Обоснование мкт. Положения молекулярно-кинетической теории. Хаотическое движение частиц

Согласно молекулярно-кинетической теории (МКТ) все вещества состоят из мельчайших частиц - молекул. Молекулы находятся в непрерывном движении и взаимодействуют между собой.

МКТ обосновывается многочисленными опытами и огромным количеством физических явлений. Рассмотрим ее три основных положения.

Все вещества состоят из частиц

1) Все вещества состоят из мельчайших частиц: молекул, атомов, ионов и др., разделенных между собой промежутками.

Молекула - мельчайшая устойчивая частица вещества, сохраняющая его основные химические свойства.

Молекулы, образующие данное вещество, совершенно одинаковы; различные вещества состоят из различных молекул. В природе существует чрезвычайно большое количество различных молекул.

Молекулы состоят из более мелких частиц - атомов.

Атомы - мельчайшие частицы химического элемента, сохраняющие его химические свойства.

Число различных атомов сравнительно невелико и равно числу химических элементов (116) и их изотопов (около 1500).

Атомы представляют собой весьма сложные образования, но классическая MKT использует модель атомов в виде твердых неделимых частичек сферической формы.

Наличие промежутков между молекулами следует, например, из опытов смещения различных жидкостей: объем смеси всегда меньше суммы объемов смешанных жидкостей. Явления проницаемости, сжимаемости и растворимости веществ также свидетельствуют о том, что они не сплошные, а состоят из отдельных, разделенных промежутками частиц.

С помощью современных методов исследования (электронный и зондовый микроскопы) удалось получить изображения молекул.

*Закон кратных отношений

Существование молекул блестяще подтверждается законом кратных отношений. Он гласит: "при образовании из двух элементов различных соединений (веществ) массы одного из элементов в разных соединениях относятся как целые числа, т.е. находятся в кратных отношениях". Например, азот и кислород дают пять соединений: N 2 O, N 2 O 2 , N 2 O 3 , N 2 O 4 , N 2 O 5 . В них с одним и тем же количеством азота кислород вступает в соединение в количествах, находящихся между собой в кратных отношениях 1:2:3:4:5. Закон кратных отношений легко объяснить. Всякое вещество состоит из одинаковых молекул, имеющих соответствующий атомный состав. Так как все молекулы данного вещества одинаковы, то отношение весовых количеств простых элементов, входящих в состав всего тела, такое же, как и в отдельной молекуле, и, значит, является кратным атомных весов, что и подтверждается опытом.

Масса молекул

Определить массу молекулы обычным путем, т.е. взвешиванием, конечно, невозможно. Она для этого слишком мала. В настоящее время существует много методов определения масс молекул, в частности, с помощью масс-спектрографа определены массы m 0 всех атомов таблицы Менделеева.

Так, для изотопа углерода \(~^{12}_6C\) m 0 = 1,995·10 -26 кг. Поскольку массы атомов и молекул чрезвычайно малы, то при расчетах обычно используют не абсолютные, а относительные значения масс, получаемые путем сравнения масс атомов и молекул с атомной единицей массы, в качестве которой выбрана \(~\dfrac{1}{12}\) часть массы атома изотопа углерода \(~^{12}_6C\):

1 а.е.м. = 1/12 m 0C = 1,660·10 -27 кг.

Относительной молекулярной (или атомной) массой M r называют величину, показывающую, во сколько раз масса молекулы (или атома) больше атомной единицы массы:

\(~M_r = \dfrac{m_0}{\dfrac{1}{12} \cdot m_{0C}} . \qquad (1)\)

Относительная молекулярная (атомная) масса является безразмерной величиной.

Относительные атомные массы всех химических элементов указаны в таблице Менделеева. Так, у водорода она равна 1,008, у гелия - 4,0026. При расчетах относительную атомную массу округляют до ближайшего целого числа. Например, у водорода до 1, у гелия до 4.

Относительная молекулярная масса данного вещества равна сумме относительных атомных масс элементов, входящих в состав молекулы данного вещества . Ее рассчитывают, пользуясь таблицей Менделеева и химической формулой вещества.

Так, для воды Н 2 O относительная молекулярная масса равна M r = 1·2 + 16 = 18.

Количество вещества. Постоянная Авогадро

Количество вещества, содержащегося в теле, определяется числом молекул (или атомов) в этом теле. Поскольку число молекул в макроскопических телах очень велико, для определения количества вещества в теле сравнивают число молекул в нем с числом атомов в 0,012 кг изотопа углерода \(~^{12}_6C\).

Количество вещества ν - величина, равная отношению числа молекул (атомов) N в данном теле к числу атомов N A в 0,012 кг изотопа углерода \(~^{12}_6C\):

\(~\nu = \dfrac{N}{N_A} . \qquad (2)\)

В СИ единицей количества вещества является моль. 1 моль - количество вещества, в котором содержится столько же структурных элементов (атомов, молекул, ионов), сколько атомов в 0,012 кг изотопа углерода \(~^{12}_6C\).

Число частиц в одном моле вещества называется постоянной Авогадро .

\(~N_A = \dfrac{0,012}{m_{0C}}= \dfrac{0,012}{1,995 \cdot 10^{-26}}\) = 6,02·10 23 моль -1 . (3)

Таким образом, 1 моль любого вещества содержит одно и то же число частиц - N A частиц. Так как масса m 0 частицы у разных веществ различна, то и масса N A частиц у различных веществ различна.

Массу вещества, взятого в количестве 1 моль, называют молярной массой М :

\(~M = m_0 N_A . \qquad (4)\)

В СИ единицей молярной массы является килограмм на моль (кг/моль).

Между молярной массой Μ и относительной молекулярной массой M r существует следующая связь:

\(~M = M_r \cdot 10^{-3} .\)

Так, молекулярная масса углекислого газа 44, молярная 44·10 -3 кг/моль.

Зная массу вещества и его молярную массу М , можно найти число молей (количество вещества) в теле\[~\nu = \dfrac{m}{M}\].

Тогда из формулы (2) число частиц в теле

\(~N = \nu N_A = \dfrac{m}{M} N_A .\)

Зная молярную массу и постоянную Авогадро, можно рассчитать массу одной молекулы:

\(~m_0 = \dfrac{M}{N_A} = \dfrac{m}{N} .\)

Размеры молекул

Размер молекулы является величиной условной. Его оценивают так. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния d (рис. 1).

Расстояние предельного сближения центров двух молекул называют эффективным диаметром молекулы d (при этом считают, что молекулы имеют сферическую форму).

Размеры молекул различных веществ неодинаковы, но все они порядка 10 -10 м, т.е. очень малы.

См. также

  1. Кикоин А.К. Масса и количество вещества, или Об одной «ошибке» Ньютона //Квант. - 1984. - № 10. - С. 26-27
  2. Кикоин А.К. Простой способ определения размеров молекул // Квант. - 1983. - № 9. - C.29-30

Молекулы беспорядочно движутся

2) Молекулы находятся в непрерывном беспорядочном (тепловом) движении.

Вид теплового движения (поступательное, колебательное, вращательное) молекул зависит от характера их взаимодействия и изменяется при переходе вещества из одного агрегатного состояния в другое. Интенсивность теплового движения зависит и от температуры тела.

Приведем некоторые из доказательств беспорядочного (хаотического) движения молекул: а) стремление газа занять весь предоставленный ему объем; б) диффузия; в) броуновское движение.

Диффузия

Диффузия - самопроизвольное взаимное проникновение молекул соприкасающихся веществ, приводящее к выравниванию концентрации вещества по всему объему. При диффузии молекулы граничащих между собой тел, находясь в непрерывном движении, проникают в межмолекулярные промежутки друг друга и распределяются между ними.

Диффузия проявляется во всех телах - в газах, жидкостях, твердых телах, но в разной степени.

Диффузию в газах можно обнаружить, если, например, сосуд с пахучим газом открыть в помещении. Через некоторое время газ распространится по всему помещению.

Диффузия в жидкостях происходит значительно медленнее, чем в газах. Например, если в стакан налить сначала слой раствора медного купороса, а затем очень осторожно добавить слой воды и оставить стакан в помещении с неизменной температурой, то через некоторое время исчезнет резкая граница между раствором медного купороса и водой, а через несколько дней жидкости перемешаются.

Диффузия в твердых телах происходит еще медленнее, чем в жидкостях (от нескольких часов до нескольких лет). Она может наблюдаться только в хорошо отшлифованных телах, когда расстояния между поверхностями отшлифованных тел близки к межмолекулярному расстоянию (10 -8 см). При этом скорость диффузии увеличивается при повышении температуры и давления.

Диффузия играет большую роль в природе и технике. В природе благодаря диффузии, например, осуществляется питание растений из почвы. Организм человека и животных всасывает через стенки пищеварительного тракта питательные вещества. В технике с помощью диффузии, например, поверхностный слой металлических изделий насыщается углеродом (цементация) и т.д.

  • Разновидностью диффузии является осмос - проникновение жидкостей и растворов через пористую полупроницаемую перегородку.

Броуновское движение

Броуновское движение открыто в 1827 г. английским ботаником Р. Броуном, теоретическое обоснование с точки зрения MKT дано в 1905 г. А. Эйнштейном и М. Смолуховским.

Броуновское движение - это беспорядочное движение мельчайших твердых частиц, "взвешенных" в жидкостях (газах).

"Взвешенные" частицы - это частицы, плотность вещества которых сравнима с плотностью среды, в которой они находятся. Такие частицы находятся в равновесии, и малейшее внешнее воздействие на нее приводит к их движению.

Для броуновского движения характерно следующее:


Причинами броуновского движения являются:

  1. тепловое хаотическое движение молекул среды, в которой находится броуновская частица;
  2. отсутствие полной компенсации ударов молекул среды об эту частицу с различных сторон, так как движение молекул носит случайный характер.

Движущиеся молекулы жидкости при столкновении с какими-либо твердыми частицами передают им некоторое количество движения. Случайно с одной стороны о частицу ударит заметно большее число молекул, чем с другой, и частица придет в движение.

  • Если частица достаточно велика, то число молекул, налетающих на нее со всех сторон, чрезвычайно велико, их удары в каждый данный момент компенсируются, и такая частица практически остается неподвижной.

См. также

  1. Бронштейн М.П. Как был взвешен атом //Квант. - 1970. - № 2. - С. 26-35

Частицы взаимодействуют

3) Частицы в веществе связаны друг с другом силами молекулярного взаимодействия - притяжения и отталкивания.

Между молекулами вещества действуют одновременно силы притяжения и силы отталкивания. Эти силы в большой степени зависят от расстояний между молекулами. Согласно экспериментальным и теоретическим исследованиям межмолекулярные силы взаимодействия обратно пропорциональны n -й степени расстояния между молекулами:

\(~F_r \sim \pm \dfrac{1}{r^n},\)

где для сил притяжения n = 7, а для сил отталкивания n = 9 ÷ 15. Таким образом, сила отталкивания сильнее изменяется при изменении расстояния.

Между молекулами существуют одновременно и силы притяжения, и силы отталкивания. Существует некоторое расстояние r 0 между молекулами, на котором силы отталкивания по модулю равны силам притяжения. Это расстояние соответствует устойчивому равновесному положению молекул.

При увеличении расстояния r между молекулами как силы притяжения, так и силы отталкивания уменьшаются, причем силы отталкивания уменьшаются быстрее и становятся меньше сил притяжения. Равнодействующая сила (притяжения и отталкивания) стремится сблизить молекулы в исходное состояние. Но, начиная с некоторого расстояния r m , взаимодействие молекул становится настолько мало, что им можно пренебречь. Наибольшее расстояние r m , на котором молекулы еще взаимодействуют, называется радиусом молекулярного действия (r m ~ 1,57·10 -9 м).

При уменьшении расстояния r между молекулами как силы притяжения, так и силы отталкивания увеличиваются, и силы отталкивания увеличиваются быстрее и становятся больше сил притяжения. Равнодействующая сила теперь стремится оттолкнуть молекулы друг от друга.

Доказательства силового взаимодействия молекул:

а) деформация тел под влиянием силового воздействия;

б) сохранение формы твердыми телами (силы притяжения);

в) наличие промежутков между молекул (силы отталкивания).

*График проекции сил взаимодействия

Взаимодействие двух молекул можно описать при помощи графика зависимости проекции равнодействующей F r сил притяжения и отталкивания молекул от расстояния r между их центрами. Направим ось r от молекулы 2 , центр которой совпадает с началом координат, к находящемуся от него на расстоянии r 1 центру молекулы 2 (рис. 3, а).

Различие в строении газов, жидкостей и твердых тел

В различных агрегатных состояниях вещества расстояние между его молекулами различно. Отсюда и различие в силовом взаимодействии молекул и существенное различие в характере движения молекул газов, жидкостей и твердых тел.

В газах расстояния между молекулами в несколько раз превышают размеры самих молекул. Вследствие этого силы взаимодействия между молекулами газа малы и кинетическая энергия теплового движения молекул намного превышает потенциальную энергию их взаимодействия. Каждая молекула движется свободно от других молекул с огромными скоростями (сотни метров в секунду), меняя направление и модуль скорости при столкновениях с другими молекулами. Длина свободного пробега λ молекул газа зависит от давления и температуры газа. При нормальных условиях λ ~ 10 -7 м.

В твердых телах силы взаимодействия между молекулами настолько велики, что кинетическая энергия движения молекул намного меньше потенциальной энергии их взаимодействия. Молекулы совершают непрерывные колебания с малой амплитудой около некоторого постоянного положения равновесия - узла кристаллической решетки.

Время, в течение которого частица колеблется около одного положения равновесия, - время «оседлой жизни» частицы - в твердых телах очень велико. Поэтому твердые тела сохраняют свою форму, и они не текут в обычных условиях. Время «оседлой жизни» молекулы зависит от температуры. Вблизи температуры плавления оно порядка 10 –1 – 10 –3 c, при более низких температурах может составлять часы, сутки, месяцы.

В жидкостях расстояние между молекулами значительно меньше, чем в газах, и примерно такое же, как в твердых телах. Поэтому силы взаимодействия между молекулами велики. Молекулы жидкости, как и молекулы твердого тела, совершают колебания около некоторого положения равновесия. Но кинетическая энергия движения частиц соизмерима с потенциальной энергией их взаимодействия, и молекулы чаще переходят в новые положения равновесия (время «оседлой жизни» 10 –10 – 10 –12 с). Это позволяет объяснить текучесть жидкость.

См. также

  1. Кикоин А.К. Об агрегатных состояниях вещества //Квант. - 1984. - № 9. - С. 20-21

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 119-126.

Опытное обоснование основных положений молекулярно-кинетической теории (МКТ) строения вещества. Масса и размер молекул. Постоянная Авогадро.

Молекулярно-кинетическая теория - это раздел физики, изучающий свойства различных состояний вещества, основывающийся на представлениях о существовании молекул и атомов как мельчайших частиц вещества. В основе МКТ лежат три основных положения:

1. Все вещества состоят из мельчайших частиц: молекул, атомов или ионов.

2. Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества.

3. Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними.

Основные положения МКТ подтверждаются многими опытными фактами. Существование молекул, атомов и ионов доказано экспериментально, молекулы достаточно изучены и даже сфотографированы с помощью электронных микроскопов. Способность газов неограниченно расширяться и занимать весь предоставленный им объем объясняется непрерывным хаотическим движением молекул. Упругость газов, твердых и жидких тел, способность жидкостей смачивать некоторые твердые тела, процессы окрашивания, склеивания, сохранения формы твердыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами. Явление диффузии - способность молекул одного вещества проникать в промежутки между молекулами другого - тоже подтверждает основные положения МКТ. Явлением диффузии объясняется, например, распространение запахов, смешивание разнородных жидкостей, процесс растворения твердых тел в жидкостях, сварка металлов путем их расплавления или путем давления. Подтверждением непрерывного хаотического движения молекул является также и броуновское движение - непрерывное хаотическое движение микроскопических частиц, нерастворимых в жидкости.

Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путем было доказано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движения разработал А. Эйнштейн. Законы движения частиц носят статистический, вероятностный характер. Известен только один способ уменьшения интенсивности броуновского движения - уменьшение температуры. Существование броуновского движения убедительно подтверждает движение молекул.

Любое вещество состоит из частиц, поэтому количество вещества v принято считать пропорциональным числу частиц, т. е. структурных элементов, содержащихся в теле.

Единицей количества вещества является моль. Моль - это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С12. Отношение числа молекул вещества к количеству вещества называют постоянной Авогадро:

Постоянная Авогадро показывает, сколько атомов и молекул содержится в одном моле вещества. Молярная масса - масса одного моля вещества, равная отношению массы вещества к количеству вещества:

Молярная масса выражается в кг/моль. Зная молярную массу, можно вычислить массу одной молекулы:

Средняя масса молекул обычно определяется химическими методами, постоянная Авогадро с высокой точностью определена несколькими физическими методами. Массы молекул и атомов со значительной степенью точности определяются с помощью масс-спектрографа.

Массы молекул очень малы. Например, масса молекулы воды:

Молярная масса связана с относительной молекулярной массой Мг. Относительная молекулярная масса - это величина, равная отношению массы молекулы данного вещества к 1/12 массы атома углерода С12. Если известна химическая формула вещества, то с помощью таблицы Менделеева может быть определена его относительная масса, которая, будучи выражена в килограммах, показывает величину молярной массы этого вещества.

Молекулярно-кинетическая теория - это раз­дел физики, изучающий свойства различных состоя­ний вещества, основывающийся на представлениях о существовании молекул и атомов, как мельчайших частиц вещества. В основе МКТ лежат три основных положения:1. Все вещества состоят из мельчайших час­тиц: молекул, атомов или ионов. 2. Эти частицы находятся в непрерывном хао­тическом движении, скорость которого определяет температуру вещества.3. Между частицами существуют силы притя­жения и отталкивания, характер которых зависит от расстояния между ними. Основные положения МКТ подтверждаются многими опытными фактами. Существование моле­кул, атомов и ионов доказано экспериментально, мо­лекулы достаточно изучены и даже сфотографирова­ны с помощью электронных микроскопов. Способ­ность газов неограниченно расширяться и занимать весь предоставленный им объем объясняется непре­рывным хаотическим движением молекул. Упругость газов, твердых и жидких тел, способность жидкостей

смачивать некоторые твердые тела, процессы окра­шивания, склеивания, сохранения формы твердыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами. Явление диффузии - способность молекул одного вещества проникать в промежутки между молекула­ми другого - тоже подтверждает основные положе­ния МКТ. Явлением диффузии объясняется, напри­мер, распространение запахов, смешивание разно­родных жидкостей, процесс растворения твердых тел в жидкостях, сварка металлов путем их расплавле-ния или путем давления. Подтверждением непре­рывного хаотического движения молекул является также и броуновское движение - непрерывное хао­тическое движение микроскопических частиц, не­растворимых в жидкости.

Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путем было дока­зано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движе­ния разработал А. Эйнштейн. Законы движения час­тиц носят статистический, вероятностный характер. Известен только один способ уменьшения интенсив­ности броуновского движения - уменьшение темпе­ратуры. Существование броуновского движения убе­дительно подтверждает движение молекул.

Любое вещество состоит из частиц, поэтому количество вещества принято считать пропорцио­нальным числу частиц, т. е. структурных элементов, содержащихся в теле, v.

Единицей количества вещества является моль. Моль - это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С 12 . От­ношение числа молекул вещества к количеству ве­щества называютпостоянной Авогадро:


n a = N/v. na =6,02 10 23 моль -1 .

Постоянная Авогадро показывает, сколько ато­мов и молекул содержится в одном моле вещества.Мо­лярной массойназывают величину, равную отноше­нию массы вещества к количеству вещества:

Молярная масса выражается в кг/моль. Зная молярную массу, можно вычислить массу одной мо­лекулы:

m 0 = m/N = m/vN A = М/N A

Средняя масса молекул обычно определяется химическими методами, постоянная Авогадро с вы­сокой точностью определена несколькими физиче­скими методами. Массы молекул и атомов со значи­тельной степенью точности определяются с помощью масс-спектрографа.Массы молекул очень малы. Например, масса молекулы воды: т = 29,9 10 -27 кг.

Молярная масса связана с относительной мо­лекулярной массой Mr. Относительная молярная масса - это величина, равная отношению массы мо­лекулы данного вещества к 1/12 массы атома угле­рода С 12 . Если известна химическая формула вещест­ва, то с помощью таблицы Менделеева может быть определена его относительная масса, которая, будучи выражена в килограммах, показывает величину мо­лярной массы этого вещества.

2) Колебательное движение молекул в природе и технике. Гармонические колебания. Амплитуда, период, частота и фаза колебаний. Опредеолить опытным путём частоту предложенной колебательной системы.

Механическими колебаниями называют движения тел, повторяющиеся точно или приблизительно одинаково через одинаковые промежутки времени. Силы, действующие между телами внутри рассматриваемой системы тел, называют внутренними силами. Силы, действующие на тела системы со стороны других тел, называют внешними силами. Свободными колебаниями называют колебания, возникшие под воздействием внутренних сил, например – маятник на нитке. Колебания под действиями внешних сил – вынужденные колебания, например – поршень в двигателе. Общим признаков всех видов колебаний является повторяемость процесса движения через определенный интервал времени. Гармоническими называются колебания, описываемые уравнением. В частности колебания, возникающие в системе с одной возвращающей силой, пропорциональной деформации, являются гармоническими. Минимальный интервал, через который происходит повторение движения тела, называется периодом колебаний Т . Физическая величина, обратная периоду колебаний и характеризующая количество колебаний в единицу времени, называется частотой. Частота измеряется в герцах, 1 Гц = 1 с -1 . Используется также понятие циклической частоты, определяющей число колебаний за 2p секунд. Модуль максимального смещения от положения равновесия называется амплитудой. Величина, стоящая под знаком косинуса – фаза колебаний, j 0 – начальная фаза колебаний. Производные также гармонически изменяются, причем, а полная механическая энергия при произвольном отклонении х (угол, координата, и т.д.) равна, где А и В – константы, определяемые параметрами системы. Продифференцировав это выражение и приняв во внимание отсутствие внешних сил, возможно записать, что, откуда.

Молекулярно-кинетическая теория (МКТ) - это раздел физики, изучающий свойства различных состояний вещества, основывающийся на представлениях о существовании молекул и атомов как мельчайших частиц вещества. В основе МКТ лежат три основных положения :

1 . Все вещества состоят из мельчайших частиц: молекул, атомов или ионов.
2 . Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества.
3 . Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними, т.е. частицы взаимодействуют друг с другом.

Основные положения МКТ подтверждаются многими опытными фактами.

Существование молекул, атомов и ионов доказано экспериментально, молекулы достаточно изучены и сфотографированы с помощью электронных микроскопов.

Способность газов неограниченно расширяться и занимать весь предоставленный им объем объясняется непрерывным хаотическим движением молекул.

Упругость газов, твердых и жидких тел, способность жидкостей смачивать некоторые твердые тела, процессы окрашивания, склеивания, сохранения формы твердыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами.

Явление диффузии - способность молекул одного вещества проникать в промежутки между молекулами другого - тоже подтверждает основные положения МКТ. Явлением диффузии объясняется, например, распространение запахов, смешивание разнородных жидкостей, процесс растворения твердых тел в жидкостях, сварка металлов путем их расплавления или путем давления. Подтверждением непрерывного хаотического движения молекул является также и броуновское движение - непрерывное хаотическое движение микроскопических частиц, нерастворимых в жидкости. Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путем было доказано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движения разработал А. Эйнштейн.

Любое вещество состоит из частиц, поэтому количество вещества ν принято считать пропорциональным числу частиц, содержащихся в теле. Единицей количества вещества является моль. Отношение числа молекул вещества к количеству вещества называют постоянной Авогадро : , N A =6,02∙10 23 моль -1 .

Постоянная Авогадро показывает, сколько атомов и молекул содержится в одном моле вещества.

Молярная масса - масса одного моля вещества, равная отношению массы вещества к количеству вещества: . Молярная масса выражается в кг/моль . Зная молярную массу, можно вычислить массу одной молекулы: .

Массы молекул очень малы, например, масса молекулы воды: m=29,9∙10 -27 кг , поэтому удобно использовать не абсолютные значения масс, а относительные. Относительные атомные массы всех химических элементов указаны в таблице Менделеева. Физическими методами удалось определить массы некоторых атомов в абсолютных единицах. Так появилась атомная единица массы (а.е.м.), равная 1/12 массы атомов углерода: 1 а.е.м. =1, 66∙10 -2 7 .
Молярная масса связана с относительной молекулярной массой Мr . Относительная молекулярная масса - это величина, равная отношению массы молекулы данного вещества к 1/12 массы атома углерода. Если известна химическая формула вещества, то с помощью таблицы Менделеева может быть определена его относительная масса.

Урок 1

Тема: Основные положения молекулярно-кинетической теории и их опытное обоснование

Цели: познакомить учащихся с основными положениями молекулярно-кинетической теории и их опытными подтверждениями, с величинами, характеризующими молекулы (размеры и массы молекул, количество вещества, постоянная Авогадро) и методами их измерения; развивать внимание, логическое мышление учащихся, воспитывать добросовестное отношение к учебному труду

Тип урока: урок усвоения новых знаний

Ход урока

    Организационный момент

    Постановка цели урока

    Изложение нового материала

Молекулярно-кинетическая теория зародилась в XIX в. с целью объяснить строение и свойства вещества на основе представления о том, что вещество состоит из мельчайших частиц – молекул, которые непрерывно движутся и взаимодействуют друг с другом. Особых успехов эта теория достигла при объяснении свойств газов.

Молекулярно-кинетической теорией называют учение, которое объясняет строение и свойства тел движением и взаимодействием частиц, из которых состоят

тела.

В основе МКТ лежат три важнейших положения:

    все вещества состоят из молекул;

    молекулы находятся в непрерывном хаотическом движении;

    молекулы взаимодействуют друг с другом.

Предположение о молекулярном строении вещества подтверждалось только косвенно. Основные положения МКТ газов хорошо согласовывались с экспериментом. Сегодня техника достигла уровня, при котором можно рассмотреть даже отдельные атомы. Убедиться в существовании молекул и оценить их размер можно довольно просто.

Поместим капельку масла на поверхность воды. Масляное пятно будет растекаться по поверхности воды, но площадь масляной плёнки не может превышать определённого значения. Естественно предположить, что максимальная площадь плёнки соответствует масляному слою толщиной в одну молекулу.

Убедиться в том, что молекулы движутся, можно совсем просто: если капнуть капельку духов в одном конце комнаты, то через несколько секунд этот запах распространится по всей комнате. В окружающем нас воздухе молекулы двигаются со скоростями артиллерийских снарядов – сотни метров в секунду. Удивительным свойством движения молекул является то, что оно никогда не прекращается. Этим движение молекул существенно отличается от движения окружающих нас предметов: ведь механическое движение неизбежно прекращается вследствие трения.

В начале XIX в. английский ботаник Броун, наблюдая в микроскоп частицы пыльцы, взвешенные в воде, заметил, что эти частицы пребывают в «вечной пляске». Причину так называемого «броуновского движения» поняли только через 56 лет после его открытия: отдельные удары молекул жидкости о частицу не компенсируют друг друга, если эта частица достаточно мала. С тех пор броуновское движение рассматривается как наглядное опытное подтверждение движения молекул.

Если бы молекулы не притягивались друг к другу, не было бы ни жидкостей, ни твёрдых тел – они просто бы рассыпались на отдельные молекулы. С другой стороны, если бы молекулы только притягивались, они бы превращались в чрезвычайно плотные сгустки, а молекулы газов, ударяясь о стенки сосуда, прилипали бы к ним. Взаимодействие молекул имеет электрическую природу. Хотя молекулы в целом электрически нейтральны, распределение положительных и отрицательных электрических зарядов в них таково, что на больших расстояниях (по сравнению с размерами самих молекул) молекулы притягиваются, а на малых расстояниях – отталкиваются. Попробуйте разорвать стальную или капроновую нить диаметром 1 мм 2 . Вряд ли это удастся, даже если приложить все силы, а ведь усилиям вашего тела противостоят силы притяжения молекул в малом сечении нити.

Параметры газа, связанные с индивидуальными характеристиками составляющих его молекул, называются микроскопическими параметрами (масса молекул, их скорость, концентрация).

Параметры, которые характеризуют состояние макроскопических тел, называют макроскопическими параметрами (объём, давление, температура).

Основная задача МКТ – установить связь между микроскопическими и макроскопическими параметрами вещества, исходя из этого, найти уравнение состояния данного вещества.

Например, зная массы молекул, их средние скорости и концентрации, можно найти объём, давление и температуру данной массы газа, а также определить давление газа через его объём и температуру.

Обычно в основе построения любой теории лежит метод моделей, заключающийся в том, что вместо реального физического объекта или явления рассматривают его упрощённую модель. В МКТ газов используется модель идеального газа.

С точки зрения молекулярных представлений, газы состоят из атомов и молекул, расстояния между которыми значительно больше их размеров. Вследствие этого силы взаимодействия между молекулами газов практически отсутствуют. Взаимодействие между ними фактически происходит лишь во время их столкновений.

Поскольку взаимодействие молекул идеального газа сводится лишь к кратковременным столкновениям и размеры молекул не влияют на давление и температуру газа, мы можем считать, что

Идеальный газ – это модель газа, которая предусматривает пренебрежение размерами молекул и их взаимодействием; молекулы такого газа находятся в свободном беспорядочном движении, иногда сталкиваясь с другими молекулами или стенками сосуда, в котором они находятся.

Реальные разрежённые газы ведет себя подобно идеальному газу.

Примерную оценку размеров молекул можно получить из опытов, проведённых немецким физиком Рентгеном и английским физиком Рэлеем. Капелька масла на поверхности воды расплывается, образуя тонкую плёнку толщиной всего лишь в одну молекулу. Толщину этого слоя нетрудно определить и тем самым оценить размеры молекулы масла. В настоящее время существует ряд методов, позволяющих определить размеры молекул и атомов. Например, линейные размеры молекул кислорода составляют 3 · 10 -10 м, воды – около 2,6 · 10 -10 м. Таким образом, характерной длиной в мире молекул является размер 10 -10 м. Если молекулу воды увеличить до размеров яблока, то само яблоко станет диаметром с земной шар.

В прошлом веке итальянский учёный Авогадро обнаружил удивительный факт: если два различных газа занимают сосуды одинакового объёма при одинаковых температурах и давлениях, то в каждом сосуде находится одно и то же число молекул. Заметьте, что массы газов при этом могут сильно отличаться: например, если в одном сосуде водород, а в другом – кислород, то масса кислорода в 16 раз больше массы водорода.

Это означает. Что некоторые, причём довольно важные, свойства тела определяются числом молекул в этом теле: число молекул оказывается даже более существенным, чем масса.

Физическая величина, определяющая число молекул в данном теле, называется количеством вещества и обозначается . Единицей количества вещества является моль.

Так как массы отдельных молекул отличаются друг от друга, то одинаковые количества разных веществ имеют разную массу.

1 моль – это количество вещества, которое содержит столько же молекул, сколько атомов углерода содержится в 0,012 кг углерода.

Массы отдельных молекул очень малы. Потому удобно использовать при расчётах не абсолютные, а относительные значения масс. По международному соглашению массы всех атомов и молекул сравнивают с 1/12 массы атома углерода. Главная причина такого выбора состоит в том, что углерод входит в большое число различных химических соединений.

Относительной молекулярной (или атомной) массой вещества М называется отношение массы молекулы (или атома) m 0 данного вещества к 1 / 12 массы атома углерода:

M г =

m r - масса молекулы данного вещества;

m а (C) - масса атома углерода 12 C.

Например, относительная атомная маса углерода равна 12, водовода – 1. Относительная же молекулярная маса водовода 2, поскольку молекула водорода состоит из двух атомов.

Удобство выбора моля в качестве единицы измерения количества вещества связано с тем, что маса одного моля вещества в граммах численно равна его относительной молекулярной массе.

Маса m тела пропорциональна количеству вещества , содержащемуся в этом теле. Поэтому отношение характеризует вещество, из которого состоит это тело: чем «тяжелее» молекулы вещества, тем больше это отношение.

Отношение массы вещества m к количеству вещества называется молярной массой и обозначается М:

М =

Если принять в этой формуле =1, получим, что молярная масса вещества численно равна массе одного моля этого вещества. Например, масса водорода равна

2
= 2 · 10 -3
.

1
- единица измерения молярной массы в СИ.

Масса вещества m = M .

Число N молекул, содержащихся в теле, прямо пропорционально количеству

вещества , содержащегося в этом теле.

Коэффициент пропорциональности является постоянной величиной и называется постоянной Авогадро N A

Откуда следует, что постоянная Авогадро численно равна числу молекул в 1 моле.

Основные итоги.

Вопросы учащимся:

    Докажите, что все тела состоят из мельчайших частиц.

    Приведите факты, показывающие делимость веществ.

    В чём состоит явление диффузии?

    В чём состоит суть броуновского движения?

    Какие факты доказывают, что между молекулами твёрдых и жидких тел действуют силы притяжения и отталкивания?

    Какова относительная атомная масса кислорода? Молекулы воды? Молекулы углекислого газа?

4. Домашнее задание:



Читайте также: