Варианты развития математических способностей у детей. Психология математических способностей Компоненты математических способностей

Недавно потерпев очередное поражение в математике задался вопросом: что же все таки такое математические способности? О каких именно свойствах человеческого мышления идет речь? И как их развить? Потом решил обобщить этот вопрос и сформулировать его следующим образом: что такое способности к точным наукам? что в них общего и в чем их отличие? чем отличается мышление математика от мышления физика, химика, инженера, программиста итд. В интернете не было найдено практически никаких вразумительных материалов. Единственное, что понравилось - это эта статья про то существуют ли какие-нибудь специфические способности к химии и связаны ли они со способностями к физике и математике.
Хотелось бы спросить мнение читателей. А ниже я изложу свое субъективное виденье проблемы.

Для начала попытаюсь сформулировать в чем, по моему мнению, заключается камень преткновения при освоении математики.
Как мне кажется, проблема кроется именно в доказательствах. Строгие и формальные доказательства по своей сути очень специфичны и встречаются, в основном в математике и философии (поправьте, если я и ошибаюсь). Не случайно многие великие умы были и математиками и философами одновременно: Бертран Рассел, Лейбниц, Уайтхед, Декарт список далеко не полный. В школах доказательствам почти не учат, они там встречаются в основном в геометрии.Я встречал довольно много людей одаренных технически, являющихся специалистами в своих областях, но при этом впадающих в ступор при виде математической теории и, когда нужно провести простейшее доказательство.
Следующий момент тесно связан с предыдущим. У математиков критическое мышление доходит совершенно до каких-то немыслимых высот. и всегда присутствует желание доказать и проверить на первый взгляд очевидные факты. Вспоминаю свой опыт по изучению алгебры и теории групп наверное, это не достойно человека мыслящего, но мне всегда было скучно выводить какие-то общеизвестные факты из линейной алгебры и я не мог заставить себя проделать 20 доказательств о свойствах линейных пространств, и готов поверить на слово, условию теоремы, лишь бы от меня отстали.

В моем понимании для успешного овладения математикой человеку необходимо обладать следующими навыками:
1.Индуктивные способности.
2.Дедуктивные способности.
3. Умение оперировать с большим объемом информации в уме. Хорошим тестом может служить задача Эйнштейна
Можно вспомнить о советском математике Понтрягине, который ослеп в 14 лет.
4. Усидчивость, способность быстро соображать, плюс интерес способны скрасить те усилия, которые придется приложить, но не являются необходимыми условиями и уж тем более достаточными.
5. Любовь к абсолютно отвлеченной игре ума и абстрактным понятиям
Тут можно привести в пример и топологию и теорию чисел. Еще забавную ситуацию можно наблюдать у тех, кто занимается уравнениями в частных производных сугубо с математической точки зрения и практически полностью игнорируют физическую интерпретацию
6. Для геометров желательно иметь пространственное мышление.
Что касается меня, то я определил свои слабые места. Хочу начать с теории доказательств, математической логики и дискретной математики, а также увеличить количество информации, которой я могу оперировать. Особо стоит отметить книги Д.Пойи «Математика и правдоподобные рассуждения », «Как решать задачу»
А что по вашему является ключом к успешному освоению математики и других точных наук? И как развить эти способности?

Теги: Математика, физика

Исследование математических способностей учащихся // Мониторинг образовательной системы современной школы: Учебное пособие / В. А. Антипова, Г. С. Лаптева, Д. М. Земницкий, С. Ф. Хлебунова, А. А. Кряжевских. – Ростов н/Д.: Изд – во РО ИПК и ПРО, 1999. – С. 84 – 90.

В качестве основы изучения математических способностей учащихся можно использовать специальное исследование структуры математических способностей (МС) школьников, проведённое В.А Крутецким. Под спо­собностями к изучению математики он понимает индивидуально-психологические способности, отвечающие требованиям учебной матема­тической деятельности, обуславливающие при прочих равных условиях ус­пешность творческого овладения математикой как учебном предмете. В структуре математических способностей (в дальнейшем по тексту обозна­чается - структура МС) выделяются следующие основные компоненты:

1. Способность к формализованному восприятию математического материала, осмыслению формальной структуры задачи.

2. Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

3. Способность к свёртыванию математического рассуждения или со­ответствующих действий. Способность осмыслить свёрнутые структуры.

4. Гибкость мыслительных процессов при выполнении заданий по ма­тематике.

5. Способность к быстрому и свободному переконструированию мыс­лительных процессов, их переключению в противоположном направлении.

6. Стремления к ясности, простоте, экономности и рациональности решения.

7. Математическая память (обобщённая память, проявляющаяся в структурировании математических схем, рассуждений, доказательства способов решения задач и их анализа).

Методика исследования. Основным методом исследования является анализ процесса решения учащимися экспериментальных задач констати­рующего и обучающего характера, направленный на выявление их индиви­дуально-психологических способностей, проявляющихся в математической деятельности. Составляется 3 комплекта заданий, в каждый из которых входит до 10 задач различной степени сложности и направленной диагно­стики.

Задания первого компонента направлены на определение, так назы­ваемого, уровня остаточных знаний школьников по математике; выполнение заданий учащимися позволяет сделать первые предположения об их математическом развитии (п. п. 6, 7 структуры МС).

Второй компонент содержит диагностику гибкости мышления, спо­собностей к обобщению материала, своеобразия математической памяти учащегося, позволяющих одновременно выяснить особенности восприятия учащимися условий задач с излишними и недостающими знаниями, либо с не сформулированным условием. Учёт возрастных особенностей школьни­ков производится на содержательном уровне (задачи комплекта п.п. 1 - 4 структуры МС).

Третий компонент содержит задания, позволяющие выяснить спо­собности учащегося к анализу предложенного материала, выявлению зако­номерностей, формулированию правил на основе математического анали­за, в том числе и индивидуального; здесь же дублируются задания на ис­следование гибкости мышления и контроль математической памяти уча­щихся. Замечания по содержанию те же, что и для заданий второго компо­нента (п.п. 3-7 структуры МС).

Организация исследования. Для решения вопросов, связанных с фор­мированием классов с углубленным изучением математики на основе изу­чения математических способностей школьников, в течение учебного года проводятся экспериментальные занятия с учащимися 3-х и 7-х классов. Эти занятия позволяют познакомиться с самими учащимися, получить предварительные субъективные данные о характере их способностей к обучению математике. Так, например, проводятся целенаправленные на­блюдения за поведением ученика на уроках, анализируется качество и стиль письменных работ, учитывается характеристика ученика преподава­телями начальных классов и других учебных дисциплин в основной школе, проводятся беседы со школьниками, используются специальные диагно­стические шкалы с целью выявления его индивидуальных интересов. Вы­полнение комплектов заданий осуществляется в виде экспериментальных занятий, но во время учебных часов, в обычном рабочем режиме урока. На выполнение таких диагностических заданий учителем планируется от 25 до 40 минут. Обычно учителя готовят с данной целью специальный комплект карточек с заданиями (Е.А. Задорожная).

Приведем примеры комплектов заданий для учащихся 3-х классов.

Комплект №1. Вариант I.

1. Решение уравнения:

а) Х + 467 = 1500; б) 510 - Х= 143; в) 31 Х = 341; г) у: 14 = 35.

2. Выполните действия:

а) 60 – 3 8 + 5 9; б) (35 - 6) (21-19); в) 64 - 64:(32 - 24);

г) 1000 - 57 11.

Вариант 2.

1. Решите уравнение:

а) у + 384 = 1200; б) Х - 214 = 515; в) 26 А=546; г) X: 13 = 37.

2. Выполните действия:

а) 40 + 6 8 - 4 7; б) (25-13) (32 + 7); в) 75 - 74: (41 - 4);

г) 1200 – 56 12.

Комплект № 2 . Вариант 1.

1. Решите задачу и выпишите “лишние” данные:

Когда я зашёл в магазин, у меня было 1000 руб. Я купил 5 тетрадей по 30 руб. за штуку, 1 линейку за 100 руб., 2 резинки по 40 руб., ручку и кни­гу. У меня осталось 100 руб. Сколько денег я потратил?

2. Сформулируйте и напишите вопрос, который следует поставить к предлагаемому условию задачи:

Теплоход прошёл расстояние между городами за 2 часа, а обратный путь за 3 часа? _____________________________________________________

3. Дополните условия задачи так, чтобы данных было достаточно для её решения:

4. Придумайте задачу, которую можно решить с помощью уравнения и запишите её условие: X + 17 + (17 - 6) = 34.

Вариант 2.

1. Решите задачу и выпишите “лишние” данные: На заводе работает 5647 человек, из них 2537 женщины. В сварочном цехе работает 1312 человек, а в красильном 911, в отделочном - 2499, а ос­тальные - администрация завода. Сколько на заводе работает мужчин?___________________________________________________________

математический способность восприятие крутецкий

Анализ способностей вызывает необходимость различить понятия способностей, с одной стороны, и умений и навыков - с другой. Эти категории взаимосвязаны и взаимозависимы. С.Л. Рубинштейн писал о «своеобразной диалектике между способностями и умениями». С одной стороны, в процессе приобретения знаний, умений и навыков развиваются способности. Их формирование и развитие невозможно вне этого процесса. С другой стороны - способности позволяют быстрее, легче и глубже овладеть соответствующими знаниями, умениями и навыками.

Мы считаем, что реальная тесная связь и взаимозависимость способностей и умений, навыков не «закрывает» возможности дифференцировать эти категории. Как неверно было бы разрывать их, так неправильно было бы и отождествлять их.

Как же отличать способности от умений и навыков? В основе определения понятия «способности» лежит характеристика индивидуально-психологических особенностей человека. С другой стороны, все определения навыков, умений основываются из понятия деятельности. А.Н. Леонтьев говорит об умении как о целесообразном выполнении действий. В этом различие: когда говорят о способностях, имеют в виду психологическую характеристику человека в деятельности, когда говорят об умениях (навыках) - психологическую характеристику деятельности человека.

Все это дает основание следующим образом дифференцировать указанные понятия. Под способностями понимается индивидуально-психологические особенности человека, которые благоприятствуют овладению определенной, например, математической деятельностью, овладению соответствующими навыками и умениями; под умениями и навыками понимается конкретные акты деятельности (например, математической), которые осуществляются человеком на сравнительно высоком уровне (это понятие исходит из анализа данной конкретной деятельности).

Необходимо подчеркнуть, что при анализе, как умений, навыков, так и способностей анализируется деятельность. И о наличие способностей, и о наличие умений и навыков, необходимо судить по особенностям выполнения человеком соответствующей (например, математической) деятельности.

Классификация способностей человека.

В теории способности в первую очередь различают природные, или естественные и социальные человеческие способности, имеющие общественно-историческое происхождение.

К природным способностям относятся такие элементарные способности как восприятие, память, мышление, способность к элементарным коммуникациям на уровне экспрессии.

К социальным способностям относятся общие и специальные высшие интеллектуальные способности.

Общие способности включают в себя те, которыми определяются успехи человека в самых различных видах деятельности. К ним, например, относятся умственные способности, тонкость и точность ручных движений, развитая память, совершенная речь и ряд других. Специальные способности определяют успехи человека в специфических видах деятельности, для осуществления которых необходимы задатки особого рода и их развитие. К таким способностям можно отнести музыкальные, математические, лингвистические, технические, литературные, художественно-творческие, спортивные и ряд других.

Наличие у человека общих способностей не исключает развития специальных и наоборот. Нередко общие и специальные способности сосуществуют, взаимно дополняя и обогащая друг друга.

В зависимости от деятельности, которую осуществляет человек, специальные способности могут классифицироваться как:

1) Теоретические и практические способности. Эти способности отличаются тем, что первые предопределяют склонность человека к абстрактно-теоретическим размышлениям, а вторые - к конкретным, практическим действиям. Такие способности, в отличие от общих и специальных, часто не сочетаются друг с другом, вместе встречаясь только у одаренных, разносторонне талантливых людей.

2) Способности к общению, взаимодействию с людьми, а также предметно-деятелъностные, или предметно-познавательные, способности. Они в наибольшей степени социально обусловлены. В качестве примеров способностей первого вида можно привести речь человека как средство общения (речь в ее коммуникативной функции), способности межличностного восприятия и оценивания людей, способности социально-психологической адаптации к различным ситуациям, способности входить в контакт с различными людьми, располагать их к себе, оказывать на них влияние и т.п.

3) Учебные и творческие отличаются друг от друга по мнению Р.С. Немова тем, что первые определяют успешность обучения и воспитания, усвоения человеком знаний, умений, навыков, формирования качеств личности, в то время как вторые - создание предметов материальной и духовной культуры, производство новых идей, открытий и изобретений, словом - индивидуальное творчество в различных областях человеческой деятельности. Но нам кажется, различие между двумя способностями не носит абсолютный характер. Изучая математические способности школьников, мы имеем в виду не просто обучаемость.

В нашем исследовании будет идти речь хотя и об учебных способностях школьников, но и о творческих учебных способностях, связанных с самостоятельным творческим овладением математикой в условиях школьного обучения, с самостоятельной постановкой несложных математических проблем и нахождением путей и методов для их решения, изобретением доказательств, самостоятельным выведением формул. Все это несомненно тоже проявление математического творчества. Если критерием собственно математического мышления является наличие творческого начала, то не надо забывать, что математическое творчество может быть не только объективным, но и субъективным.

Устанавливая специфические критерии, отличающие творческий мыслительный процесс от нетворческого, А. Ньюэлл, Д. Шоу и Г. Саймон отмечают следующие признаки творческого мышления:

1) продукт мыслительной деятельности обладает новизной и ценностью как в субъективном и в объективном смысле;

мыслительный процесс также отличается новизной в том смысле, что требует преобразования ранее принятых идей или отказа от них.

Творческий мыслительный процесс характеризуется наличием сильной мотивацией и устойчивости, протекая либо в течение значительного периода времени, либо с большой интенсивностью.

Способности и успешное выполнение деятельности

Определяют успешность выполнения какой-либо деятельности не отдельные способности, а лишь их удачное сочетание, именно такое, какое для данной деятельности необходимо. Практически нет такой деятельности, успех в которой определялся бы лишь одной способностью. С другой стороны, относительная слабость какой-нибудь одной способности не исключает возможности успешного выполнения той деятельности, с которой она связана, так как недостающая способность может быть компенсирована другими, входящими в комплекс, обеспечивающий данную деятельность. К примеру, слабое зрение частично компенсируется особым развитием слуха и кожной чувствительности.

Способности не только совместно определяют успешность деятельности, но и взаимодействуют, оказывая влияние друг на друга. Сочетание различных высокоразвитых способностей называют одаренностью, и эта характеристика относится к человеку, способному ко многим различным видам деятельности.

Многоплановость и разнообразие видов деятельности, в которые одновременно включается человек, выступает как одно из важнейших условий комплексного и разностороннего развития его способностей. В этой связи следует обсудить основные требования, которые предъявляются к деятельности, развивающей способности человека. Р.С. Немов в теории социального научения выделил следующие требования: творческий характер деятельности, оптимальный уровень ее трудности для исполнителя, должная мотивация и обеспечение положительного эмоционального настроя в ходе и по окончании выполнения деятельности.

Если деятельность ребенка носит творческий, нерутинный характер, то она постоянно заставляет его думать и сама по себе становится достаточно привлекательным делом как средство проверки и развития способностей. Такая деятельность всегда связана с созданием чего-либо нового, открытием для себя нового знания, обнаружения в самом себе новых возможностей. Это само по себе становится сильным и действенным стимулом к занятиям ею, к приложению необходимых усилий, направленных на преодоление возникающих трудностей. Такая деятельность укрепляет положительную самооценку, повышает уровень притязаний, порождает уверенность в себе и чувство удовлетворенности от достигнутых успехов.

Если выполняемая деятельность находится в зоне оптимальной трудности, т.е. на пределе возможностей ребенка, то она ведет за собой развитие его способностей, реализуя то, что Л.С.Выготский называл зоной потенциального развития. Деятельность, не находящаяся в пределах этой зоны, гораздо в меньшей степени ведет за собой развитие способностей. Если она слишком проста, то обеспечивает лишь реализацию уже имеющихся способностей; если же она чрезмерно сложна, то становится невыполнимой и, следовательно, также не приводит к формированию новых умений и навыков.

Поддержание интереса к деятельности через стимулирующую мотивацию означает превращение цели соответствующей деятельности в актуальную потребность человека. В русле теории социального научения особо подчеркивалось то обстоятельство, что для приобретения и закрепления у человека новых форм поведения, необходимо научение, а оно без соответствующего подкрепления не происходит. Становление и развитие способностей - это тоже результат научения, и чем сильнее подкрепление, тем быстрее будет идти развитие. Что же касается нужного эмоционального настроя, то он создается таким чередованием успехов и неудач в деятельности, развивающей способности человека, при котором за неудачами (они не исключены, если деятельность находится в зоне потенциального развития) обязательно следует эмоционально подкрепляемые успехи, причем их количество в целом является большим, чем число неудач.

Математические способности

Исследованием математических способностей занимались и такие яркие представители определенных направлений в зарубежной психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар. Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях. Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта. Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды. Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. Выделяют три важные проблемы.

Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия. Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж. Адамар, «между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера». Для того чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Основным положением отечественной психологии в этом вопросе является положение о решающем значении социальных факторов в развитии способностей, ведущей роли социального опыта человека, условий его жизни и деятельности. Психические особенности не могут быть врожденными. Это целиком относится и к способностям. Способности всегда результат развития. Они формируются и развиваются в жизни, в процессе деятельности, в процессе обучения и воспитания. В индивидах должны существовать предпосылки, внутренние условия для развития способностей. А.Н. Леонтьев и А.Р. Лурия также говорят о необходимых внутренних условиях, делающих возможным возникновение способностей. Способности не заключены в задатках. В онтогенезе они не проявляются, а формируются. Задаток не потенциальная способность (а способность не задаток в развитии), так как анатомо-физиологическая особенность ни при каких условиях не может развиваться в психическую особенность.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Отечественный психолог, исследовавший математические способности у школьников, В.А. Крутецкий дает следующее определение математическим способностям: «Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики».

Способности к математике – это один из данных природой талантов, проявляющийся уже с раннего возраста и связанный напрямую со становлением творческого потенциала, стремлением к познанию мира вокруг малыша. Но почему изучение математики так сложно дается некоторым детям и можно ли улучшить эти способности?

Мнение, что математика подвластна лишь одарённым детям, ошибочно. Математические способности, как и прочие таланты, являются результатом гармоничного развития ребенка, и начинать надо с самого раннего возраста.

В современном компьютерном мире с его цифровыми технологиями умение “дружить” с числами крайне необходимо. Много профессий основано на математике, развивающей мышление и относящейся к одному из самых важных факторов влияния на интеллектуальный рост детей. Эта точная наука, чья роль в воспитании и обучении ребенка неоспорима, развивает логику, учит последовательно мыслить, определять сходства, связи и отличия предметов и явлений, делает детский ум быстрым, внимательным и гибким.

Чтобы занятия математикой у детей пяти-семи лет были эффективными, необходим серьезный подход, и первым делом следует диагностировать их знания и умения – оценить, на каком уровне находятся у малыша логическое мышление и базовые математические понятия.

Диагностика математических способностей детей 5-7 лет по методу Белошистой А.В.

Если ребенок с математическим складом ума освоил устный счет еще в раннем возрасте, это еще не является основанием для стопроцентной уверенности в его будущем как гения математики. Навыки устного счёта – это лишь небольшой элемент точной науки и далеко не самый сложный. О наличии у ребенка способностей к математике свидетельствует особый способ мышления, которому присущи логика и абстрактное мышление, понимание схем, таблиц и формул, умение анализировать, способность видеть фигуры в пространстве (объемными).

Чтобы определить наличие у детей от младшего дошкольного (4-5 лет) до младшего школьного возраста данных способностей, существует система эффективной диагностики, созданная доктором педагогических наук Анной Витальевной Белошистой. Она основана на создании учителем или родителем определенных ситуаций, в которых ребенок должен применить то или иное умение.

Этапы диагностики:

  1. Проверка ребенка 5-6 лет на предмет владения навыками анализа и синтеза. На данном этапе можно оценить, как ребенок умеет сравнивать предметы различных форм, разделять их и обобщать по определенным признакам.
  2. Тестирование навыков образного анализа у детей в возрасте 5-6 лет.
  3. Проверка умения анализировать и синтезировать информацию, по результатам которого выявляется способность дошкольника (первоклассника) определять формы различных фигур и замечать их в сложных картинках с наложенными друг на друга фигурами.
  4. Тестирование с целью определения у ребенка понимания базовых тезисов математики – речь идет о понятиях “больше” и “меньше”, порядковом счете, форме простейших геометрических фигур.

Первые два этапа такой диагностики проводятся в начале учебного года, остальные – в конце, что дает возможность оценить динамику математического развития ребенка.

Применяемый для проверки материал должен быть понятным и интересным для детей – соответствующим возрасту, ярким и с картинками.

Диагностика математических способностей ребенка по методу Колесниковой Е.В.

Елена Владимировна создала немало учебно-методических пособий для развития математических способностей у дошкольников. Её метод тестирования детей 6 и 7 лет получил широкое распространение у учителей и родителей разных стран и соответствует требованиям ФГОС (Россия).

Благодаря методу Колесниковой можно максимально точно установить уровень основных показателей развития математических навыков детей, узнать их готовность к школе, определить слабые стороны для своевременного восполнения пробелов. Данная диагностика помогает найти пути улучшения математических способностей малыша.

Развитие математических способностей ребенка: советы родителям

С любой наукой, даже такой серьезной, как математика, малыша лучше знакомить в игровой форме – именно это будет лучшим методом обучения, который следует выбрать родителям. Прислушайтесь к словам известного ученого Альберта Эйнштейна: “Игра – это высшая форма исследования”. Ведь при помощи игры можно получить потрясающие результаты:

– познание себя и окружающего мира;

– формирование базы математических знаний;

– развитие мышления:

– становление личности;

– развитие коммуникабельности.

Применять можно различные игры:

  1. Счетные палочки. Благодаря им малыш запоминает формы предметов, развивает свое внимание, память, смекалку, формируются навыки сравнения и усидчивость.
  2. Головоломки, развивающие логику и смекалку, внимание и память. Логические задачи помогают детям научиться лучшему восприятию пространства, взвешенному планированию, простому и обратному, а также порядковому счету.
  3. Математические загадки – это отличный способ развития основных аспектов мышления: логики, анализа и синтеза, сравнения и обобщения. Во время поиска решения дети учатся самостоятельно делать выводы, справляться с трудностями и отстаивать свою точку зрения.

Развитие математических способностей через игру формирует учебный азарт, добавляет яркие эмоции, помогает малышу полюбить заинтересовавший его предмет изучения. Также стоит отметить, что игровая деятельность способствует и развитию творческих способностей.

Роль сказок в развитии математических способностей дошкольников

Детской памяти присущи свои особенности: она фиксирует яркие эмоциональные моменты, то есть ребенок запоминает ту информацию, которая связана с удивлением, радостью, восхищением. И учиться “из-под палки” – крайне неэффективный способ. В поиске результативных методов обучения взрослым следует вспомнить о таком простом и обыденном элементе, как сказка. Именно сказка является одним из первых средств знакомства малыша с окружающим миром.

Для детей сказка и реальность тесно связаны, волшебные персонажи – настоящие и живые. Благодаря сказкам развивается речь ребенка, его фантазия и смекалка; они дают понятие добра, честности, расширяют кругозор, а также дают возможность развивать и математические навыки.

К примеру, в сказке “Три медведя” малыш в ненавязчивой форме знакомится со счётом до трех, понятиями “маленький”, “средний” и “большой”. “Репка”, “Теремок”, “Козленок, который умел считать до 10”, “Волк и семеро козлят”, – в этих сказках можно научиться простому и порядковому счёту.

Обсуждая сказочных персонажей, можно предложить крохе сравнить их по ширине и высоте, “спрятать” в геометрических фигурах, подходящих по размеру или форме, что способствует развитию абстрактного мышления.

Использовать сказки можно не только дома, но и на занятиях в школе. Дети очень любят уроки, построенные на сюжетах их любимых сказок, с применением загадок, лабиринтов, пальцематики. Такие занятия станут настоящим приключением, в которых малыши будут принимать личное участие, а значит, и материал будет усвоен лучше. Главное – вовлечь детей в процесс игры и вызвать у них интерес.

Среди них особое место занимают две монографические работы - "Психология музыкальных способностей" и "Ум полководца", ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

В обеих работах Б.М.Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б.М.Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке - слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

Наиболее ярко роль общих способностей продемонстрирована в работе "Ум полководца". Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б.М.Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б.М.Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

Важное место в интеллектуальной деятельности полководца занимает память. Совсем не обязательно, чтобы она была универсальной. Гораздо важнее, чтобы она обладала избирательностью, то есть удерживала прежде всего необходимые, существенные детали. В качестве классического примера такой памяти Б.М.Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

Б.М.Теплов приходит к выводу, что "умение находить и выделять существенное и постоянная систематизация материала - вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца" (Б.М.Теплов 1985, стр.249). Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это прежде всего мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием "воля". Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

Особое место в интеллектуальной деятельности полководца Б.М.Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б.М.Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае "озарению" должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

Подтверждения положениям, проанализированным и обобщенным Б.М.Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков. Так, в психологическом этюде "Математическое творчество" Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа , большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом "озарения" необходимо следовал второй этап - тщательной сознательной работы по приведению в порядок доказательства и его проверке. А.Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия (Пуанкаре А., 1909).

Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж.Адамар, "между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера" (Адамар Ж., стр.98). Для того, чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Советский психолог, исследовавший математические способности у школьников, В.А.Крутецкий дает следующее определение математическим способностям: "Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики" (Крутецкий В.А.,1968).

Исследование математических способностей включает в себя и решение одной из важнейших проблем - поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б.М.Теплов и С.Л.Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В.С.Мерлин, 1986). Б.Г.Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами "талант" и "призвание" (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу (Э.А.Голубева 1993).

Основные принципы комплексного типологического подхода к изучению способностей и индивидуальности подробно изложены Э.А.Голубевой в соответствующей главе настоящей монографии. Одним из важнейших принципов является использование, наряду с качественным анализом, измерительных методов диагностики разных характеристик индивидуальности. Исходя из этого, мы строили экспериментальное исследование математических способностей. В нашу конкретную задачу входила диагностика свойств нервной системы, которые рассматривались в качестве задатков математических способностей, изучение личностных особенностей математически одаренных учащихся и особенностей их интеллекта. Эксперименты проводились на базе школы № 91 г. Москвы, в которой есть специализированные математические классы. В эти классы принимаются старшеклассники со всей Москвы, в основном победители районных и городских олимпиад, прошедшие дополнительное собеседование. Преподавание математики здесь ведется по более углубленной программе, дополнительно читается курс математического анализа. Исследование проводилось совместно с Е.П.Гусевой и учителем-экспериментатором В.М.Сапожниковым.

Все ученики, с которыми нам довелось работать в 8-10 классах, уже определились в своих интересах и склонностях. Дальнейшую свою учебу и работу они связывают с математикой. Их успешность по математике значительно превосходит успешность учеников нематематических классов. Но при общей высокой успешности внутри этой группы учащихся наблюдаются существенные индивидуальные различия. Исследование строилось таким образом. Мы наблюдали учащихся в процессе уроков, анализировали с помощью экспертов их контрольные работы, предлагали для решения экспериментальные задания, направленные на выявление некоторых компонентов математических способностей. Кроме того, с учащимися была проведена серия психологических и психофизиологических экспериментов. Изучались уровень развития и своеобразие интеллектуальных функций, выявлялись их личностные особенности и типологические особенности нервной системы. Всего на протяжении нескольких лет были обследованы 57 учеников с выраженными способностями к математике.

Результаты

Объективное измерение уровня интеллектуального развития при помощи теста Векслера у математически одаренных ребят показало, что большинство из них имеет очень высокий уровень общего интеллекта. Цифровые значения общего интеллекта многих учащихся, обследованных нами, превышали 130 баллов. Такой величины значения по некоторым нормативным классификациям обнаруживаются лишь у 2,2 населения. Следует также отметить, что в подавляющем большинстве случаев мы наблюдали преобладание вербального интеллекта над невербальным. Сам по себе факт наличия высокоразвитого общего и вербального интеллекта у детей с выраженными математическими способностями не является неожиданным. Многие исследователи математических способностей отмечали, что высокая степень развития словесно-логических функций является необходимым условием для математических способностей. Нас в данном случае интересовала не только количественная характеристика интеллекта, но и то, как она связана с психофизиологическими, природными особенностями учащихся. Индивидуальные особенности нервной системы диагностировались с помощью электроэнцефалографической методики. В качестве показателей свойств нервной системы были использованы фоновые и реактивные характеристики электроэнцефалограммы, запись которой производилась на 17-ти канальном энцефалографе. По этим показателям проводилась диагностика силы, лабильности и активированности нервной системы.

Мы установили, используя статистические методы анализа, что более высокий уровень вербального и общего интеллекта в этой выборке имели обладатели более сильной нервной системы. Они же имели и более высокие оценки успеваемости по предметам естественного и гуманитарного циклов. По данным других исследователей, полученным на подростках-старшеклассниках общеобразовательных школ, более высокий уровень интеллекта и лучшую успеваемость имели обладатели слабой нервной системы (Голубева Э.А. с соавт. 1974, Кадыров Б.Р. 1977). Причину такого расхождения следует, вероятно, искать прежде всего в характере самой учебной деятельности. Учащиеся математических классов испытывают значительно большие учебные нагрузки, по сравнению с учениками обычных классов. С ними проводятся дополнительные факультативы, кроме того, помимо обязательных домашних и классных заданий, они решают множество заданий, связанных с подготовкой в высшие учебные заведения. Интересы этих ребят смещены в сторону повышенной постоянной умственной нагрузки. Такие условия деятельности предъявляют повышенные требования к выносливости, работоспособности, а поскольку главным, определяющим признаком свойства силы нервной системы является способность выдерживать длительное возбуждение, не входя в состояние запредельного торможения, то видимо поэтому наибольшую результативность демонстрируют те учащиеся, которые обладают такими характеристиками нервной системы, как выносливость, работоспособность.

В.А.Крутецкий, изучая математическую деятельность способных к математике учеников, обращал внимание на их характерную особенность - способность к длительному поддержанию напряжения, когда ученик может долго и сосредоточенно заниматься, не обнаруживая усталости. Эти наблюдения позволили ему предположить, что такое свойство, как сила нервной системы, может являться одной из природных предпосылок, благоприятствующих развитию математических способностей. Полученные нами соотношения отчасти подтверждают это предположение. Почему лишь отчасти? Пониженная утомляемость в процессе занятий математикой отмечалась многими исследователями у способных к математике учеников по сравнению с неспособными к ней. Мы же обследовали выборку, которая состояла только из способных учащихся. Однако, среди них были не только обладатели сильной нервной системы, но и те, кто характеризовались как обладатели слабой нервной системы. Это означает, что не только высокая общая работоспособность, являющаяся благоприятной природной основой для успешности в данном виде деятельности, может обеспечивать развитие математических способностей.

Анализ личностных особенностей показал, что в целом для группы учащихся с более слабой нервной системы оказались более характерны такие черты личности как разумность, рассудительность, упорство (фактор J+), а также независимость, самостоятельность (фактор Q2+). Лица с высокими оценками по фактору J уделяют много внимания планированию поведения, анализируют свои ошибки, проявляя при этом "осторожный индивидуализм". Высокие оценки по фактору Q2 имеют люди, склонные к самостоятельному принятию решений, способные нести за них ответственность. Этот фактор обозначается как "мыслящая интроверсия". Вероятно, обладатели слабой нервной системы достигают успешности в данном виде деятельности в том числе за счет формирования таких качеств, как планирование действий, самостоятельность.

Можно также предположить, что разные полюса данного свойства нервной системы могут быть связаны с разными компонентами математических способностей. Так известно, что свойство слабости нервной системы характеризуется повышенной чувствительностью. Именно она может лежать в основе способности интуитивного, внезапного постижения истины, "озарения" или догадки, что является одним из важных компонентов математических способностей. И хотя это только предположение, но его подтверждение можно найти в конкретных примерах среди математически одаренных учеников. Приведем только два самых ярких таких примера. Дима на основании результатов объективной психофизиологической диагностики может быть отнесен к представителям сильного типа нервной системы. Он - "звезда первой величины" в математическом классе. Важно отметить то, что блестящих успехов он достигает без каких-либо видимых усилий, с легкостью. Никогда не жалуется на усталость. Уроки, занятия математикой являются для него необходимой постоянной умственной гимнастикой. Особое предпочтение отдается решению нестандартных, сложных задач, требующих напряжения мысли, глубокого анализа, строгой логический последовательности. Дима не допускает неточностей в изложении материала. Даже, если учитель при объяснении делает логические пропуски, Дима обязательно обратит на это внимание. Его отличает высокая интеллектуальная культура. Это подтверждается и результатами тестирования. У Димы самый высокий в обследованной группе показатель общего интеллекта - 149 усл.ед.

Антон - один из самых ярких представителей слабого типа нервной системы, которого нам довелось наблюдать среди математически одаренных ребят. Он очень быстро утомляется на уроке, не в состоянии долго и сосредоточенно работать, часто оставляет одни дела, чтобы без достаточного обдумывания взяться за другие. Случается, что он отказывается от решения задачи, если предвидит, что оно потребует больших усилий. Однако, несмотря на эти особенности, учителя очень высоко оценивают его математические способности. Дело в том, что он обладает прекрасной математической интуицией. Часто бывает, что он первым решает сложнейшие задания, выдавая конечный результат и опуская при этом все промежуточные этапы решения. Для него характерна способность к "озарению". Он не затрудняет себя объяснением, почему выбрано именно такое решение, но на проверку оно оказывается оптимальным и оригинальным.

Математические способности очень сложны и многогранны по своей структуре. И тем не менее выделяются как бы два основных типа людей с их проявлением - это "геометры" и "аналитики". В истории математики яркими примерами этого могут являться такие имена, как Пифагор и Евклид (крупнейшие геометры), Ковалевская и Клейн (аналитики, создатели теории функций). В основе такого деления лежат прежде всего индивидуальные особенности восприятия действительности, в том числе и математического материала. Оно определяется не предметом, над которым работает математик: аналитики и в геометрии остаются аналитиками, тогда как геометры любую математическую реальность предпочитают воспринимать образно. В этой связи уместно привести высказывание А.Пуанкаре: "Отнюдь не обсуждаемый ими вопрос заставляет их использовать тот или другой метод. Если часто об одних говорят что они аналитики, а других называют геометрами, то это не мешает тому, что первые остаются аналитиками, даже когда занимаются вопросами геометрии, в то время как другие являются геометрами, даже если занимаются чистым анализом." (цит. по Ж.Адамару, стр.102).

В школьной практике при работе с одаренными учащимися эти различия проявляются не только в разной успешности овладения разными разделами математики, но и в предпочтительном отношении к принципам решения задач. Одни ученики любые задачи стремятся решить с помощью формул, логического рассуждения, другие по возможности используют пространственные представления. Причем эти различия являются весьма устойчивыми. Конечно, среди учеников встречаются и такие, у которых наблюдается определенное равновесие этих характеристик. Они одинаково ровно овладевают всеми разделами математики, используя при этом разные принципы подхода к решению разных задач. Индивидуальные различия между учащимися в подходах к решению задач и методах их решения были нами выявлены не только благодаря наблюдению за учащимися при работе на уроках, но и экспериментальным путем. Для анализа отдельных компонентов математических способностей учителем-экспериментатором В.М.Сапожниковым была разработана серия специальных экспериментальных задач. Анализ результатов решения задач этой серии позволил получить объективное представление о характере мыслительной деятельности школьников и о соотношении образного и аналитического компонентов математического мышления.

Были выявлены учащиеся, которые лучше справлялись с решением алгебраических задач, а также те, кто лучше решал геометрические задачи. Эксперимент показал, что среди учащихся есть представители аналитического типа математического мышления, которые характеризуются явным преобладанием вербально-логического компонента. У них нет потребности в наглядных схемах, они предпочитают оперировать знаковыми символами. Мышление учащихся, оказывающих предпочтение геометрическим заданиям, характеризуются большей выраженностью наглядно-образного компонента. Эти учащиеся испытывают потребность в наглядном представлении и интерпретации в выражении математических отношений и зависимостей.

Из общего числа математически одаренных учеников, принявших участие в экспериментах, были выделены самые яркие "аналитики" и "геометры", составившие две крайние группы. В группу "аналитиков" вошли 11 человек, наиболее ярких представителей вербально-логического типа мышления. Группа "геометров" состояла из 5 человек, с ярким наглядно-образным типом мышления. Тот факт, что в группу ярких представителей "геометров" удалось отобрать значительно меньше учеников, можно объяснить, на наш взгляд, следующим обстоятельством. При проведении математических конкурсов и олимпиад недостаточно учитывается роль наглядно-образных компонентов мышления. В конкурсных заданиях удельный вес задач по геометрии невысок - из 4-5 заданий в лучшем случае одно направлено на выявление пространственных представлений у учащихся. Тем самым при отборе как бы "отсекаются" потенциально способные математики-геометры с ярким наглядно-образным типом мышления. Дальнейший анализ проводился с использованием статистического метода сравнения групповых различий (t-критерий Стьюдента) по всем, имевшимся в нашем распоряжении психофизиологическим и психологическим показателям.

Известно, что типологическая концепция И.П.Павлова помимо физиологической теории свойств нервной системы включала в себя классификацию специально человеческих типов высшей нервной деятельности, различающихся по соотношению сигнальных систем. Это - "художники", с преобладанием первой сигнальной системы, "мыслители", с преобладанием второй сигнальной системы, и средний тип, с равновесием обеих систем. Для "мыслителей" наиболее характерным является абстрактно-логический способ переработки информации, тогда как "художники" обладают ярким образным целостным восприятием действительности. Безусловно, эти различия не носят абсолютный характер, а отражают лишь преимущественные формы реагирования. Те же принципы лежат в основе различий между "аналитиками" и "геометрами". Первые предпочитают аналитические способы решения любых математических задач, то есть по типу приближаются к "мыслителям". "Геометры" стремятся вычленить в задачах образные компоненты, тем самым действуют так, как характерно для "художников".

В последнее время появился ряд работ, в которых предпринимались попытки объединить учение об основных свойствах нервной системы с представлениями о специально человеческих типах - "художниках" и "мыслителях". Установлено, что к "художественному" типу тяготеют обладатели сильной, лабильной и активированной нервной системы, а к "мыслительному" - слабой, инертной и инактивированной нервной системы (Печенков В.В., 1989). В нашей работе из показателей различных свойств нервной системы, наиболее информативной психофизиологической характеристикой при диагностике типов математического мышления оказалась характеристика свойства силы-слабости нервной системы. В группу "аналитиков" вошли обладатели относительно более слабой нервной системы, по сравнению с группой "геометров". То есть, выявленные нами различия между группами по свойству силы-слабости нервной системы оказались в русле ранее полученных результатов. По двум другим свойствам нервной системы (лабильности, активированности) статистически значимых различий установлено нами не было, при том что наметившиеся тенденции не противоречат исходным предположениям.

Проведен также сравнительный анализ результатов диагностики личностных особенностей, полученных с помощью вопросника Кэттелла. Статистически значимые различия между группами были установлены по двум факторам - Н и J. По фактору Н группу "аналитиков" можно в целом характеризовать как относительно более сдержанную, с ограниченным кругом интересов (Н-). Обычно люди с низкими показателями по этому фактору замкнуты, не стремятся к дополнительным контактам с людьми. Группа "геометров" имеет по этому личностному фактору большие величины (Н+) и отличается по нему определенной беззаботностью, общительностью. Такие люди не испытывают трудностей в общении, много и охотно идут на контакты, не теряются в неожиданных обстоятельствах. Они артистичны, способны выдерживать значительные эмоциональные нагрузки. По фактору J, который в целом характеризует такую черту личности, как индивидуализм, группа "аналитиков" имеет высокие среднегрупповые значения. Это означает, что им свойственны разумность, рассудительность, упорство. Люди, имеющие высокий вес по этому фактору, уделяют много внимания планированию своего поведения, при этом оставаясь замкнутыми и действуя индивидуально.

В противовес им, ребята, входящие в группу "геометров", энергичны, экспрессивны. Они любят совместные действия, готовы включиться в групповые интересы и проявить при этом свою активность. Наметившиеся различия показывают, что исследуемые группы математически одаренных учащихся наиболее расходятся по двум факторам, которые, с одной стороны, характеризуют определенную эмоциональную направленность (сдержанность, рассудительность - беззаботность, экспрессивность), с другой, особенности в межличностных отношениях (замкнутость - общительность). Интересно, что описание этих черт в значительной степени совпадает с описанием типов экстравертов-интровертов, предложенных Айзенком. В свою очередь, эти типы имеют определенную психофизиологическую интерпретацию. Экстраверты - это сильные, лабильные, активированные, интроверты - слабые, инертные, инактивированные. Тот же набор психофизиологических характеристик получен для специально человеческих типов высшей нервной деятельности - "художников" и "мыслителей".

Наши результаты позволяют выстроить определенные синдромы взаимосвязи психофизиологических, психологических признаков и типов математического мышления.

"аналитики" "геометры" (абстрактно-логический тип мышления) (наглядно-образный тип мышления)

Слабая н.с. сильная н.с.
рассудительность беззаботность
замкнутость общительность
интроверты экстраверты

Таким образом, проведенное нами комплексное исследование математически одаренных школьников позволило экспериментально подтвердить наличие определенного сочетания психологических и психофизиологических факторов, составляющих благоприятную основу для развития математических способностей. Это касается как общих, так и специальных моментов в проявлении данного вида способностей.



Читайте также: