядра анализаторов по И. П. Павлову). Они состоят из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

    Первичные проекционные зоны коры состоят главным образом из нейронов 4-го афферентного слоя, для которых характерна четкая топическая организация. Значительная часть этих нейронов обладает высочайшей специфичностью. Так, например, нейроны зрительных областей избирательно реагируют на определенные признаки зрительных раздражителей: одни – на оттенки цвета, другие – на направление движения, третьи – на характер линий (край, полоса, наклон линии) и т.п. Однако следует отметить, что в первичные зоны отдельных областей коры включены также нейроны мультимодального типа, реагирующие на несколько видов раздражителей. Кроме того, там же имеются нейроны, реакция которых отражает воздействие неспецифических (лимбико-ретикулярных, или модулирующих) систем.

    Вторичные сенсорные зоны расположены вокруг первичных сенсорных зон, менее локализованы, их нейроны отвечают на действие нескольких раздражителей, т.е. они полимодальны.

    Локализация сенсорных зон. Важнейшей сенсорной областью является теменная доля постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий. Эту зону обозначают как соматосенсорную область I . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата – от мышечных, суставных, сухожильных рецепторов (рис. 2).

    Рис. 2. Схема чувствительного и двигательного гомункулусов

    (по У. Пенфильду, Т. Расмуссену). Разрез полушарий во фронтальной плоскости:

    а – проекция общей чувствительности в коре постцентральной извилины; б – проекция двигательной системы в коре предцентральной извилины

    Кроме соматосенсорной области I выделяют соматосенсорную область II меньших размеров, расположенную на границе пересечения центральной борозды с верхним краем височной доли, в глубине латеральной борозды. Точность локализации частей тела здесь выражена в меньшей степени. Хорошо изученной первичной проекционной зоной является слуховая кора (поля 41, 42), которая расположена в глубине латеральной борозды (кора поперечных височных извилин Гешля). К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах.

    В затылочной доле расположена первичная зрительная область (кора части клиновидной извилины и язычковой дольки, поле 17). Здесь имеется топическое представительство рецепторов сетчатки. Каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет сравнительно большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Около поля 17 расположена кора вторичной зрительной области (поля 18 и 19). Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные и слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности, возникают более сложные зрительные образы и их опознание.

    Во вторичных зонах ведущими являются 2-й и 3-й слои нейронов, для которых основная часть информации об окружающей среде и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору, после чего инициируется (в случае необходимости) поведенческая реакция с обязательным участием двигательной коры.

    Двигательные зоны коры. Выделяют первичную и вторичную моторные зоны.

    В первичной моторной зоне (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела (см. рис. 2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Раздражение первичной моторной коры вызывает сокращение мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям конечностями, особенно пальцами рук.

    Вторичная моторная зона (поле 6) расположена как на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора), так и на медиальной поверхности, соответствующей коре верхней лобной извилины (дополнительная моторная область). Вторичная двигательная кора в функциональном плане имеет главенствующее значение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, связанные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть импульсации от базальных ганглиев и мозжечка, участвует в перекодировании информации о плане сложных движений.

    Раздражение коры поля 6 вызывает сложные координированные движения, например поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной речи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающие речевой праксис, а также музыкальный моторный центр (поле 45), обеспечивающий тональность речи, способность петь. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, от базальных ганглиев и мозжечка. Основным эфферентным выходом двигательной коры на стволовые и спинальные моторные центры являются пирамидные клетки V слоя. Основные доли коры большого мозга представлены на рис. 3.

    Рис. 3. Четыре основные доли коры головного мозга (лобная, височная, теменная и затылочная); вид сбоку. В них расположены первичная двигательная и сенсорная области, двигательные и сенсорные области более высокого порядка (второго, третьего и т.д.) и ассоциативная (неспецифичная) кора

    Ассоциативные области коры (неспецифическая, межсенсорная, межанализаторная кора) включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций, поэтому им нельзя приписывать преимущественно сенсорные или двигательные функции, нейроны этих зон обладают большими способностями к обучению. Границы этих областей обозначены недостаточно четко. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и у человека. У человека она составляет около 50% всей коры или 70 % неокортекса. Термин «ассоциативная кора» возник в связи с существовавшим представлением о том, что эти зоны за счет проходящих через них кортико-кортикальных соединений связывают двигательные зоны и одновременно служат субстратом высших психических функций. Основными ассоциативными зонами коры являются: теменно-височно-затылочная, префронтальная кора лобных долей и лимбическая ассоциативная зона.

    Нейроны ассоциативной коры являются полисенсорными (полимодальными): они отвечают, как правило, не на один (как нейроны первичных сенсорных зон), а на несколько раздражителей, т. е. один и тот же нейрон может возбуждаться при раздражении слуховых, зрительных, кожных и др. рецепторов. Полисенсорность нейронов ассоциативной коры создается кортико-кортикальными связями с разными проекционными зонами, связями с ассоциативными ядрами таламуса. В результате этого ассоциативная кора представляет собой своеобразный коллектор различных сенсорных возбуждений и участвует в интеграции сенсорной информации и в обеспечении взаимодействия сенсорных и моторных областей коры.

    Ассоциативные области занимают 2-й и 3-й клеточные слои ассоциативной коры, на которых происходит встреча мощных одномодальных, разномодальных и неспецифических афферентных потоков. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации, т. е. для оперирования значениями слов и использования их для отвлеченного мышления, для синтетического характера восприятия.

    С 1949 г. широкую известность получила гипотеза Д. Хебба, постулирующая в качестве условия синаптической модификации совпадение пресинаптической активности с разрядом пост-синаптического нейрона, поскольку не всякая активность синапса ведет к возбуждению постсинаптического нейрона. На основании гипотезы Д. Хебба можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д.Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль.

    Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга, которую часто называют лимбико-ретикулярный комплекс, или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифические системы мозга с активирующими и инактивируюшими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, голубое пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

    В настоящее время по таламокортикальным проекциям предлагают выделять три основные ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

    Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, в моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др. К гностическим функциям относится оценка пространственных отношений, например, взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса, обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»). Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкорковой извилине левого полушария, он обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

    Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса, других подкорковых ядер. Основная роль лобной ассоциативной коры сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (П. К.Анохин). Префронтальная область играет главную роль в выработке стратегии поведения. Нарушение этой функции особенно заметно, когда необходимо быстро изменить действие и когда между постановкой задачи и началом ее решения проходит некоторое время, т.е. успевают накопиться раздражители, требующие правильного включения в целостную поведенческую реакцию.

    Таламовисочная система. Некоторые ассоциативные центры, например, стереогнозиса, праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины левого полушария. Этот центр обеспечивает речевой гнозис: распознание и хранение устной речи как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения, обеспечивающий распознание и хранение образов.

    Существенную роль в формировании поведенческих актов играет биологическое качество безусловной реакции, а именно ее значение для сохранения жизни. В процессе эволюции это значение было закреплено в двух противоположных эмоциональных состояниях – положительном и отрицательном, которые у человека составляют основу его субъективных переживаний -- удовольствия и неудовольствия, радости и печали. Во всех случаях целенаправленное поведение строится в соответствии с эмоциональным состоянием, возникшим при действии раздражителя. Во время поведенческих реакций отрицательного характера напряжение вегетативных компонентов, особенно сердечно-сосудистой системы, в отдельных случаях, особенно в непрерывных так называемых конфликтных ситуациях, может достигать большой силы, что вызывает нарушение их регуляторных механизмов (вегетативные неврозы).

    В этой части книги рассмотрены основные общие вопросы аналитико-синтетической деятельности мозга, которые позволят перейти в последующих главах к изложению частных вопросов физиологии сенсорных систем и высшей нервной деятельности.

    "

    Этот вопрос крайне важен теоретически и особенно практически. Уже Гиппократу было известно, что ранения головного мозга ведут к параличам и судорогам на противоположной половине тела, а иногда сопровождаются и утратой речи.

    В 1861 г. французский анатом и хирург Брока на аутопсии трупов нескольких больных, страдавших расстройством речи в форме двигательной афазии, обнаружил глубокие изменения в pars opercularis третьей лобной извилины левого полушария или в белом веществе под этим участком коры. На основании своих наблюдений Брока установил в коре головного мозга двигательный центр речи, впоследствии названный его именем.

    В пользу функциональной специализации отдельных участков полушарий высказался и английский невропатолог Джексон (1864) на основании клинических данных. Несколько позднее (1870) немецкие исследователи Фритч и Гитциг доказали существование в коре головного мозга собаки особых участков, раздражение которых слабым электрическим током сопровождается сокращением отдельных мышечных групп. Это открытие вызвало большое число экспериментов, в основном подтвердивших факт существования определенных двигательных и чувствительных областей в коре большого мозга высших животных и человека.

    По вопросу о локализации (представительстве) функции в коре больших полушарий головного мозга конкурировали друг с другом две диаметрально противоположные точки зрения: локализационистов и антилокализа-ционистов (эквипотенциалистов).

    Локализационисты являлись сторонниками узкой локализации различных функций, как простых, так и сложных.

    Совершенно другого взгляда придерживались антилокализационисты. Они отрицали всякую локализацию функций в головном мозге. Вся кора для них была равноценной и однородной. Все ее структуры, полагали они, имеют одинаковые возможности для осуществления различных функций (эквипотенциальны).

    Проблема локализации может получить правильное разрешение только при диалектическом подходе к ней, учитывающем и целостную деятельность всего головного мозга, и различное физиологическое значение отдельных частей его. Именно таким образом подошел к проблеме локализации И. П. Павлов. В пользу локализации функций в коре убедительно говорят многочисленные опыты И. П. Павлова и его сотрудников с экстирпацией определенных участков головного мозга. Резекция у собаки затылочных долей больших полушарий (центров зрения) наносит огромный урон выработанным у нее условным рефлексам на зрительные сигналы и оставляет нетронутыми все условные рефлексы на звуковые, тактильные, обонятельные и прочие раздражения. Наоборот, резекция височных долей (центров слуха) ведет к исчезновению условных рефлексов на звуковые сигналы и не влияет на рефлексы, связанные с оптическими сигналами, и т. д. Против эквипотенциализма, в пользу представительства функции в определенных зонах больших полушарий говорят и новейшие данные электроэнцефалографии. Раздражение определенного участка тела ведет к появлению реактивных (вызванных) потенциалов в коре в «центре» этого участка.

    И. П. Павлов был убежденным сторонником локализации функций в коре больших полушарий, но только локализации относительной и динамической. Относительность локализации проявляется в том, что каждый участок коры головного мозга, являясь носителем определенной специальной функции, «центром» этой функции, ответственным за нее, участвует и во многих других функциях коры, но уже не в качестве основного звена, не в роли «центра», а наравне со многими другими областями.

    Функциональная пластичность коры, ее способность восстанавливать утраченную функцию путем установления новых сочетаний говорят не только об относительности локализации функций, но и о ее динамичности.

    В основе всякой более или менее сложной функции лежит согласованная деятельность многих областей коры головного мозга, но каждая из этих областей участвует в данной функции по-своему.

    В основе современных представлений о «системной локализации функций» лежит учение И. П. Павлова о динамическом стереотипе. Так, высшие психические функции (речь, письмо, чтение, счет, гнозис, праксис) имеют сложную организацию. Они никогда не осуществляются какими-то изолированными центрами, а всегда являются процессами, «размещенными по сложной системе зон мозговой коры» (А. Р. Лурия, 1969). Эти «функциональные системы» подвижны; иначе говоря, система средств, с помощью которых та или иная задача может быть решена, изменяется, что, конечно, не снижает значения для них хорошо изученных «закрепленных» корковых зон Брока, Вернике и др.

    Центры коры больших полушарий человека делят на симметричные, представленные в обоих полушариях, и асимметричные, имеющиеся только в одном полушарии. К последним относятся центры речи и функций, связанных с актом речи (письма, чтения и пр.), существующие только в одном полушарии: в левом - у правшей, в правом - у левшей.

    Современные представления о структурно-функциональной организации коры полушарий головного мозга исходят из классической павловской концепции анализаторов, уточненной и дополненной последующими исследованиями. Различают три типа корковых полей (Г. И. Поляков, 1969). Первичные поля (ядра анализаторов) соответствуют архитектоническим зонам коры, в которых заканчиваются сенсорные проводниковые пути (проекционные зоны). Вторичные поля (периферические отделы ядер анализаторов) располагаются вокруг первичных полей. Эти зоны связаны с рецепторами опосредовано, в них происходит более детальная обработка поступающих сигналов. Третичные, или ассоциативные, поля располагаются в зонах взаимного перекрытия корковых систем анализаторов и занимают у человека более половины всей поверхности коры. В этих зонах происходит установление меж-анализаторных связей, обеспечивающих обобщенную форму обобщенного действия (В. М. Смирнов, 1972). Поражение этих зон сопровождается нарушениями гнозиса, праксиса, речи, целенаправленного поведения.

    В настоящее время принято делить кору на сенсорные, двигательные, или моторные, и ассоциативные зоны. Такое деление было получено благодаря экспериментам на животных с удалениями различных участков коры, наблюдениями за больными, име­ющими патологический очаг в мозге, а также с помощью прямого электрического раздражения коры и периферических структуре регистрацией электрической активности в коре.

    В сенсорных зонах представлены корковые концы всех анали­заторов. Для зрительного он располагается в затылочной доле мозга (поля 17, 18, 19). В поле 17 заканчивается центральный зрительный путь, информирующий о наличии и интенсивности зрительного сигнала. Поля 18 и 19 анализируют цвет, форму, размеры и качество предмета. При поражении поля 18 больной видит, но не узнает предмета и не различает его цвета (зрительная агнозия).

    Корковый конец слухового анализатора локализуется в ви­сочной доле коры (извилина Гешля), поля 41, 42, 22. Они участвуют в восприятии и анализе слуховых раздражений, организации слу­хового контроля речи. Больной, имеющий повреждение поля 22 теряет способность понимать значение произносимых слов.

    В височной доле располагается также корковый конец вести булярного анализатора.

    Кожный анализатор, а также болевая и температурная чув ствительность проецируются на заднюю центральную извилину, в верхней части которой представлены нижние конечности, в средней - туловище, в нижней - руки и голова.

    В коре теменной доли заканчиваются пути соматической чув­ ствительности, относящиеся к речевой функции, связанной с оценкой воздействия на рецепторы кожи, веса и свойств поверх­ности, формы и размера предмета.

    Корковый конец обонятельного и вкусового анализаторов расположен в гиппокампальной извилине. При раздражении этой области возникают обонятельные галлюцинации, а ее по­вреждение приводит к аносмии (потере способности ощущать за­пахи).

    Моторные зоны находятся в лобных долях в области перед­ней центральной извилины мозга, раздражение которой вызы­вает двигательную реакцию. Кора прецентральной извилины (поле 4) представляет первичную двигательную зону. В пятом слое этого поля находятся очень крупные пирамидные клетки (гигантские клетки Беца). Лицо проецируется на нижнюю треть прецентральной извилины, рука занимает ее среднюю треть, ту­ловище и таз - верхнюю треть извилины. Двигательная зона коры для нижних конечностей находится на медиальной по­верхности полушария в области передней части парацентральной дольки.

    Премоторная область коры (поле 6) располагается кпереди от первичной двигательной зоны. Поле 6 называют вторичной мо­ торной областью. Ее раздражение вызывает вращение туловища и глаз с подниманием контралатеральной руки. Аналогичные дви­жения наблюдаются у больных во время приступа эпилепсии, ес­ли эпилептический очаг локализуется в этой области. Недавно до­казана ведущая роль поля 6 в реализации двигательных функций. Поражение поля 6 у человека вызывает резкое ограничение дви­гательной активности, с трудом выполняются сложные комплек­сы движений, страдает спонтанная речь.

    К полю 6 примыкает поле 8 (лобное глазодвигательное), раз­дражение которого сопровождается поворотом головы и глаз в сторону, противоположную раздражаемой. Стимуляция различ­ных участков двигательной коры вызывает сокращение соответ­ствующих мышц на противоположной стороне.

    Передние отделы лобной коры связывают с «творческим» мышлением. С клинической и функциональной точек зрения ин­тересной областью является нижняя лобная извилина (поле 44). В левом полушарии она связана с организацией двигательных ме­ханизмов речи. Раздражение этой области может вызвать вока­лизацию, но не членораздельную речь, а также прекращение ре­чи, если человек говорил. Поражение этой области приводит к моторной афазии - больной понимает речь, но сам говорить не может.

    К ассоциативной коре относят теменно-височно-затылочную, префронтальную и лимбическую области. Она занимает около 80% всей поверхности коры больших полушарий. Ее нейро­ны обладают мультисенсорными функциями. В ассоциативной коре происходит интеграция различной сенсорной информации и формируется программа целенаправленного поведения, ассо­циативная кора окружает каждую проекционную зону, обеспечи­вая взаимосвязь, например, между сенсорными и моторными об­ластями коры. Нейроны, расположенные в этих областях, облада­ют полисенсорностью, т.е. способностью отвечать как на сенсор­ную, так и моторную информацию.

    Теменная ассоциативная область коры больших полушарий участвует в формировании субъективного представления об ок­ружающем пространстве, о нашем теле.

    Височная область коры участвует в речевой функции посред­ством слухового контроля речи. При поражении слухового цент­ра речи больной может говорить, правильно излагать свои мысли, но не понимает чужой речи (сенсорная слуховая афазия). Эта об­ласть коры играет определенную роль в оценке пространства. По­ражение зрительного центра речи приводит к потере способнос­ти читать и писать. С височной корой связывают функцию памя­ти и сновидений.

    Лобные ассоциативные поля имеют прямое отношение к лимбическим отделам мозга, они принимают участие в формирова­нии программы сложных поведенческих актов в ответ на воздей­ствие внешней среды на основе сенсорных сигналов всех модаль­ностей.

    Особенностью ассоциативной коры является пластичность нейронов, способных к перестройкам в зависимости от поступа­ющей информации. После операции удаления какой-либо облас­ти коры в раннем детстве утраченные функции этой области пол­ностью восстанавливаются.

    Кора больших полушарий способна, в отличие от нижележа­щих структур мозга, длительно, в течение всей жизни сохранять следы поступившей информации, т.е. участвовать в механизмах долговременной памяти.

    Кора больших полушарий - регулятор вегетативных функ­ций организма («кортиколизация функций»). В ней представле­ны все безусловные рефлексы, а также внутренние органы. Без коры невозможно выработать условные рефлексы на внутрен­ние органы. При раздражении интерорецепторов методом вы­званных потенциалов, электростимуляции и разрушения опреде­ленных участков коры доказано ее влияние на деятельность раз­личных органов. Так, разрушение поясной извилины изменяет акт дыхания, функции сердечно-сосудистой системы, желудоч­но-кишечного тракта. Кора тормозит эмоции - «умейте властво­вать собой».

    Кора больших полушарий головного мозга - эволюционно наиболее молодое образование, достигшее у человека по отношению к остальной массе головного мозга наибольших величин. У человека масса коры больших полушарий составляет в среднем 78% от общей массы головного мозга. Кора больших полушарий имеет исключительно важное значение в регуляции жизнедеятельности организма, осуществлении сложных форм поведения и в становлении нервно-психических функций. Эти функции обеспечиваются не только всей массой коркового вещества, но и неограниченными возможностями ассоциативных связей между клетками коры и подкорковых образований, что создает условия для сложнейшего анализа и синтеза поступающей информации, для развития форм обучения, недоступных животным.

    Говоря о ведущей роли коры больших полушарий в нейрофизиологических процессах, не следует забывать, что этот высший отдел может нормально функционировать лишь в тесном взаимодействии с подкорковыми образованиями. Противопоставление коры и нижележащих отделов мозга в значительной степени схематично и условно. В последние годы развиваются представления о вертикальной организации функций нервной системы, о кольцевых корково-подкорковых связях.

    Клетки коркового вещества в значительно меньшей степени специализированы, чем ядра подкорковых образований. Отсюда следует, что компенсаторные возможности коры весьма высоки - функции пораженных клеток могут брать на себя другие нейроны; поражение довольно значительных участков коркового вещества может клинически проявляться очень стерто (так называемые клинические немые зоны). Отсутствие узкой специализации корковых нейронов создает условия для возникновения самых разнообразных межнейронных связей, формирования сложных «ансамблей» нейронов, регулирующих различные функции. В этом важнейшая основа способности к обучению. Теоретически возможное число связей между 14 млрд. клеток коры головного мозга настолько велико, что в течение жизни человека значительная часть их остается неиспользованной. Этим еще раз подтверждается неограниченность возможностей обучения человека.

    Несмотря на известную неспецифичность корковых клеток, определенные группы их анатомически и функционально более тесно связаны с теми или иными специализированными отделами нервной системы. Морфологическая и функциональная неоднозначность различных участков коры позволяет говорить о корковых центрах зрения, слуха, осязания и т. д., которые имеют определенную локализацию. В работах исследователей XIX века этот принцип локализации был доведен до крайности: делались попытки выявления центров воли, мышления, способности понимать искусство и т. д. В настоящее время было бы неверно говорить о корковом центре как о строго ограниченной группе клеток. Необходимо отметить, что специализация нервных звеньев формируется в процессе жизнедеятельности.

    По И. П. Павлову, мозговой центр, или корковый отдел анализатора, состоит из «ядра» и «рассеянных элементов». «Ядро» представляет собой относительно однородную в морфологическом отношении группу клеток с точной проекцией рецепторных полей. «Рассеянные элементы» находятся в окружности или в определенном отдалении от «ядра»: ими осуществляется более элементарный и менее дифференцированный анализ и синтез поступающей информации.

    Из 6 слоев клеток коры верхние слои развиты у человека наиболее мощно по сравнению с аналогичными слоями у животных и формируются в онтогенезе значительно позже нижних слоев. Нижние слои коры имеют связи с периферическими рецепторами (IV слой) и с мускулатурой (V слой) и носят название «первичных», или «проекционных», корковых зон вследствие их непосредственной связи с периферическими отделами анализатора. Над «первичными» зонами надстраиваются системы «вторичных» зон (II и III слои), в которых преобладают ассоциативные связи с другими отделами коры, поэтому они называются также проекционно-ассоциативными.

    В корковых представительствах анализаторов, таким образом, выявляются две группы клеточных зон. Такая структура обнаруживается в затылочной зоне, куда проецируются зрительные пути, в височной, где заканчиваются слуховые пути, в задней центральной извилине - корковом отделе чувствительного анализатора, в передней центральной извилине - корковом двигательном центре. Анатомическая неоднородность «первичных» и «вторичных» зон сопровождается и физиологическими различиями. Эксперименты с раздражением коры показали, что возбуждение первичных зон сенсорных отделов приводит к возникновению элементарных ощущений. Например, раздражение затылочных отделов вызывает ощущение мелькания световых точек, черточек и т. д. При раздражении вторичных зон возникают более сложные явления: обследуемый видит разнообразно оформленные предметы - людей, птиц и т. д. Можно предполагать, что именно во вторичных зонах осуществляются операции гнозиса и отчасти праксиса.

    Кроме того, в корковом веществе выделяют третичные зоны, или зоны перекрытия корковых представительств отдельных анализаторов. У человека они занимают весьма значительное место и расположены прежде всего в теменно-височно-затылочной области и в лобной зоне. Третичные зоны вступают в обширные связи с корковыми анализаторами и обеспечивают тем самым выработку сложных, интегративных реакций, среди которых у человека первое место занимают осмысленные действия. В третичных зонах, следовательно, происходят операции планирования и контроля, требующие комплексного участия разных отделов мозга.

    В раннем детском возрасте функциональные зоны коры перекрывают друг друга, границы их диффузны, и лишь в процессе практической деятельности происходит постоянная концентрация функциональных зон в очерченные, отделенные друг от друга центры. В клинике у взрослых больных наблюдаются весьма постоянные симптомокомплексы при поражении определенных участков коркового вещества и связанных с ними нервных путей

    В детском возрасте в связи с незавершенной дифференциацией функциональных зон очаговое поражение коры больших полушарий может не иметь четкого клинического проявления, что следует помнить при оценке тяжести и границ поражения мозга у детей.

    В функциональном отношении можно выделить основные интегративные уровни корковой деятельности.

    Первая сигнальная система связана с деятельностью отдельных анализаторов и осуществляет первичные этапы гнозиса и праксиса, т. е. интеграцию сигналов, поступающих по каналам отдельных анализаторов, и формирование ответных действий с учетом состояния внешней и внутренней среды, а также прошлого опыта. К этому первому уровню можно отнести зрительное восприятие предметов с концентрацией внимания на определенных его деталях, произвольные движения с активным усилением или торможением их.

    Более сложный функциональный уровень корковой деятельности объединяет системы различных анализаторов, включает в себя вторую сигнальную систем)", объединяет системы различных анализаторов, делая возможным осмысленное восприятие окружающего, отношение к окружающему миру «со знанием и пониманием». Этот уровень интеграции теснейшим образом связан с речевой деятельностью, причем понимание речи (речевой гнозис) и использование речи как средства обращения и мышления (речевой праксис) не только взаимосвязаны, но и обусловлены различными нейрофизиологическими механизмами, что имеет большое клиническое значение.

    Высший уровень интеграции формируется у человека в процессе его созревания как социального существа, в процессе овладения теми навыками и знаниями, которыми располагает общество.

    Третий этап корковой деятельности играет роль своеобразного диспетчера сложных процессов высшей нервной деятельности. Он обеспечивает целенаправленность тех или иных актов, создавая условия для наилучшего их выполнения. Это достигается путем «фильтрации» сигналов, имеющих в данный момент наибольшее значение, от сигналов второстепенных, осуществления вероятностною прогнозирования будущего и формирования перспективных задач.

    Разумеется, сложная корковая деятельность не могла бы осуществляться без участия системы хранения информации. Поэтому механизмы памяти - один из важнейших компонентов этой деятельности. В этих механизмах существенное значение имеют не только функции фиксирования информации (запоминание), но и функции получения необходимых сведений из «хранилищ» памяти (воспоминание), а также функции переброски потоков информации из блоков оперативной памяти (то, что необходимо на данный момент) в блоки долговременной памяти и наоборот. В противном случае было бы невозможно усвоение нового, так как старые навыки и знания мешали бы этому.

    Нейрофизиологические исследования последнего времени позволили установить, какие функции преимущественно свойственны определенным отделам коры больших полушарий. Еще в прошлом веке было известно, что затылочная область коры тесно связана со зрительным анализатором, височная область - со слуховым (извилины Гешля), вкусовым анализатором, передняя центральная извилина - с двигательным, задняя центральная извилина - с кожно-мышечным анализатором. Можно условно считать, что эти отделы связаны с первым типом, корковой деятельности и обеспечивают наиболее простые формы гнозиса и праксиса.

    В формировании более сложных гностико-праксических функций активное участие принимают отделы коры, лежащие в теменно-височно-затылочной области. Поражение этих участков приводит к более сложным формам расстройств. В височной доле левого полушария находится гностический центр речи Вернике. Моторный же центр речи находится несколько кпереди от нижней трети передней центральной извилины (центр Брока). Помимо центров устной речи, различают сенсорный и моторный центры письменной речи и ряд других образований, так или иначе связанных с речью. Теменно-височно-затылочная область, где замыкаются пути, идущие от различных анализаторов, имеет важнейшее значение для формирования высших психических функций. Известный нейрофизиолог и нейрохирург У. Пенфилд назвал эту область интерпретационной корой. В этой области расположены также образования, принимающие участие в механизмах памяти.

    Особое значение придается лобной области. По современным представлениям, именно этот отдел коры головного мозга принимает активное участие в организации целенаправленной деятельности, в перспективном планировании и целеустремленности, т. е. относится к третьему типу корковых функций.

    Основные центры коры больших полушарий. Лобная доля. Двигательный анализатор располагается в передней центральной извилине и парацентральной дольке (поля 4, 6 и 6а по Бродману). В средних слоях расположен анализатор кинестетических раздражений, поступающих от скелетных мышц, сухожилий, суставов и костей. В V и отчасти VI слое располагаются гигантские пирамидные клетки Беца, волокна которых формируют пирамидный путь. Передняя центральная извилина имеет определенную соматотопическую проекцию и связана с противоположной половиной тела. В верхних отделах извилины проецируются мышцы нижних конечностей, в нижних - лица. Туловище, гортань, глотка представлены в обоих полушариях (рис. 55).

    Центр поворота глаз и головы в противоположную сторону расположен в средней лобной извилине в премоторной области (поля 8, 9). Работа этого центра тесно связана с системой заднего продольного пучка, вестибулярными ядрами, образованиями стриопаллидарной системы, участвующей в регуляции торсии, а также с корковым отделом зрительного анализатора (поле 17).

    В задних отделах верхней лобной извилины представлен центр, дающий начало лобно-мостомозжечковому пути (поле 8). Эта область коры больших полушарий участвует в обеспечении координации движений, связанных с прямохождением, сохранением равновесия стоя, сидя и регулирует работу противоположного полушария мозжечка.

    Моторный центр речи (центр речевого праксиса) находится в задней части нижней лобной извилины - извилине Брока (поле 44). Центр обеспечивает анализ кинестетической импульсации от мышц речедвигательного аппарата, хранение и реализацию «образов» речевых автоматизмов, формирование устной речи, тесно связан с расположением кзади от него нижним отделом передней центральной извилины (проекционной зоной губ, языка и гортани) и с находящимся кпереди от него музыкальным моторным центром.

    Музыкальный моторный центр (поле 45) обеспечивает определенную тональность, модуляцию речи, а также способность составлять музыкальные фразы и петь.

    Центр письменной речи локализуется в заднем отделе средней лобной извилины в непосредственной близости от проекционной корковой зоны руки (поле 6). Центр обеспечивает автоматизм письма и функционально связан с центром Брока.

    Теменная доля. Центр кожного анализатора располагается в задней центральной извилине полей 1, 2, 3 и коре верхней теменной области (поля 5 и 7). В задней центральной извилине проецируется тактильная, болевая, температурная чувствительность противоположной половины тела. В верхних отделах проецируется чувствительность ноги, в нижних отделах - чувствительность лица. В полях 5 и 7 представлены элементы глубокой чувствительности. Кзади от средних отделов задней центральной извилины располагается центр стереогнозиса (поля 7,40 и отчасти 39), обеспечивающего способность узнавания предметов на ощупь.

    Кзади от верхних отделов задней центральной извилины располагается центр, обеспечивающий способность узнавания собственного тела, его частей, их пропорций и взаимоположения (поле 7).

    Центр праксиса локализуется в нижней теменной дольке слева, надкраевой извилине (поля 40 и 39). Центр обеспечивает хранение и реализацию образов двигательных автоматизмов (функции праксиса).

    В нижних отделах передней и задней центральных извилин располагается центр анализатора интероцептивных импульсов внутренних органов и сосудов. Центр имеет тесные связи с подкорковыми вегетативными образованиями.

    Височная доля. Центр слухового анализатора располагается в средней части верхней височной извилины, на поверхности, обращенной к островку (извилина Гешля, поля 41, 42, 52). Указанные образования обеспечивают проекцию улитки, а также хранение и распознавание слуховых образов.

    Центр вестибулярного анализатора (поля 20 и 21) располагается в нижних отделах наружной поверхности височной доли, является проек ционным, находится в тесной связи с нижнебазальными отделами височных долей, дающими начало затылочно-височному корково-мостомозжечковому пути.

    Рис. 55. Схема локализации функций в коре больших полушарий (А - Г). I - проекционная двигательная зона; II - центр поворота глаз и головы в противоположную сторону; III - проекционная зона чувствительности; IV - проекционная зрительная зона; проекционные гностические зоны: V - слуха; VI - обоняния, VII - вкуса, VIII - гностическая зона схемы тела; IX - зона стереогноза; X - гностическая зрительная зона; XI - гностическая зона чтения; XII - гностическая речевая зона; XIII - зона праксиса; XIV - праксическая речевая зона; XV - праксическая зона письма; XVI - зона контроля за функцией мозжечка.

    Центр обонятельного анализатора находится в филогенетически наиболее древней части коры мозга - в крючке и аммоновом роге (поле 11а, е) и обеспечивает проекционную функцию, а также хранение и распознавание обонятельных образов.

    Центр вкусового анализатора располагается в ближайшем соседстве с центром обонятельного анализатора, т. е. в крючке и аммоновом роге, но, кроме того, в самом нижнем отделе задней центральной извилины (поле 43), а также в островке. Как и обонятельный анализатор, центр обеспечивает проекционную функцию, хранение и распознавание вкусовых образов.

    Акустико-гностический сенсорный центр речи (центр Вернике) локализуется в задних отделах верхней височной извилины слева, в глубине латеральной борозды (поле 42, а также поля 22 и 37). Центр обеспечивает распознавание и хранение звуковых образов устной речи как собственной, так и чужой.

    В непосредственной близости от центра Вернике (средняя треть верхней височной извилины - поле 22) располагается центр, обеспечивающий распознавание музыкальных звуков, мелодий.

    Затылочная доля. Центр зрительного анализатора располагается в затылочной доле (поля 17, 18, 19). Поле 17 является проекционной зрительной зоной, поля 18 и 19 обеспечивают хранение и распознавание зрительных образов, зрительную ориентацию в непривычной обстановке.

    На границе височной, затылочной и теменной долей располагается центр анализатора письменной речи (поле 39), который тесно связан с центром Вернике височной доли, с центром зрительного анализатора затылочной доли, а также с центрами теменной доли. Центр чтения обеспечивает распознавание и хранение образов письменной речи.

    Данные о локализации функций получены либо в результате раздражения различных отделов коры в эксперименте, либо в результате анализа нарушений, возникающих вследствие поражения тех или иных участков коры. Оба эти подхода могут лишь указывать на участие определенных корковых зон в тех или иных механизмах, но вовсе не означают их строгой специализации, однозначной связи со строго определенными функциями.

    В неврологической клинике, помимо признаков поражения участков коры больших полушарий, встречаются симптомы раздражения отдельных ее областей. Кроме того, в детском возрасте наблюдаются явления задержанного или нарушенного развития корковых функций, что в значительной степени видоизменяет «классическую» симптоматику. Существование разных функциональных типов корковой деятельности обусловливает различную симптоматику корковых поражений. Анализ этой симптоматики позволяет выявить характер поражения и его локализацию.

    В зависимости от типов корковой деятельности можно среди корковых поражении различить нарушения гнозиса и праксиса на разных уровнях интеграции; речевые нарушения ввиду их практической важности; расстройства регуляции целенаправленности, целеустремленности нейрофизиологических функций. При каждом виде расстройств могут нарушаться и механизмы памяти, участвующей в данной функциональной системе. Кроме того, возможны более тотальные нарушения памяти. Помимо относительно локальных корковых симптомов, в клинике наблюдаются и более диффузные, проявляющиеся прежде всего в интеллектуальной недостаточности и в нарушениях поведения. Оба эти расстройства имеют особое значение в детской психиатрии, хотя по существу многие варианты таких нарушений можно считать пограничными между неврологией, психиатрией и педиатрией.

    Исследование корковых функций в детском возрасте имеет ряд отличий от исследования других отделов нервной системы. Важно установить контакт с ребенком, поддерживать непринужденный тон беседы с ним. Поскольку многие диагностические задания, предъявляемые ребенку, весьма сложны, нужно стремиться, чтобы он не только понял задание, но и заинтересовался им. Иногда при обследовании чрезмерно отвлекаемых, моторно расторможенных или умственно отсталых детей приходится прилагать много терпения и изобретательности, чтобы выявить имеющиеся отклонения. Во многих случаях анализу корковых функций ребенка помогают сообщения родителей о его поведении дома, в школе, школьная характеристика.

    При исследовании корковых функций важное значение имеет психологический эксперимент, суть которого заключается в предъявлении стандартизированных целенаправленных заданий. Отдельные психологические методики позволяют оценивать определенные стороны психической деятельности изолированно, другие - более комплексно. В их число входят и так называемые личностные тесты.

    Гнозис и его расстройства . Гнозис в буквальном смысле слова означает узнавание. Наша ориентировка в окружающем мире связана с узнаванием формы, величины, пространственной соотнесенности предметов и, наконец, с пониманием их значения, которое заключено в названии предмета. Этот запас сведений об окружающем мире складывается из анализа и синтеза потоков сенсорных импульсов и откладывается в системах памяти. Рецепторный аппарат и передача сенсорных импульсов при поражениях высших гностических механизмов сохраняются, но интерпретация этих импульсов, сличение получаемых данных с образами, хранящимися в памяти, нарушаются. В результате возникает расстройство гнозиса - агнозия, суть которой в том, что при сохранности восприятия предметов теряется ощущение их «знакомости» и окружающий мир, ранее такой знакомый в деталях, становится чуждым, непонятным, лишенным значения.

    Но гнозис нельзя себе представить как простое сопоставление, распознавание образа. Гнозис - это процесс непрерывного обновления, уточнения, конкретизации образа, хранимого в матрице памяти, под влиянием повторного сопоставления его с принимаемой информацией.

    Тотальная агнозия, при которой наблюдается полная дезориентировка, встречается нечасто. Значительно чаще нарушается гнозис в какой-либо одной анализаторной системе, причем в зависимости от степени поражения выраженность агнозии различна.

    Зрительные агнозии возникают при поражении затылочных отделов коры. Больной видит предмет, но не узнает его. Здесь могут быть различные варианты. В одних случаях больной правильно описывает внешние свойства предмета (цвет, форму, величину), однако узнать предмет не может. Например, яблоко больной описывает как «что-то круглое, розовое», не узнавая в яблоке яблоко. Но если дать больному этот предмет в руки, то он при ощупывании узнает его. Бывают случаи, когда больной не узнает знакомые лица. Некоторые больные с подобным расстройством вынуждены запоминать людей по каким-то другим признакам (одежда, родинка и т. д.). В других случаях агнозий больной узнает предмет, называет его свойства и функцию, но не может вспомнить, как он называется. Эти случаи относятся к группе речевых расстройств.

    При некоторых формах зрительных агнозий нарушаются пространственная ориентировка, зрительная память. Практически уже при неузнавании предмета можно говорить о нарушениях механизмов памяти, поскольку воспринимаемый предмет не может быть сличен с его образом в гностической матрице. Но бывают и случаи, когда при повторном предъявлении предмета больной говорит, что уже видел его, хотя узнать по-прежнему не может. При нарушениях же пространственной ориентировки больной не только не узнает знакомых ему ранее лиц, домов и т. д., но и может много раз ходить по одному и тому же месту, не подозревая об этом.

    Нередко при зрительных агнозиях страдает и узнавание букв, цифр, возникает потеря способности к чтению. Изолированный тип этого расстройства будет разобран при анализе речевой функции.

    Для исследования зрительного гнозиса используют набор предметов. Предъявляя их обследуемому, просят определить, описать их внешний вид, сравнить, какие предметы больше, какие меньше. Применяют также набор картинок, цветных, однотонных и контурных. Оценивают не только узнавание предметов, лиц, но и сюжетов. Попутно можно проверить и зрительную память: предъявить несколько картинок, затем перемешать их с ранее не показываемыми и попросить ребенка выбрать знакомые картинки. При этом учитывают и время работы, настойчивость, утомляемость.

    Следует иметь в виду, что дети узнают контурные картинки хуже, чем цветные и однотонные. Понимание сюжета связано с возрастом ребенка и степенью умственного развития. В то же время агнозии в классическом виде у детей встречаются редко вследствие незавершенной дифференциации корковых центров.

    Слуховые агнозии. Возникают при поражении височной доли в области извилины Гешля. Больной не может узнавать знакомые ранее звуки: тиканье часов, звон колокольчика, шум льющейся воды. Возможны нарушения узнавания музыкальных мелодий - амузия. В ряде случаев нарушается определение направления звука. При некоторых видах слуховой агнозии больной не в состоянии различать частоту звуков, например ударов метронома.

    Сенситивные агнозии обусловлены нарушением узнавания тактильных, болевых, температурных, проприоцептивных образов или их сочетаний. Они возникают при поражении теменной области. Сюда относится астереогноз, расстройства схемы тела. При некоторых вариантах астереогноза больной не только не может определить предмет на ощупь, но и не в состоянии определить форму предмета, особенность его поверхности. К сенситивным агнозиям относится также анозогнозия, при которой больной не осознает своего дефекта, например паралича. Фантомные ощущения можно отнести к нарушениям сенситивного гнозиса.

    При обследовании детей следует иметь в виду, что маленький ребенок не всегда может правильно показать части своего тела; это же относится и к больным, страдающим слабоумием. В подобных случаях говорить о расстройстве схемы тела, конечно, не приходится.

    Вкусовые и обонятельные агнозии встречаются редко. Кроме того, узнавание запахов очень индивидуально, во многом связано с личным опытом человека.

    Праксис и его расстройства . Под праксисом понимают целенаправленное действие. Человек усваивает в процессе жизни массу специальных двигательных актов. Многие из этих навыков, формируясь при участии высших корковых механизмов, автоматизируются и становятся такой же неотъемлемой способностью человека, как и простые движения. Но при поражении корковых механизмов, участвующих в осуществлении этих актов, возникают своеобразные двигательные расстройства - апраксии, при которых нет ни параличей, ни нарушений тонуса или координации и даже возможны простые произвольные движения, но более сложные, чисто человеческие двигательные акты нарушаются. Больной вдруг оказывается не в состоянии выполнять такие, казалось бы, простые действия, как рукопожатие, застегивание пуговиц, причесывание, зажигание спички и т. д. Апраксия возникает прежде всего при поражении теменно-височно-затылочной области доминантного полушария. При этом страдают обе половины тела. Апраксия может возникать также при поражении субдоминантного правого полушария (у правшей) и мозолистого тела, связывающего оба полушария. В этом случае апраксия определяется только слева. При апраксии страдает план действия, т. е. составление непрерывной цепочки двигательных автоматизмов. Здесь уместно привести слова К. Маркса: «Человеческое действие тем и отличается от работы «наилучшей пчелы», что прежде чем строить, человек уже построил в своей голове. В конце процесса труда получается результат, который уже перед началом этого процесса имелся идеально, т. е. в представлении работника».

    Вследствие нарушения плана действия при попытках выполнить задание больной совершает много ненужных движений. В отдельных случаях наблюдается парапраксия, когда выполняется действие, лишь отдаленно напоминающее данное задание. Иногда наблюдаются также персеверации, т. е. застревание на каких-либо действиях. Например, больного просят произвести манящее движение рукой. После выполнения этого задания предлагают погрозить пальцем, но больной по-прежнему выполняет первое действие.

    В некоторых случаях при апраксии обычные, бытовые действия сохраняются, но утрачиваются профессиональные навыки (например, умение пользоваться рубанком, отверткой и т. д.).

    По клиническим проявлениям различают несколько видов апраксии: моторную, идеаторную и конструктивную.

    Моторная апраксия. Больной не может выполнять действий по заданию и даже по подражанию. Его просят разрезать бумагу ножницами, зашнуровать ботинок, разлиновать бумагу при помощи карандаша и линейки и т. д., но больной, хотя и понимает задание, не может его выполнить, проявляя полную беспомощность. Даже если показать, как это делается, больной все равно не может повторить движение. В отдельных случаях оказывается невозможным выполнение таких простых действий, как приседание, повороты, хлопание в ладоши.

    Идеаторная апраксия. Больной не может выполнять действия по заданию с реальными и воображаемыми предметами (например, показать, как причесываются, размешивают сахар в стакане и т. д.), в то же время действия по подражанию сохранены. В некоторых случаях больной может автоматически, не задумываясь, выполнять определенные действия. Например, целенаправленно он не может застегнуть пуговицу, но выполняет это действие автоматически.

    Конструктивная апраксия. Больной может выполнять различные действия по подражанию и по устному приказу, но оказывается не в состоянии создать качественно новый двигательный акт, сложить целое из частей, например, составить из спичек определенную фигуру, сложить пирамиду и т. д.

    Некоторые варианты апраксии связаны с нарушением гнозиса. Больной не узнает предмета или у него нарушена схема тела, поэтому он не в состоянии выполнять заданий или выполняет их неуверенно и не совсем правильно.

    Для исследования праксиса предлагают ряд заданий (присесть, погрозить пальцем, причесаться и т. д.). Предъявляют также задания на действия с воображаемыми предметами (просят показать, как едят, как звонят по телефону, как пилят дрова и т. д.). Оценивают, как больной может подражать показываемым действиям.

    Для исследования гнозиса и праксиса применяют также специальные психологические методики. Среди них важное место занимают доски Сегена с углублениями разной формы, в которые нужно вложить соответствующие углублениям фигуры. Этот метод позволяет оценивать и степень умственного развития. Применяют также методику Косса: набор кубиков разной окраски. Из этих кубиков нужно сложить узор, соответствующий показанному на картинке. Более старшим детям предлагают также куб Линка: нужно из 27 по-разному окрашенных кубиков сложить куб, чтобы все его стороны были одинакового цвета. Больному показывают собранный куб, затем разрушают его и просят сложить заново.

    В этих методиках большое значение имеет то, как выполняет ребенок задание: действует ли он по методу проб и ошибок или по определенному плану.

    Рис. 56. Схема связей речевых центров и регуляции речевой деятельности.

    1 - центр письма; 2 - центр Брока; 3 - центр праксиса; 4 - центр проприоцептивного гнозиса; 5 - центр чтения; 6 - центр Вернике; 7 - центр слухового гнозиса; 8 - центр зрительного гнозиса.

    Важно помнить, что праксис формируется по мере созревания ребенка, поэтому маленькие дети не могут выполнять еще таких простых действий, как причесывание, застегивание пуговиц и т. д. Апраксии в их классическом виде, как и агнозии, встречаются преимущественно у взрослых.

    Речь и ее нарушения. В осуществлении речевой функции, а также письма и чтения принимают участие зрительный, слуховой, двигательный и кинестетический анализаторы. Большое значение имеют сохранность иннервации мышц языка, гортани, мягкого неба, состояние придаточных пазух и полости рта, играющих роль резонаторных полостей. Кроме того, важна координация дыхания и произношения звуков.

    Для нормальной речевой деятельности необходимо согласованное функционирование всего головного мозга и других отделов нервной системы. Речевые механизмы имеют сложную и многоступенчатую организацию (рис. 56).

    Речь - важнейшая функция человека, поэтому в ее осуществлении принимают участие корковые речевые зоны, расположенные в доминантном полушарии (центры Брока и Вернике), двигательные, кинетические, слуховые и зрительные области, а также проводящие афферентные и эфферентные пути, относящиеся к пирамидной и экстрапирамидной системам, анализаторам чувствительности, слуха, зрения, бульбарные отделы мозга, зрительный, глазодвигательный, лицевой, слуховой, языкоглоточный, блуждающий и подъязычные нервы.

    Сложность, многоступенчатость речевых механизмов обусловливает и разнообразие речевых расстройств. При нарушении иннервации речевого аппарата возникает дизартрия - нарушение артикуляции, которая может быть обусловлена центральным или периферическим параличом речедвигательного аппарата, поражением мозжечка, стриопаллидарной системы.

    Различают также дислалию - фонетически неправильное произношение отдельных звуков. Дислалия может носить функциональный характер и при логопедических занятиях довольно успешно устраняется. Под алалией понимают задержку речевого развития. Обычно к VA годам ребенок начинает говорить, но иногда это происходит значительно позже, хотя ребенок хорошо понимает обращенную к нему речь. Задержка речевого развития влияет и на психическое развитие, поскольку речь - важнейшее средство информации для ребенка. Однако встречаются и случаи алалии, связанные со слабоумием. Ребенок отстает в психическом развитии, и поэтому у него не формируется речь. Эти различные случаи алалии необходимо дифференцировать, так как они имеют разный прогноз.

    С развитием речевой функции в доминантном полушарии (у правшей-в левом, у левшей - в правом) формируются гностические и практические речевые центры, а впоследствии - центры письма и чтения.

    Корковые речевые расстройства представляют собой варианты агнозий и апраксий. Различают экспрессивную (моторную) и импрессивную (сенсорную) речь. Корковое нарушение моторной речи является речевой апраксией, сенсорной речи - речевой агнозией. В некоторых случаях нарушается вспоминание нужных слов, т. е. страдают механизмы памяти. Речевые агнозии и апраксий называются афазиями.

    Следует помнить, что нарушения речи могут быть следствием общей апраксий (апраксия туловища, конечностей) или оральной апраксий, при которой больной теряет навык открывать рот, надувать щеки, высовывать язык. Эти случаи не относятся к афазиям; речевая апраксия здесь возникает вторично как проявление общих праксических расстройств.

    Речевые расстройства в детском возрасте в зависимости от причин их возникновения можно разделить на следующие группы:

    I. Речевые нарушения, связанные с органическим поражением центральной нервной системы. В зависимости от уровня поражения речевой системы они делятся на:

    1) афазии-распад всех компонентов речи в результате поражения корковых речевых зон;

    2) алалии - системное недоразвитие речи вследствие поражений корковых речевых зон в доречевом периоде;

    3) дизартрии - нарушение звукопроизносительной стороны речи в результате нарушения иннервации речевой мускулатуры.

    В зависимости от локализации поражения выделяют несколько форм дизартрии.

    II. Речевые нарушения, связанные с функциональными изменениями

    центральной нервной системы:

    1) заикание;

    2) мутизм и сурдомутизм.

    III. Речевые нарушения, связанные с дефектами строения артикуляционного аппарата (механические дислалии, ринолалия).

    IV. Задержки речевого развития различного генеза (при недоношенности, соматической ослабленности, педагогической запущенности и т. д.).

    Сенсорная афазия (афазия Вернике), или словесная «глухота», возникает при поражении левой височной области (средние и задние отделы верхней височной извилины). А. Р. Лурия выделяет две формы сенсорной афазии: акустико-гностическую и акустико-мнестическую.

    Основу дефекта при акустико-гностической форме составляет нарушение слухового гнозиса. Больной не дифференцирует на слух сходные по звучанию фонемы при отсутствии глухоты (рассматривается фонематический анализ), в результате чего искажается и нарушается понимание смысла отдельных слов и предложений. Выраженность этих нарушений может быть различной. В наиболее тяжелых случаях обращенная речь вообще не воспринимается и кажется речью на иностранном языке. Эта форма возникает при поражении задней части верхней височной извилины левого полушария - поле 22 Бродмана.

    Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры)

    Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов организма и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для диагностики мест поражения в полушариях головного мозга.

    Представление о локализации функции в коре головного мозга связано прежде всего с понятием о корковом центре. Еще в 1874 г. киевский анатом В. А. Бец выступил с утверждением, что каждый участок коры отличается по строению от других участков мозга. Этим было положено начало учению о разнокачественности коры головного мозга - цитоархитектонике (цитос - клетка, архитектонес - строю). Исследованиями Бродмана, Экономо и сотрудников Московского института мозга, руководимого С. А. Саркисовым, удалось выявить более 50 различных участков коры - корковых цито-архитектонических полей, каждое из которых отличается от других по строению и расположению нервных элементов; существует также деление коры более чем на 200 полей. Из этих полей, обозначаемых номерами, составлена специальная «карта» мозговой коры человека (рис. 299).



    По И. П. Павлову, центр - это мозговой конец так называемого анализатора. Анализатор - это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтез, сочетание анализаторов друг с другом и с разными деятельностями организма. «Анализатор есть сложный нервный механизм, начинающийся наружным воспринимающим аппаратом и кончающийся в мозгу». С точки зрения И. П. Павлова, мозговой центр, или корковый конец анализатора, имеет не строго очерченные границы, а состоит из ядерной и рассеянной части - теория ядра и рассеянных элементов. «Ядро» представляет подробную и точную проекцию в коре всех элементов периферического рецептора и является необходимым для осуществления высшего анализа и синтеза. «Рассеянные элементы» находятся по периферии ядра и могут быть разбросаны далеко от него; в них осуществляется более простой и элементарный анализ и синтез. При поражении ядерной части рассеянные элементы могут до известной степени компенсировать выпавшую функцию ядра, что имеет огромное клиническое значение для восстановления данной функции.

    До И. П. Павлова в коре различалась двигательная зона, или двигательные центры, передняя центральная извилина и чувствительная зона, или чувствительные центры, расположенные позади sulcus centralis Rolandi. И. П. Павлов показал, что так называемая двигательная зона, соответствующая передней центральной извилине, есть, как и другие зоны мозговой коры, воспринимающая область (корковый конец двигательного анализатора). «Моторная область есть рецепторная область... Этим устанавливается единство всей коры полушарий».

    В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора - это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топографию корковых отделов анализаторов, т. е. главнейшие воспринимающие участки коры полушарий большого мозга.

    Прежде всего рассмотрим корковые концы внутренних анализаторов.

    1. Ядро двигательного анализатора, т. е. анализатора проприоцептивных (кинестетических) раздражений, исходящих от костей, суставов, скелетных мышц и их сухожилий, находится в передней центральной извилине (поля 4 и 6) и lobulus paracentralis. Здесь замыкаются двигательные условные рефлексы. Двигательные параличи, возникающие при поражении двигательной зоны, И. П. Павлов объясняет не повреждением двигательных эфферентных нейронов, а нарушением ядра двигательного анализатора, вследствие чего кора не воспринимает кинестетические раздражения и движения становятся невозможными. Клетки ядра двигательного анализатора заложены в средних слоях коры моторной зоны. В глубоких ее слоях (5-й, отчасти и 6-й) лежат гигантские пирамидные клетки Беца, представляющие собой эфферентные нейроны, которые И. П. Павлов рассматривает как вставочные нейроны, связывающие кору мозга с подкорковыми узлами, ядрами головных нервов и передними рогами спинного мозга, т. е. с двигательными нейронами. В передней центральной извилине тело человека, так же как и в задней, спроецировано вниз головой. При этом правая двигательная область связана с левой половиной тела и наоборот, ибо начинающиеся от нее пирамидные пути перекрещиваются частью в продолговатом, а частью в спинном мозгу. .Мышцы туловища, гортани, глотки находятся под влиянием обоих полушарий. Кроме передней центральной извилины, проприоцептивные импульсы (мышечно-суставная чувствительность) приходят и в кору задней центральной извилины.

    2. Ядро двигательного анализатора, имеющего отношение к сочетанному повороту головы и глаз в противоположную сторону, помещается в средней лобной извилине, в премоторной области (поле 8). Такой поворот происходит и при раздражении поля 17, расположенного в затылочной доле в соседстве с ядром зрительного анализатора. Так как при сокращении мышц глаза в кору мозга (двигательный анализатор, поле 8) всегда поступают не только импульсы от рецепторов этих мышц, но и импульсы от сетчатки (зрительный анализатор, поле 17), то различные зрительные раздражения всегда сочетаются с различным положением глаз, устанавливаемым сокращением мышц глазного яблока.

    3. Ядро двигательного анализатора, посредством которого происходит синтез целенаправленных комбинированных движений, помещается в левой (у правшей) нижней теменной дольке, в gyrus supramarginalis (глубокие слои поля 40). Эти координированные движения, образованные по принципу временных связей и выработанные практикой индивидуальной жизни, осуществляются через связь gyrus supramarginalis с передней центральной извилиной. При поражении поля 40 сохраняется способность к движению вообще, но появляется неспособность совершать целенаправленные движения, действовать - апраксия (праксия - действие, практика).

    4. Ядро анализатора положения и движения головы - статический анализатор (вестибулярный аппарат) -в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е. расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях ракетной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.

    5. Ядро анализатора импульсов, идущих от внутренностей и сосудов (вегетативные функции), находится в нижних отделах передней и задней центральных извилин. Центростремительные импульсы от внутренностей, сосудов, гладкой мускулатуры и желез кожи поступают в этот отдел коры, откуда исходят центробежные пути к подкорковым вегетативным центрам.

    В премоторной области (поля 6 и 8) совершается объединение вегетативных и анимальных функций. Однако не следует считать, что только эта область коры влияет на деятельность внутренностей. На них оказывает влияние состояние всей коры полушарий большого мозга.

    Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира.

    1. Ядро слухового анализатора лежит в средней части верхней височной извилины, на поверхности, обращенной к островку, - поля 41, 42, 52, где спроецирована улитка. Повреждение ведет к корковой глухоте.

    2. Ядро зрительного анализатора находится в затылочной доле - поля 17, 18, 19. На внутренней поверхности затылочной доли, по краям sulcus calcarinus, в поле 17 заканчивается зрительный путь. Здесь спроецирована сетчатка глаза, причем зрительный анализатор каждого полушария связан с полями зрения и соименными половинами сетчатки обоих глаз (например, левое полушарие связано с латеральной половиной левого глаза и медиальной правого). При поражении ядра зрительного анализатора наступает слепота. Выше поля 17 расположено поле 18, при поражении которого зрение сохраняется и только теряется зрительная память. Еще выше находится поле 19, при поражении которого утрачивается ориентация в непривычной обстановке.

    3. Ядро обонятельного анализатора помещается в филогенетически самой древней части коры мозга, в пределах основания обонятельного мозга - uncus, отчасти аммонова рога (поле 11).

    4. Ядро вкусового анализатора, по одним данным, находится в нижней части задней центральной извилины, близко к центрам мышц рта и языка, по другим - в uncus, в ближайшем соседстве с корковым концом обонятельного анализатора, чем объясняется тесная связь обонятельных и вкусовых ощущений. Установлено, что расстройство вкуса наступает при поражении поля 43.

    Анализаторы обоняния, вкуса и слуха каждого полушария связаны с рецепторами соответствующих органов обеих сторон тела.

    5. Ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в задней центральной извилине (поля 1, 2, 3) и в коре верхней теменной области (поля 5 и 7). При этом тело спроецировано в задней центральной извилине вверх ногами, так что в верхней ее части расположена проекция рецепторов нижних конечностей, а в нижней - проекция рецепторов головы. Так как у животных рецепторы общей чувствительности особенно развиты на головном конце тела, в области рта, играющего огромную роль при захватывании пищи, то и у человека сохранилось сильное развитие рецепторов рта. В связи с этим область последних занимает в коре задней центральной извилины непомерно большую зону. Вместе с тем у человека в связи с развитием руки как органа труда резко увеличились рецепторы осязания в коже кисти, которая стала и органом осязания. Соответственно этому участки коры, относящиеся к рецепторам верхней конечности, резко превосходят область нижней конечности. Поэтому, если в заднюю центральную извилину врисовать фигуру человека головой вниз (к основанию черепа) и стопами вверх (к верхнему краю полушария), то надо нарисовать громадное лицо с несообразно большим ртом, большую руку, особенно кисть с большим пальцем, резко превосходящим остальные, небольшое туловище и маленькую ножку. Каждая задняя центральная извилина связана с противоположной частью тела вследствие перекреста чувствительных проводников в спинном и частью в продолговатом мозгу.

    Частный вид кожной чувствительности - узнавание предметов на ощупь, стереогнозия (стереос - пространственный, гнозис - знание) - связан с участком коры верхней теменной дольки (поле 7) перекрестно: левое полушарие соответствует правой руке, правое - левой руке. При поражении поверхностных слоев поля 7 утрачивается способность узнавать предметы на ощупь, при закрытых глазах.

    Описанные корковые концы анализаторов расположены в определенных областях мозговой коры, которая, таким образом, представляет собой «грандиозную мозаику, грандиозную сигнализационную доску». На эту «доску» благодаря анализаторам падают сигналы из внешней и внутренней среды организма. Эти сигналы, по И. П. Павлову, и составляют первую сигнальную систему действительности, проявляющуюся в форме конкретно-наглядного мышления (ощущения и комплексы ощущений - восприятия). Первая сигнальная система имеется и у животных. Но «в развивающемся животном мире на фазе человека произошла чрезвычайная прибавка к механизмам нервной деятельности. Для животного действительность сигнализируется почти исключительно только раздражениями и следами их в больших полушариях, непосредственно приходящими в специальные клетки зрительных, слуховых и других рецепторов организма. Это то, что и мы имеем в себе как впечатления, ощущения и представления от окружающей внешней среды, как общеприродной, так и от нашей социальной, исключая слово, слышимое и видимое. Это первая сигнальная система, общая у нас с животными. Но слово составило вторую, специально нашу сигнальную систему действительности, будучи сигналом первых сигналов... именно слово сделало нас людьми».

    Таким образом, И. П. Павлов различает две корковые системы: первую и вторую сигнальные системы действительности, из которых сначала возникла первая сигнальная система (она имеется и у животных), а затем вторая - она имеется только у человека и является словесной системой. Вторая сигнальная система - это человеческое мышление, которое всегда словесно, ибо язык - это материальная оболочка мышления. Язык - это «...непосредственная действительность мысли».

    Путем весьма длительного повторения образовались временные связи между определенными сигналами (слышимые звуки и видимые знаки) и движениями губ, языка, мышц гортани, с одной стороны, и с реальными раздражителями или представлениями о них, с другой. Так на базе первой сигнальной системы возникла вторая.

    Отражая этот процесс филогенеза, у человека в онтогенезе сначала закладывается первая сигнальная система, а затем вторая. Чтобы вторая сигнальная система начала функционировать, требуется общение ребенка с другими людьми и приобретение навыков устной и письменной речи, на что уходит ряд лет. Если ребенок рождается глухим или теряет слух до того, как он начал говорить, то заложенная у него возможность устной речи не используется и ребенок остается немым, хотя звуки он произносить может. Точно так же, если человека не обучать чтению и письму, то он навсегда останется неграмотным. Все это свидетельствует о решающем влиянии окружающей среды для развития второй сигнальной системы. Последняя связана с деятельностью всей коры мозга, однако некоторые области ее играют особенную роль в осуществлении речи. Эти области коры являются ядрами анализаторов речи.

    Поэтому для понимания анатомического субстрата второй сигнальной системы необходимо, кроме знания строения коры большого мозга в целом, учитывать также корковые концы анализаторов речи (рис. 300).

    1. Так как речь явилась средством общения людей в процессе их совместной трудовой деятельности, то двигательные анализаторы речи выработались в непосредственной близости от ядра общего двигательного анализатора.

    Двигательный анализатор артикуляции речи (речедвигательный анализатор) находится в задней части нижней лобной извилины (gyrus Вгоса, поле 44), в непосредственной близости от нижнего отдела моторной зоны. В нем происходит анализ раздражений, приходящих от мускулатуры, участвующей в создании устной речи. Эта функция сопряжена с двигательным анализатором мышц губ, языка и гортани, находящимся в нижнем отделе передней центральной извилины, чем и объясняется близость речедвигательного анализатора к двигательному анализатору названных мышц. При поражении поля 44 сохраняется способность производить простейшие движения речевой мускулатуры, кричать и даже петь, но утрачивается возможность произносить слова - двигательная афазия (фазис - речь). Впереди поля 44 расположено поле 45, имеющее отношение к речи и пению. При поражении его возникает вокальная амузия - неспособность петь, составлять музыкальные фразы, а также аграмматизм - неспособность составлять из слов предложения.

    2. Так как развитие устной речи связано с органом слуха, то в непосредственной близости к звуковому анализатору выработался слуховой анализатор устной речи. Его ядро помещается в задней части верхней височной извилины, в глубине латеральной борозды (поле 42, или центр Вернике). Благодаря слуховому анализатору различные сочетания звуков воспринимаются человеком как слова, которые означают различные предметы и явления и становятся сигналами их (вторыми сигналами). С помощью его человек контролирует свою речь и понимает чужую. При поражении его сохраняется способность слышать звуки, но теряется способность понимать слова - словесная глухота, или сенсорная афазия. При поражении поля 22 (средняя треть верхней височной извилины) наступает музыкальная глухота: больной не знает мотивов, а музыкальные звуки воспринимаются им как беспорядочный шум.

    3. На более высокой ступени развития человечество научилось не только говорить, но и писать. Письменная речь требует определенных движений руки при начертании букв или других знаков, что связано с двигательным анализатором (общим). Поэтому двигательный анализатор письменной речи помещается в заднем отделе средней лобной извилины, вблизи зоны передней центральной извилины (моторная зона). Деятельность этого анализатора связана с анализатором необходимых при письме заученных движений руки (поле 40 в нижней теменной дольке). При повреждении поля 40 сохраняются все виды движения, но теряется способность тонких движений, необходимых для начертания букв, слов и других знаков (аграфия).

    4. Так как развитие письменной речи связано и с органом зрения, то в непосредственной близости к зрительному анализатору выработался зрительный анализатор письменной речи, который, естественно, связан в sulcus calcarinus, где помещается общий зрительный анализатор. Зрительный анализатор письменной речи располагается в нижней теменной дольке, с gyrus angularis (поле 39). При повреждении поля 39 сохраняется зрение, но теряется способность читать (алексия), т. е. анализировать написанные буквы и слагать из них слова и фразы.

    Все речевые анализаторы закладываются в обоих полушариях, но развиваются только с одной стороны (у правшей - слева, у левшей - справа) и функционально оказываются асимметричными. Эта связь между двигательным анализатором руки (органа труда) и речевыми анализаторами объясняется тесной связью между трудом и речью, оказавшими решающее влияние на развитие мозга.

    «...Труд, а затем и вместе с ним членораздельная речь...» привели к развитию мозга. Этой связью пользуются и в лечебных целях. При поражении речедвигательного анализатора сохраняется элементарная двигательная способность речевых мышц, но утрачивается возможность устной речи (моторная афазия). В этих случаях иногда удается восстановить речь длительным упражнением левой руки (у правшей), работа которой благоприятствует развитию зачаточного правостороннего ядра речедвигательного анализатора.

    Анализаторы устной и письменной речи воспринимают словесные сигналы (как говорит И. П. Павлов - сигналы сигналов, или вторые сигналы), что составляет вторую сигнальную систему действительности, проявляющуюся в форме абстрактного отвлеченного мышления (общие представления, понятия, умозаключения, обобщения), которое свойственно только человеку. Однако морфологическую основу второй сигнальной системы составляют не только указанные анализаторы. Так как функция речи является филогенетически наиболее молодой, то она и наименее локализована. Она присуща всей коре. Так как кора растет по периферии, то наиболее поверхностные слои коры имеют отношение ко второй сигнальной системе. Эти слои состоят из большого числа нервных клеток (100 млрд.) с короткими отростками, благодаря которым создается возможность неограниченной замыкательной функции, широких ассоциаций, что и составляет сущность деятельности второй сигнальной системы. При этом вторая сигнальная система функционирует не отдельно от первой, а в тесной связи с ней, точнее на основе ее, так как вторые сигналы могут возникнуть лишь при наличии первых. «Основные законы, установленные в работе первой сигнальной системы, должны также управлять и второй, потому что это работа все той же нервной ткани».

    Учение И. П. Павлова о двух сигнальных системах дает материалистическое объяснение психической деятельности человека и составляет естественнонаучную основу теории отражения В. И. Ленина. Согласно этой теории в нашем сознании в форме субъективных образов отражается объективный реальный мир, существующий независимо от нашего сознания.

    Ощущение - это субъективный образ объективного мира.
    В рецепторе внешнее раздражение, например световая энергия, превращается в нервный процесс, который в коре мозга становится ощущением.

    Одно и то же количество и качество энергии, в данном случае световой, у здоровых людей вызовет в коре мозга ощущение зеленого цвета (субъективный образ), а у больного дальтонизмом (благодаря иному строению сетчатки глаза) - ощущение красного цвета.

    Следовательно, световая энергия - это объективная реальность, а цвет - субъективный образ, отражение ее в нашем сознании, зависящее от устройства органа чувств (глаза).

    Значит, с точки зрения ленинской теории отражения мозг может быть охарактеризован как орган отражения действительности.

    После всего сказанного о строении центральной нервной системы можно отметить человеческие признаки строения мозга, т. е. специфические черты строения его, отличающие человека от животных (рис. 301, 302).

    1. Преобладание головного мозга над спинным. Так, у хищных (например, у кошки) головной мозг в 4 раза тяжелее спинного, у приматов (например, у макака) - в 8 раз, а у человека - в 45 раз (вес спинного мозга 30 г, головного - 1500 г). По Ранке, спинной мозг по весу составляет у млекопитающих 22-48% веса головного мозга, у гориллы - 5-6%, у человека - только 2%.

    2. Вес мозга. По абсолютному весу мозга человек не занимает первого места, так как у крупных животных мозг тяжелее, нежели у человека (1500 г): у дельфина - 1800 г, у слона - 5200 г, у кита - 7000 г. Чтобы вскрыть истинные отношения веса мозга к весу тела, в последнее время стали определять «квадратный указатель мозга», т. е. произведение абсолютного веса мозга на относительный. Этот указатель позволил выделить человека из всего животного мира.

    Так, у грызунов он равен 0,19, у хищных - 1,14, у китообразных (дельфин)- 6,27, у человекообразных обезьян - 7,35, у слонов - 9,82 и, наконец, у человека - 32,0.



    3. Преобладание плаща над мозговым стволом, т. е. нового мозга (neencephalon) над старым (paleencephalon).

    4. Наивысшее развитие лобной доли большого мозга. По Бродману, на лобные доли падает круглым счетом у низших обезьян 8-12% всей поверхности полушарий, у антропоидных обезьян- 16%, у человека - 30%.

    5. Преобладание новой коры полушарий большого мозга над старой (см. рис. 301).

    6. Преобладание коры над «подкоркой», которое у человека достигает максимальных цифр: кора составляет, по Дальгерту, 53,7% всего объема мозга, а базальные ядра - только 3,7%.

    7. Борозды и извилины. Борозды и извилины увеличивают площадь коры серого вещества, поэтому чем больше развита кора полушарий большого мозга, тем больше и складчатость мозга. Увеличение складчатости достигается большим развитием мелких борозд третьей категории, глубиной борозд и их асимметричным расположением. Ни у одного животного нет одновременно такого большого числа борозд и извилин, при этом столь глубоких и асимметричных, как у человека.

    8. Наличие второй сигнальной системы, анатомическим субстратом которой являются самые поверхностные слои мозговой коры.

    Подводя итоги изложенному, можно сказать, что специфическими чертами строения мозга человека, отличающими его от мозга самых высокоразвитых животных, являются максимальное преобладание молодых частей центральной нервной системы над старыми: головного мозга - над спинным, плаща - над стволом, новой коры - над старой, поверхностных слоев мозговой коры - над глубокими.



    Читайте также: