Охарактеризуйте основные этапы эволюции звезд. Этапы эволюции звезд. Звезда на пути к главной последовательности

  • 20. Радиосвязь между цивилизациями, находящимися на различных планетных системах
  • 21. Возможность осуществления межзвездной связи оптическими методами
  • 22. Связь с инопланетными цивилизациями с помощью автоматических зондов
  • 23. Теоретико-вероятностный анализ межзвездной радиосвязи. Характер сигналов
  • 24. О возможности прямых контактов между инопланетными цивилизациями
  • 25. Замечания о темпах и характере технологического развития человечества
  • II. Возможна ли связь с разумными существами других планет?
  • Часть первая АСТРОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМЫ

    4. Эволюция звезд Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газопылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек. Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газопылевой среды, служит расположение групп заведомо молодых звезд (так называемых "ассоциаций") в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных "радиоизображений" некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не можем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии "зоны HII", т. е. облака ионизованного межзвездного газа. В гл. 3 уже говорилось, что причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд - объектов заведомо молодых (см. ниже). Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В самом деле, откуда, например, берется огромное количество энергии, необходимой для поддержания излучения Солнца примерно на наблюдаемом уровне в течение нескольких миллиардов лет? Ежесекундно Солнце излучает 4х10 33 эрг, а за 3 млрд лет оно излучило 4х10 50 эрг. Несомненно, что возраст Солнца около 5 млрд лет. Это следует хотя бы из современных оценок возраста Земли различными радиоактивными методами. Вряд ли Солнце "моложе" Земли. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеорных тел, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях, перейти в излучение. Как мы увидим ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени. Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов Кельвинов). В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно "просачивается" сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратился в гелий, то выделившееся количество энергии составит примерно 10 52 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце "израсходовало" не свыше 10% своего первоначального запаса водорода. Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газопылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие "протозвезды" наблюдаются в отдельных Туманностях в виде очень темных компактных образований, так называемых глобул (рис. 12). Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения (см. ниже). Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты (см. гл. 9).

    Рис. 12. Глобулы в диффузионной туманности

    При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы егo поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана - Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме "спектр - светимость" такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс. В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет, вследствие чего спектр становится все более "ранним". Таким образом, двигаясь по диаграмме "спектр - светимость", протозвезда довольно быстро "сядет" на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для того, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой. Чтобы пройти эту самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше - несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются. Мы имеем в виду очень интересные звезды типа Т Тельца, обычно погруженные в темные туманности. В 1966 г. совершенно неожиданно выявилась возможность наблюдать протозвезды на ранних стадиях их эволюции. Мы уже упоминали в третьей главе этой книги об открытии методом радиоастрономии ряда молекул в межзвездной среде, прежде всего гидроксила ОН и паров воды Н2О. Велико же было удивление радиоастрономов, когда при обзоре неба на волне 18 см, соответствующей радиолинии ОН, были обнаружены яркие, чрезвычайно компактные (т. е. имеющие малые угловые размеры) источники. Это было настолько неожиданно, что первое время отказывались даже верить, что столь яркие радиолинии могут принадлежать молекуле гидроксила. Была высказана гипотеза, что эти линии принадлежат какой-то неизвестной субстанции, которой сразу же дали "подходящее" имя "мистериум". Однако "мистериум" очень скоро разделил судьбу своих оптических "братьев" - "небулия" и "корония". Дело в том, что многие десятилетия яркие линии туманностей и солнечной короны не поддавались отождествлению с какими бы то ни было известными спектральными линиями. Поэтому их приписывали неким, неизвестным на земле, гипотетическим элементам - "небулию" и "коронию". Не будем снисходительно улыбаться над невежеством астрономов начала нашего века: ведь теории атома тогда еще не было! Развитие физики не оставило в периодической системе Менделеева места для экзотических "небожителей": в 1927 г. был развенчан "небулий", линии которого с полной надежностью были отождествлены с "запрещенными" линиями ионизованных кислорода и азота, а в 1939 -1941 гг. было убедительно показано, что загадочные линии "корония" принадлежат многократно ионизованным атомам железа, никеля и кальция. Если для "развенчания" "небулия" и "кодония" потребовались десятилетия, то уже через несколько недель после открытия стало ясно, что линии "мистериума" принадлежат обыкновенному гидроксилу, но только находящемуся в необыкновенных условиях. Дальнейшие наблюдения, прежде всего, выявили, что источники "мистериума" имеют исключительно малые угловые размеры. Это было показано с помощью тогда еще нового, весьма эффективного метода исследовании, получившего название "радиоинтерферометрия на сверхдлинных базах". Суть метода сводится к одновременным наблюдениям источников на двух радиотелескопах, удаленных друг от друга на расстояния в несколько тысяч км. Как оказывается, угловое разрешение при этом определяется отношением длины волны к расстоянию между радиотелескопами. В нашем случае эта величина может быть ~3х10 -8 рад или несколько тысячных секунды дуги! Заметим, что в оптической астрономии такое угловое разрешение пока совершенно недостижимо. Такие наблюдения показали, что существуют по крайней мере три класса источников "мистериума". Нас здесь будут интересовать источники 1 класса. Всё они находятся внутри газовых ионизованных туманностей, например в знаменитой туманности Ориона. Как уже говорилось, их размеры чрезвычайно малы, во много тысяч раз меньше размеров туманности. Всего интереснее, что они обладают сложной пространственной структурой. Рассмотрим, например, источник, находящийся в туманности, получившей название W3.

    Рис. 13. Профили четырех компонент линии гидроксила

    На рис. 13 приведен профиль линии ОН, излучаемый этим источником. Как видим, он состоит из большого количества узких ярких линий. Каждой линии соответствует определенная скорость движения по лучу зрения излучающего эту линию облака. Величина этой скорости определяется эффектом Доплера. Различие скоростей (по лучу зрения) между различными облаками достигает ~10 км/с. Упомянутые выше интерферометрические наблюдения показали, что облака, излучающие каждую линию, пространственно не совпадают. Картина получается такая: внутри области размером приблизительно 1,5 секунды дуги движутся с разными скоростями около 10 компактных облаков. Каждое облако излучает одну определенную (по частоте) линию. Угловые размеры облаков очень малы, порядка нескольких тысячных секунды дуги. Так как расстояние до туманности W3 известно (около 2000 пк), то угловые размеры легко могут быть переведены в линейные. Оказывается, что линейные размеры области, в которой движутся облака, порядка 10 -2 пк, а размеры каждого облака всего лишь на порядок величины больше расстояния от Земли до Солнца. Возникают вопросы: что это за облака и почему они так сильно излучают в радиолиниях гидроксила? На второй вопрос ответ был получен довольно скоро. Оказалось, что механизм излучения вполне подобен тому, который наблюдался в лабораторных мазерах и лазерах. Итак, источники "мистериума" - это гигантские, природные космические мазеры, работающие на волне линии гидроксила, длина которой 18 см. Именно в мазерах (а на оптических и инфракрасных частотах - в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом "активирована". Это означает, что некоторый "сторонний" источник энергии (так называемая "накачка") делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей "накачки" мазер или лазер невозможны. Вопрос о природе механизма "накачки" космических мазеров пока еще окончательно не решен. Однако скорее всего "накачкой" служит достаточно мощное инфракрасное излучение. Другим возможным механизмом "накачки" могут быть некоторые химические реакции. Стоит прервать наш рассказ о космических мазерах для того, чтобы подумать, с какими удивительными явлениями сталкиваются астрономы в космосе. Одно из величайших технических изобретений нашего бурного века, играющее немалую роль в переживаемой нами теперь научно-технической революции, запросто реализуется в естественных условиях и притом - в громадном масштабе! Поток радиоизлучения от некоторых космических мазеров настолько велик, что мог бы быть обнаружен даже при техническом уровне радиоастрономии лет 35 тому назад, т. е. еще до изобретения мазеров и лазеров! Для этого надо было "только" знать точную длину волны радиолинии ОН и заинтересоваться проблемой. Кстати, это не первый случай, когда в естественных условиях реализуются важнейшие научно-технические проблемы, стоящие перед человечеством. Термоядерные реакции, поддерживающие излучение Солнца и звезд (см. ниже), стимулировали разработку и осуществление проектов получения на Земле ядерного "горючего", которое в будущем должно решить все наши энергетические проблемы. Увы, мы пока еще далеки от решения этой важнейшей задачи, которую природа решила "запросто". Полтора века тому назад основатель волновой теории света Френель заметил (по другому поводу, конечно): "Природа смеется над нашими трудностями". Как видим, замечание Френеля еще более справедливо в наши дни. Вернемся, однако, к космическим мазерам. Хотя механизм "накачки" этих мазеров пока еще не совсем ясен, все же можно составить себе грубое представление о физических условиях в облаках, излучающих мазерным механизмом линию 18 см. Прежде всего, оказывается, что эти облака довольно плотны: в кубическом сантиметре там имеется по крайней мере 10 8 -10 9 частиц, причем существенная (а может быть и большая) часть их - молекулы. Температура вряд ли превышает две тысячи кельвинов, скорее всего она порядка 1000 Кельвинов. Эти свойства резко отличны от свойств даже самых плотных облаков межзвездного газа. Учитывая еще сравнительно небольшие размеры облаков, мы невольно приходим к выводу, что они скорее напоминают протяженные, довольно холодные атмосферы звезд - сверхгигантов. Очень похоже, что эти облака есть не что иное, как ранняя стадия развития протозвезд, следующая сразу за их конденсацией из межзвездной среды. В пользу этого утверждения (которое автор этой книги высказал еще в 1966 г.) говорят и другие факты. В туманностях, где наблюдаются космические мазеры, видны молодые горячие звезды (см. ниже). Следовательно, там недавно закончился и, скорее всего, продолжается и в настоящее время, процесс звездообразования. Пожалуй, самое любопытное это то, что, как показывают радиоастрономические наблюдения, космические мазеры этого типа как бы "погружены" в небольшие, очень плотные облака ионизованного водорода. В этих облаках имеется много космической пыли, что делает их ненаблюдаемыми в оптическом диапазоне. Такие "коконы" ионизуются молодой, горячей звездой, находящейся внутри них. При исследовании процессов звездообразования весьма полезной оказалась инфракрасная астрономия. Ведь для инфракрасных лучей межзвездное поглощение света не так существенно. Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуется несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции -различна: для более массивных сгустков она будет больше (см. дальше табл. 2). Поэтому раньше всего превратится в горячую звезду наиболее массивной сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды. Их-то мы и наблюдаем как источники мазерного излучения в непосредственной близости от "новорожденной" горячей звезды, ионизующей не сконденсировавший в сгустки водород "кокона". Разумеется, эта грубая схема будет в дальнейшем уточняться, причем, конечно, в нее будут внесены существенные изменения. Но факт остается фактом: неожиданно оказалось, что некоторое время (скорее всего - сравнительно короткое) новорожденные протозвезды, образно выражаясь, "кричат" о своем появлении на свет, пользуясь новейшими методами квантовой радиофизики (т. е. мазерами)... Спустя 2 года после открытия космических мазеров на гидроксиле (линия 18 см) - было установлено, что те же источники одновременно излучают (также мазерным механизмом) линию водяных паров, длина волны которой 1,35 см. Интенсивность "водяного" мазера даже больше, чем "гидроксильного". Облака, излучающие линию Н2О, хотя и находятся в том же малом объеме, что и "гидроксильные" облака, движутся с другими скоростями и значительно более компактны. Нельзя исключать, что в близком будущем будут обнаружены и другие мазерные линии * . Таким образом, совершенно неожиданно радиоастрономия превратила классическую проблему звездообразования в ветвь наблюдательной астрономии ** . Оказавшись на главной последовательности и перестав сжиматься, звезда длительно излучает практически не меняя своего положения на диаграмме "спектр - светимость". Ее излучение поддерживается термоядерными реакциями, идущими в центральных областях. Таким образом, главная последовательность представляет собой как бы геометрическое место точек на диаграмме "спектр - светимость", где звезда (в зависимости от ее массы) может длительно и устойчиво излучать благодаря термоядерным реакциям. Место звезды на главной последовательности определяется ее массой. Следует заметить, что имеется еще один параметр, определяющий положение равновесной излучающей звезды на диаграмме "спектр-светимость". Таким параметром является первоначальный химический состав звезды. Если относительное содержание тяжелых элементов уменьшится, звезда "ляжет" на диаграмме ниже. Именно этим обстоятельством объясняется наличие последовательности субкарликов. Как уже говорилось выше, относительное содержание тяжелых элементов у этих звезд в десятки раз меньше, чем у звезд главной последовательности. Время пребывания звезды на главной последовательности определяется ее первоначальной массой. Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного "горючего". Так, например, звезды главной последовательности с массой, превышающей солнечную в несколько десятков раз (это горячие голубые гиганты спектрального класса О), могут устойчиво излучать, находясь на этой последовательности всего лишь несколько миллионов лет, в то время как звезды с массой, близкой к солнечной, находятся на главной последовательности 10-15 млрд лет. Ниже приводится табл. 2, дающая вычисленную продолжительность гравитационного сжатия и пребывания на главной последовательности для звезд разных спектральных классов. В этой же таблице приведены значения масс, радиусов и светимостей звезд в солнечных единицах.

    Таблица 2


    лет

    Спектральный класс

    Светимость

    гравитационного сжатия

    пребывания на главной после-довательности

    G2 (Солнце)

    Из таблицы следует, что время пребывания на главной последовательности звезд, более "поздних", чем КО, значительно больше возраста Галактики, который по существующим оценкам близок к 15-20 млрд лет. "Выгорание" водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слои сохраняют относительное содержание водорода неизменным. Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь "выгорит". Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается, на диаграмме "спектр - светимость" вправо. Этот процесс происходит значительно быстрее у сравнительно массивных звезд. Если представить себе группу одновременно образовавшихся эволюционирующих звезд, то с течением времени главная последовательность на диаграмме "спектр-светимость", построенная для этой группы, будет как бы загибаться вправо. Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре "выгорит"? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться там на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название "вырожденного". Он обладает рядом интересных свойств, на которых мы здесь останавливаться не можем. В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Вычисления показывают, что светимость звезды и ее размеры начнут расти. Звезда как бы "разбухает", и начнет "сходить" с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды-гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость. На рис. 14 приведены теоретически рассчитанные эволюционные треки на диаграмме "светимость - температура поверхности" для звезд разной массы. При переходе звезды в стадию красного гиганта скорость ее эволюции значительно увеличивается. Для проверки теории большое значение имеет построение диаграммы "спектр - светимость" для отдельных звездных скоплений. Дело в том, что звезды одного и того же скопления (например. Плеяды) имеют, очевидно, одинаковый возраст. Сравнивая диаграммы "спектр - светимость" для разных скоплений - "старых" и "молодых", можно выяснить, как эволюционируют звезды. На рис. 15 и 16 приведены диаграммы "показатель цвета - светимостью для двух различных звездных скоплений. Скопление NGC 2254 - сравнительно молодое образование.

    Рис. 14. Эволюционные треки для звезд разной массы на диаграмме "светимость-температура"

    Рис. 15. Диаграмма Герцшпрунга - Рессела для звездного скопления NGC 2254


    Рис. 16. Диаграмма Герцшпрунга - Рессела для шарового скопления М 3. По вертикальной оси - относительная звездная величина

    На соответствующей диаграмме отчетливо видна вся главная последовательность, в том числе ее верхняя левая часть, где расположены горячие массивные звезды (показателю-цвета - 0,2 соответствует температура 20 тыс. К, т.е. спектр класса В). Шаровое скопление М 3 - "старый" объект. Ясно видно, что в верхней части главной последовательности диаграммы, построенной для этого скопления, звезд почти нет. Зато ветвь красных гигантов у М 3 представлена весьма богато, в то время как у NGC 2254 красных гигантов очень мало. Это и понятно: у старого скопления М 3 большое число звезд уже успело "сойти" с главной последовательности, в то время как у молодого скопления NGC 2254 это произошло только с небольшим числом сравнительно массивных, быстро эволюционирующих звезд. Обращает на себя внимание, что ветвь гигантов для М 3 идет довольно круто вверх, а у NGC 2254 она - почти горизонтальна. С точки зрения теории это можно объяснить значительно более низким содержанием тяжелых элементов у М 3. И действительно, у звезд шаровых скоплений (так же как и у других звезд, концентрирующихся не столько к галактической плоскости, сколько к галактическому центру) относительное содержание тяжелых элементов незначительно. На диаграмме "показатель цвета - светимость" для М 3 видна еще одна почти горизонтальная ветвь. Аналогичной ветви на диаграмме, построенной для NGC 2254, нет. Теория объясняет появление этой ветви следующим образом. После того как температура сжимающегося плотного гелиевого ядра звезды - красного гиганта - достигнет 100-150 млн К, там начнет идти новая ядерная реакция. Эта реакция состоит в образовании ядра углерода из трех ядер гелия. Как только начнется эта реакция, сжатие ядра прекратится. В дальнейшем поверхностные слои

    звезды увеличивают свою температуру и звезда на диаграмме "спектр - светимость" будет перемещаться влево. Именно из таких звезд образуется третья горизонтальная ветвь диаграммы для М 3.

    Рис. 17. Сводная диаграмма Герцшпрунга - Рессела для 11 звездных скоплений

    На рис. 17 схематически приведена сводная диаграмма "цвет - светимость" для 11 скоплений, из которых два (М 3 и М 92) шаровые. Ясно видно, как "загибаются" вправо и вверх главные последовательности у разных скоплений в полном согласии с теоретическими представлениями, о которых уже шла речь. Из рис. 17 можно сразу определить, какие скопления являются молодыми и какие старыми. Например, "двойное" скопление Х и h Персея молодое. Оно "сохранило" значительную часть главной последовательности. Скопление М 41 старше, еще старше скопление Гиады и совсем старым является скопление М 67, диаграмма "цвет - светимость" для которого очень похожа на аналогичную диаграмму для шаровых скоплений М 3 и М 92. Только ветвь гигантов у шаровых скоплений находится выше в согласии с различиями в химическом составе, о которых говорилось раньше. Таким образом, данные наблюдений полностью подтверждают и обосновывают выводы теории. Казалось бы, трудно ожидать наблюдательной проверки теории процессов в звездных недрах, которые закрыты от нас огромной толщей звездного вещества. И все же теория и здесь постоянно контролируется практикой астрономических наблюдений. Нужно отметить, что составление большого количества диаграмм "цвет - светимость" потребовало огромного труда астрономов-наблюдателей и коренного усовершенствования методов наблюдений. С другой стороны, успехи теории внутреннего строения и эволюции звезд были бы невозможны без современной вычислительной техники, основанной на применении быстродействующих электронных счетных машин. Неоценимую услугу теории оказали также исследования в области ядерной физики, позволившие получить количественные характеристики тех ядерных реакций, которые протекают в звездных недрах. Без преувеличения можно сказать, что разработка теории строения и эволюции звезд является одним из крупнейших достижений астрономии второй половины XX столетия. Развитие современной физики открывает возможность прямой наблюдательной проверки теории внутреннего строения звезд, и в частности Солнца. Речь идет о возможности обнаружения мощного потока нейтрино, который должно испускать Солнце, если в его недрах имеют место ядерные реакции. Хорошо известно, что нейтрино чрезвычайно слабо взаимодействует с другими элементарными частицами. Так, например, нейтрино может почти без поглощения пролететь через всю толщу Солнца, в то время как рентгеновское излучение может пройти без поглощения только через несколько миллиметров вещества солнечных недр. Если представить себе, что через Солнце проходит мощный пучок нейтрино с энергией каждой частицы в

    Окружающий нас мир состоит из различных химических элементов. Как образовались эти элементы в естественных условиях? В настоящее время общепризнанной является точка зрения, что элементы, из которых состоит Солнечная система, образовались в ходе звездной эволюции. С чего начинается образование звезды? Звезды конденсируются под действием гравитационных сил из гигантских газовых молекулярных облаков (термин “молекулярный” означает, что газ состоит в основном из вещества в молекулярной форме). Масса вещества, сосредоточенного в молекулярных облаках, составляет значительную часть всей массы галактик. Эти газовые облака первичного вещества состоят преимущественно из ядер водорода. Небольшую примесь составляют ядра гелия, образовавшиеся в результате первичного нуклеосинтеза в дозвездную эпоху.
    Когда масса вещества звезды в результате аккреции достигает 0.1 массы Солнца, температура в центре звезды достигает 1 млн K и в жизни протозвезды начинается новый этап - реакции термоядерного синтеза. Однако эти термоядерные реакции существенно отличаются от реакций, протекающих в звездах, находящихся в стационарном состоянии, типа Солнца. Дело в том, что протекающие на Солнце реакции синтеза:

    1 H + 1 H → 2 H + e + + e

    требуют более высокой температуры ~10 млн K. Температура же в центре протозвезды составляет всего 1 млн K. При такой температуре эффективно протекает реакция слияния дейтерия (d 2 H):

    2 H + 2 H → 3 He + n + Q,

    где Q = 3.26 МэВ - выделяющаяся энергия.
    Дейтерий также как и 4 He образуется на дозвездной стадии эволюции Вселенной и его содержание в веществе протозвезды составляет 10 -5 от содержания протонов. Однако даже этого небольшого количества достаточно для появления в центре протозвезды эффективного источника энергии.
    Непрозрачность протозвездного вещества приводит к тому, что в звезде начинают возникать конвективные потоки газа. Нагретые пузыри газа устремляются от центра звезды к периферии. А холодное вещество с поверхности спускается к центру протовезды и поставляет дополнительное количество дейтерия. На следующем этапе горения дейтерий начинает перемещаться к периферии протозвезды, разогревая её внешнюю оболочку, что приводит к разбуханию протозвезды. Протозвезда с массой, равной массе Солнца, имеет радиус, в пять раз превышающий солнечный.
    Сжатие звездного вещества за счет гравитационных сил приводит к повышению температуры в центре звезды, что создает условия для начала ядерной реакции горения водорода (рис.1).

    Когда температура в центре звезды повышается до 10-15 млн. K, кинетические энергии сталкивающихся ядер водорода оказываются достаточными для преодоления кулоновского отталкивания и начинаются ядерные реакции горения водорода. Ядерные реакции начинаются в ограниченной центральной части звезды. Начавшиеся термоядерные реакции сразу же останавливают дальнейшее сжатие звезды. Тепло, выделяющееся в процессе термоядерной реакции горения водорода, создает давление, которое противодействует гравитационному сжатию и не позволяет звезде коллапсировать. Происходит качественное изменение механизма выделения энергии в звезде. Если до начала ядерной реакции горения водорода нагревание звезды происходило за счет гравитационного сжатия, то теперь открывается другой механизм - энергия выделяется за счет ядерных реакций синтеза. Звезда приобретает стабильные размеры и светимость, которые для звезды с массой, близкой к солнечной, не меняются в течение миллиардов лет, пока происходит сгорание водорода. Это самая длительная стадия в звездной эволюции. Таким образом, начальный этап термоядерных реакций синтеза состоит в образовании ядер гелия из четырех ядер водорода. По мере того, как в центральной части звезды происходит горение водорода, его запасы там истощаются и происходит накопление гелия. В центре звезды формируется гелиевое ядро. Когда водород в центре звезды выгорел, энергия за счет термоядерной реакции горения водорода не выделяется и в действие вновь вступают силы гравитации. Гелиевое ядро начинает сжиматься. Сжимаясь, ядро звезды начинает нагреваться еще больше, температура в центре звезды продолжает расти. Кинетическая энергия сталкивающихся ядер гелия увеличивается и достигает величины, достаточной для преодоления сил кулоновского отталкивания.

    Начинается следующий этап термоядерной реакции - горение гелия. В результате ядерных реакций горения гелия образуются ядра углерода. Затем начинаются реакции горения углерода, неона, кислорода. По мере горения элементов с большим Z температура и давление в центре звезды увеличиваются со все возрастающей скоростью, что в свою очередь увеличивает скорость ядерных реакций (рис.2).
    Если для массивной звезды (масса звезды ~ 25 масс Солнца) реакция горения водорода продолжается несколько миллионов лет, то горение гелия происходит в десять раз быстрее. Процесс горения кислорода длится около 6 месяцев, а горение кремния происходит за сутки. Какие элементы могут образоваться в звездах в последовательной цепочке термоядерных реакций синтеза? Ответ очевиден. Ядерные реакции синтеза более тяжелых элементов могут продолжаться до тех пор, пока возможно выделение энергии. На завершающем этапе термоядерных реакций в процессе горения кремния образуются ядра в районе железа. Это конечный этап звездного термоядерного синтеза, так как ядра в районе железа имеют максимальную удельную энергию связи. Ядерные реакции, происходящие в звездах в условиях термодинамического равновесия, существенно зависят от массы звезды. Происходит это потому, что масса звезды определяет величину гравитационных сил сжатия, что в конечном итоге определяет максимальную температуру, достижимую в центре звезды. В табл. 1 приведены результаты теоретического расчета возможных ядерных реакций синтеза для звезд различной массы.

    Таблица 1

    Теоретический расчет возможных ядерных реакций в звездах различной массы

    Если начальная масса звезды превышает 10M, конечной стадией её эволюции является так называемый “взрыв сверхновой”. Когда в массивной звезде иссякают ядерные источники энергии, гравитационные силы продолжают сжимать центральную часть звезды. Давления вырожденного электронного газа недостаточно для противодействия силам сжатия. Сжатие приводит к повышению температуры. При этом температура поднимается настолько, что начинается расщепление ядер железа, из которого состоит центральная часть (ядро) звезды, на нейтроны, протоны и α-частицы. При таких высоких температурах (T ~ 5·10 9 K) происходит эффективное превращение пары протон + электрон в пару нейтрон + нейтрино. Так как сечение взаимодействия низкоэнергичных нейтрино (E ν < 10МэВ) с веществом мало (σ ~ 10 -43 см 2), то нейтрино быстро покидают центральную часть звезды, эффективно унося энергию и охлаждая ядро звезды. Распад ядер железа на более слабо связанные фрагменты также интенсивно охлаждает центральную область звезды. Следствием резкого уменьшения температуры в центральной части звезды является окончательная потеря устойчивости в звезде. За несколько секунд ядро звезды коллапсирует в сильно сжатое состояние нейтронную звезду или черную дыру. Происходит взрыв сверхновой с выделением огромной энергии. В результате образования ударной волны внешняя оболочка нагревается до температуры ~ 10 9 K и выбрасывается в окружающее пространство под действием давления излучения и потока нейтрино. Невидимая до этого глазом звезда мгновенно вспыхивает. Энергия, излучаемая сверхновой в видимом диапазоне, сравнима с излучением целой галактики.
    В момент взрыва сверхновой температура резко повышается и во внешних слоях звезды происходят ядерные реакции так называемый взрывной нуклеосинтез. В частности, образующиеся интенсивные потоки нейтронов приводят к появлению элементов в области массовых чисел A > 60. Взрыв сверхновой довольно редкое событие. В нашей Галактике, насчитывающей ~ 10 11 звезд, за последние 1000 лет было замечено всего 3 вспышки сверхновых. Однако частота вспышек сверхновых и количество вещества, выбрасываемого в межзвездное пространство, вполне достаточны для объяснения интенсивности космических лучей. После взрыва сверхновой уплотнившееся ядро звезды может образовать нейтронную звезду или черную дыру в зависимости от массы вещества, оставшегося в центральной части взорвавшейся сверхновой.
    Таким образом, внутри звезды происходит переплавка водорода в более тяжелые элементы. Затем образовавшиеся элементы рассеиваются в окружающее пространство в результате взрыва сверхновых звезд или в менее катастрофических процессах, происходящих в красных гигантах. Выброшенное в межзвездное пространство вещество используется снова в процессе образования и эволюции звезд второго и последующих поколений. В процессе эволюции звезд населения I и населения II происходит образование все более тяжелых элементов.

    Как и любые тела в природе, звезды тоже не могут оставаться неизменными. Они рождаются, развиваются и, наконец, «умирают». Эволюция звезд занимает миллиарды лет, а вот по поводу времени их образования ведутся споры. Раньше астрономы считали, что процесс их «рождения» из звездной пыли требует миллионы лет, но не так давно были получены фотографии области неба из состава Большой Туманности Ориона. За несколько лет там возникло небольшое

    На снимках 1947 года в этом месте была зафиксирована небольшая группа звездоподобных объектов. К 1954 году некоторые из них уже стали продолговатыми, а еще через пять лет эти объекты распались на отдельные. Так впервые процесс рождения звезд проходил буквально на глазах у астрономов.

    Давайте подробно разберем, как проходит строение и эволюция звезд, с чего начинается и чем заканчивается их бесконечная, по людским меркам, жизнь.

    Традиционно ученые предполагают, что звезды образуются в результате конденсации облаков газо-пылевой среды. Под действием гравитационных сил из образовавшихся облаков формируется непрозрачный газовый шар, плотный по своей структуре. Его внутреннее давление не может уравновесить сжимающие его гравитационные силы. Постепенно шар сжимается настолько, что температура звездных недр повышается, и давление горячего газа внутри шара уравновешивает внешние силы. После этого сжатие прекращается. Длительность этого процесса зависит от массы звезды и обычно составляет от двух до нескольких сотен миллионов лет.

    Строение звезд предполагает очень высокую температуру в их недрах, что способствует беспрерывным термоядерным процессам (водород, который их образует, превращается в гелий). Именно эти процессы являются причиной интенсивного излучения звезд. Время, за которое они расходуют имеющийся запас водорода, определяется их массой. От этого же зависит и длительность излучения.

    Когда запасы водорода истощаются, эволюция звезд подходит к этапу образования Это происходит следующим образом. После прекращения выделения энергии гравитационные силы начинают сжимать ядро. При этом звезда значительно увеличивается в размерах. Светимость также возрастает, поскольку процесс продолжается, но только в тонком слое на границе ядра.

    Этот процесс сопровождается повышением температуры сжимающегося гелиевого ядра и превращением ядер гелия в ядра углерода.

    По прогнозам, наше Солнце может превратиться в красного гиганта через восемь миллиардов лет. Радиус его при этом увеличится в несколько десятков раз, а светимость вырастет в сотни раз по сравнению с нынешними показателями.

    Продолжительность жизни звезды, как уже отмечалось, зависит от ее массы. Объекты с массой, которая меньше солнечной, очень экономно «расходуют» запасы своего поэтому могут светить десятки миллиардов лет.

    Эволюция звезд заканчивается образованием Это происходит с теми из них, чья масса близка к массе Солнца, т.е. не превышает 1,2 от нее.

    Гигантские звезды, как правило, быстро истощают свой запас ядерного горючего. Это сопровождается значительной потерей массы, в частности, за счет сброса внешних оболочек. В результате остается только постепенно остывающая центральная часть, в которой ядерные реакции полностью прекратились. Со временем такие звезды прекращают свое излучение и становятся невидимыми.

    Но иногда нормальная эволюция и строение звезд нарушается. Чаще всего это касается массивных объектов, исчерпавших все виды термоядерного горючего. Тогда они могут преобразовываться в нейтронные, или И чем больше ученые узнают об этих объектах, тем больше возникает новых вопросов.

    Звезда -- небесное тело, в котором идут, шли или будут идти термоядерные реакции. Звезды представляют собой массивные светящиеся газовые (плазменные) шары. Образующиеся из газово-пылевой среды (водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности -- тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Звезды - это огромные объекты, шаровидной формы, состоящие из гелия и водорода, а также других газов. Энергия звезды содержится в ее ядре, где ежесекундно гелий взаимодействует с водородом. Как все органическое в нашей вселенной, звезды возникают, развиваются, изменяются и исчезают - этот процесс занимает миллиарды лет и называется процессом «Эволюции звезд».

    1. Эволюция звезд

    Эволюция звезд -- последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. Звезда начинает свою жизнь как холодное разряжённое облако межзвёздного газа (разряженная газовая среда, заполняющая всё пространство между звёздами), сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации (универсальное фундаментальное взаимодействие между всеми материальными телами) переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15-20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной -- в ней доминируют реакции водородного цикла. В таком состоянии он пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга -- Расселла (рис. 1) (показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды, 1910 год), пока не закончатся запасы топлива в его ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии. В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается -- звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий -- в углерод, углерод -- в кислород, кислород -- в кремний, и наконец -- кремний в железо).

    2. Термоядерный синтез в недрах звезд

    К 1939 году было установлено, что источником звёздной энергии является термоядерный синтез, происходящий в недрах звёзд. Большинство звёзд излучаются потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным, или p-p-циклом, и углеродно-азотным, или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых -- вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции. Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см?. Молекулярное облако имеет плотность около миллиона молекул на см?. Масса такого облака превышает массу Солнца в 100 000--10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике. Пока облако свободно вращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нем могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому -- столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождением облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут инициировать процесс образования звезды. Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием сил гравитационного притяжения собираться вокруг центра будущей звезды. Половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина -- на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается, и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В итоге градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент невидим. Дальнейшая эволюция протозвезды - это аккреция продолжающего падать на «поверхность» ядра вещества, которое за счет этого растет в размерах. Масса свободно перемещающегося в облаке вещества исчерпывается, и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды. Процесс формирования звёзд можно описать единым образом, но последующие стадии развития звезды почти полностью зависят от её массы, и лишь в самом конце звёздной эволюции свою роль может сыграть химический состав.

    Термоядерный синтез в недрах звёзд

    В это время для звёзд массой больше, чем 0.8 масс Солнца, ядро становится прозрачным для излучения, и возобладает лучистый перенос энергии в ядре, а наверху оболочка остается конвективной. Какими прибывают на главную последовательность звёзды меньшей массы, достоверно никто не знает, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной. Все наши представления об эволюции этих звёзд держатся на численных расчетах.

    По мере сжатия звезды, начинает увеличиваться давление вырожденного электронного газа и на каком-то радиусе звезды это давление останавливает рост центральной температуры, а затем начинает ее понижать. И для звёзд меньше 0.08 это оказывается фатальным: выделяющейся энергии в ходе ядерных реакций никогда не хватит, чтобы покрыть расходы на излучение. Такие недо-звёзды получили название коричневые карлики , и их судьба - это постоянное сжатие, пока давление вырожденного газа не остановит его, а затем - постепенное остывание с остановкой всех ядерных реакций.

    Молодые звёзды промежуточной массы

    Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

    Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербита неправильными переменными спектрального типа B-F5. У них также наблюдаются диски биполярные джеты. Скорость истечения, светимость и эффективная температура существенно больше, чем для τ Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

    Молодые звёзды с массой больше 8 солнечных масс

    На самом деле это уже нормальные звёзды. Пока накапливалась масса гидростатического ядра, звезда успела проскочить все промежуточные стадии и разогреть ядерные реакции до такой степени, чтоб они компенсировали потери на излучение. У данных звёзд истечения массы и светимость настолько велика, что не просто останавливает коллапсирование оставшихся внешних областей, но толкает их обратно. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего этим и объясняется отсутствие в нашей галактике звёзд больше чем 100-200 массы Солнца.

    Середина жизненного цикла звезды

    Среди сформировавшихся звёзд встречается огромное многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,08 до более чем 200 солнечных масс. Светимость и цвет звезды зависит от температуры её поверхности, которая, в свою очередь, определяется массой. Все, новые звезды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь не идёт о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. То есть, речь идёт, фактически, лишь об изменении параметров звезды.

    То, что происходит в дальнейшем, вновь зависит от массы звезды.

    Поздние годы и гибель звёзд

    Старые звёзды с малой массой

    На сегодняшний день достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода. Поскольку возраст вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

    Некоторые звёзды могут синтезировать гелий лишь в некоторых активных участках, что вызывает нестабильность и сильные солнечные ветры . В этом случае образования планетарной туманности не происходит, а звезда лишь испаряется, становясь даже меньше чем коричневый карлик .

    Но звезда с массой менее 0,5 солнечной никогда не будет в состоянии синтезировать гелий даже после того, как в ядре прекратятся реакции с участием водорода. Звёздная оболочка у них недостаточно массивна, чтобы преодолеть давление, производимое ядром. К таким звёздам относятся красные карлики (такие как Проксима Центавра), срок пребывания которых на главной последовательности составляет сотни миллиардов лет. После прекращения в их ядре термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

    Звёзды среднего размера

    При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы красного гиганта , её внешние слои продолжают расширяться, ядро сжиматься, и начинаются реакции синтеза углерода из гелия . Синтез высвобождает много энергии, давая звезде временную отсрочку. Для звезды по размеру схожей с Солнцем, этот процесс может занять около миллиарда лет.

    Изменения в величине испускаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя перемены в размере, температуре поверхности и выпуске энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных солнечных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название звёзд позднего типа , OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат тяжёлыми элементами, производимыми в недрах звезды, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении центральной звезды в таких оболочках формируются идеальные условия для активизации мазеров .

    Реакции сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в конечном итоге сообщают внешним слоям достаточно кинетической энергии , чтобы быть выброшенными и превратиться в планетарную туманность . В центре туманности остаётся ядро звезды, которое, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли .

    Белые карлики

    Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

    У звезд более массивных, чем Солнце , давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны , упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

    Сверхмассивные звёзды

    После того, как внешние слои звезды, с массой большей чем пять солнечных, разлетелись образовав красный сверхгигант , ядро вследствие сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются тяжёлые элементы, что временно сдерживает коллапс ядра.

    В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы , из кремния синтезируется железо -56. Вплоть до этого момента синтез элементов высвобождал большое количество энергии, однако именно ядро железа -56 обладает максимальным дефектом массы и образование более тяжёлых ядер невыгодно. Поэтому когда железное ядро звезды достигает определённой величины, то давление в нём уже не в состоянии противостоять колоссальной силе гравитации, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

    То что происходит в дальнейшем, не до конца ясно. Но что бы это ни было, это в считанные секунды приводит к взрыву сверхновой звезды невероятной силы.

    Сопутствующий этому всплеск нейтрино провоцирует ударную волну . Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вырываемыми из ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа.

    Взрывная волна и струи нейтрино уносят материал прочь от умирающей звезды в межзвёздное пространство. В последующем, перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим мусором, и возможно, участвовать в образовании новых звёзд, планет или спутников.

    Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также стоит под вопросом, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта:

    Нейтронные звёзды

    Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны упасть на атомное ядро, где они, сливаясь с протонами , образуют нейтроны . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

    Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые совершают 600 оборотов в секунду. Когда ось, соединяющая северный и южный магнитный полюса этой быстро вращающейся звезды, указывает на Землю, можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звезды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

    Чёрные дыры

    Далеко не все сверхновые становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс звезды продолжится и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше Шварцшильдовского . После этого звезда становится чёрной дырой.

    Существование чёрных дыр было предсказано общей теорией относительности . Согласно ОТО материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовая механика делает возможным исключения из этого правила.

    Остаётся ряд открытых вопросов. Главный среди них: «А есть ли черные дыры вообще?» Ведь чтобы сказать точно, что данный объект это черная дыра необходимо наблюдать его горизонт событий. Все попытки это сделать оканчивались провалом. Но надежда пока есть, так как некоторые объекты нельзя объяснить без привлечения аккреции , причем аккреции на объект без твердой поверхности, но само существование черных дыр это не доказывает.

    Также открыты вопросы: возможен ли коллапс звезды непосредственно в чёрную дыру, минуя сверхновую? Существуют ли сверхновые, которые впоследствии станут чёрными дырами? Каково точное влияние изначальной массы звезды на формирование объектов в конце её жизненного цикла?



    Читайте также: