Элементы с ковалентной неполярной связью. Ковалентная связь. Основные свойства ковалентных связей

Различают четыре основных вида химической связи:

1. Ковалентная связь осуществляется общими электронными парами. Она образуется в результате перекрывания электронных облаков (орбиталей) атомов неметаллов. Чем больше перекрывание электронных облаков, тем прочнее химическая связь. Ковалентная связь бывает полярная и неполярная. Ковалентная неполярная связь возникает между атомами одного вида, у которых электроотрицательность одинакова. (Электроотрицательность – это свойство атомов притягивать к себе электроны). Например, образование молекулы водорода можно показать схемой:

H . + . H = H (: ) H H 2

или H . + . H = H – H

Аналогично образуются молекулы O 2 , Cl 2 , N 2 , F 2 и др.

Неполярная ковалентная связь симметрична. Электронное облако, образованное общей (поделенной) электронной парой, одинаково принадлежит двум атомам.

Полярная ковалентная связь возникает между атомами, электроотрицательности которых отличаются, но незначительно. В этом случае общая электронная пара сдвигается в сторону более электроотрицательного элемента, например, при образовании молекулы хлороводорода электронное облако связи смещено к атому хлора. За счет этого смещения атом хлора приобретает частичный отрицательный заряд, а атом водорода – частичный положительный заряд, а образующаяся молекула является полярной.

H + Cl = H Cl H → Cl HCl

Аналогично образуются молекулы HBr, HI, HF, H 2 O, CH 4 и т.д.

Ковалентные связи бывают одинарные (осуществляются одной общей электронной парой), двойные (осущ. двумя общими электронными парами), тройные (осущ. тремя общими электронными парами). Например, в этане все связи одинарные, в этилене присутствует двойная связь, а в ацетилене – тройная связь.

Этан: CH 3 –CH 3 Этилен: CH 2 = CH 2 Ацетилен: CH ≡ CH

2. Ионная связь возникает в соединениях, образуемых атомами элементов, которые сильно отличаются по электроотрицательности, т. е. с резко противоположными свойствами (атомы металлов и неметаллов). Ионы – это заряженные частицы, в которые превращаются атомы в результате отдачи или присоединения электронов.

Ионная связь образуется за счет электростатического притяжения разноименно заряженных ионов. Например, атом натрия, отдавая свой электрон, превращается в положительно заряженный ион, а атом хлора, принимая этот электрон, превращается в отрицательно заряженный ион. За счет электростатического притяжения между ионами натрия и хлора возникает ионная связь:

Na + Cl Na + + Cl – Na + Cl –

Молекулы хлорида натрия существуют только в парообразном состоянии. В твердом (кристаллическом) состоянии ионные соединения состоят из закономерно расположенных положительных и отрицательных ионов. Молекулы в этом случае отсутствуют.

Ионную связь можно рассматривать как крайний случай ковалентной связи.

3. Металлическая связь существует в металлах и сплавах . Она осуществляется за счет притяжения между ионами металла и обобществленными электронами (это валентные электроны, которые покинули свои орбитали и перемещаются по всему куску металла между ионами – « электронный газ »).

4. Водородная связь – это своеобразная связь, которая возникает между атомом водорода одной молекулы, имеющим частичный положитедьный заряд, и электроотрицательным атомом другой или той же самой молекулы. Водородная связь может быть межмолекулярной и внутримолекулярной. HF…HF…HF.Обозначается точками. Слабее ковалентной.

Данные по энергии ионизации (ЭИ), ПЭИ и составу стабильных молекул - их настоящие значения и сравнения - как свободных атомов, так и атомов, связанных в молекулы, позволяют нам понять как атомы образуют молекулы посредством механизма ковалентной связи.

КОВАЛЕНТНАЯ СВЯЗЬ - (от латинского «со» совместно и «vales» имеющий силу) (гомеополярная связь), химическая связь между двумя атомами, возникающая при обобществлении электронов, принадлежавших этим атомам. Ковалентной связью соединены атомы в молекулах простых газов. Связь, при которой имеется одна общая пара электронов, называется одинарной; существуют также двойные и тройные связи.

Рассмотрим несколько примеров, чтобы увидеть, как мы можем использовать наши правила для определения количества ковалентных химических связей, которые может образовать атом, если мы знаем количество электронов на внешней оболочке данного атома и заряд его ядра. Заряд ядра и количество электронов на внешней оболочке определяются экспериментальным путем и включены в таблицу элементов.

Расчет возможного числа ковалентных связей

Для примера, подсчитаем количество ковалентных связей, которые могут образовать натрий (Na), алюминий (Al), фосфор (P), и хлор (Cl) . Натрий (Na) и алюминий (Al) имеют, соответственно 1 и 3 электрона на внешней оболочке, и, по первому правилу (для механизма образования ковалентной связи используется один электрон на внешней оболочке), они могут образовать:натрий (Na) - 1 и алюминий (Al) - 3 ковалентных связи. После образования связей количество электронов на внешних оболочках натрия (Na) и алюминия (Al) равно, соответственно, 2 и 6; т.е., менее максимального количества (8) для этих атомов. Фосфор (P) и хлор (Cl) имеют, соответственно, 5 и 7 электронов на внешней оболочке и, согласно второй из вышеназванных закономерностей, они могли бы образовать 5 и 7 ковалентных связей. В соответствии с четвертой закономерностью образование ковалентной связи, число электронов на внешней оболочке этих атомов увеличивается на 1. Согласно шестой закономерности, когда образуется ковалентная связь, число электронов на внешней оболочке связываемых атомов не может быть более 8. То есть, фосфор (P) может образовать только 3 связи (8-5 = 3), в то время как хлор (Cl) может образовать только одну (8-7 = 1).

Пример: на основании анализа мы обнаружили, что некое вещество состоит из атомов натрия (Na) и хлора (Cl) . Зная закономерности механизма образования ковалентных связей, мы можем сказать, что натрий (Na ) может образовать только 1 ковалентную связь. Таким образом, мы можем предположить, что каждый атом натрия (Na) связан с атомом хлора (Cl) посредством ковалентной связи в этом веществе, и что это вещество состоит из молекул атома NaCl . Формула строения для этой молекулы: Na - Cl. Здесь тире (-) означает ковалентную связь. Электронную формулу этой молекулы можно показать следующим образом:
. .
Na: Cl:
. .
В соответствии с электронной формулой, на внешней оболочке атома натрия (Na) в NaCl имеется 2 электрона, а на внешней оболочке атома хлора (Cl) находится 8 электронов. В данной формуле электроны (точки) между атомами натрия (Na) и хлора (Cl) являются связующими электронами. Поскольку ПЭИ у хлора (Cl) равен 13 эВ, а у натрия (Na) он равен 5,14 эВ, связующая пара электронов находится гораздо ближе к атому Cl , чем к атому Na . Если энергии ионизации атомов, образующих молекулу сильно различаются, то образовавшаяся связь будет полярной ковалентной связью.

Рассмотрим другой случай. На основании анализа мы обнаружили, что некое вещество состоит из атомов алюминия (Al) и атомов хлора (Cl) . У алюминия (Al) имеется 3 электрона на внешней оболочке; таким образом, он может образовать 3 ковалентные химические связи, в то время хлор (Cl) , как и в предыдущем случае, может образовать только 1 связь. Это вещество представлено как AlCl 3 , а его электронную формулу можно проиллюстрировать следующим образом:

Рисунок 3.1. Электронная формула AlCl 3

чья формула строения:
Cl - Al - Cl
Cl

Эта электронная формула показывает, что у AlCl 3 на внешней оболочке атомов хлора (Cl ) имеется 8 электронов, в то время, как на внешней оболочке атома алюминия (Al) их 6. По механизму образования ковалентной связи, оба связующих электрона (по одному от каждого атома) поступают на внешние оболочки связываемых атомов.

Кратные ковалентные связи

Атомы, имеющие более одного электрона на внешней оболочке, могут образовывать не одну, а несколько ковалентных связей между собой. Такие связи называются многократными (чаще кратными ) связями. Примерами таких связей служат связи молекул азота (N = N ) и кислорода (O = O ).

Связь, образующаяся при объединении одинарных атомов называется гомоатомной ковалентной связью,е сли атомы разные, то связь называется гетероатомнной ковалентной связью [греческие префексы "гомо" и "гетеро" соответственно означают одинаковые и разные].

Представим, как в действительности выглядит молекула со спаренными атомами. Самая простая молекула со спаренными атомами - это молекула водорода.

Ковалентная связь (от латинского «со» совместно и «vales» имеющий силу) осуществляется за счет электронной пары, принадлежащей обоим атомам. Образуется между атомами неметаллов.

Электроотрицательность неметаллов довольно велика, так что при химическом взаимодействии двух атомов неметаллов полный перенос электронов от одного к другому (как в случае ) невозможен. В этом случае для выполнения необходимо объединение электронов.

В качестве примера обсудим взаимодействие атомов водорода и хлора:

H 1s 1 — один электрон

Cl 1s 2 2s 2 2 p 6 3 s 2 3 p 5 — семь электронов на внешнем уровне

Каждому из двух атомов недостает по одному электрону для того, чтобы иметь завершенную внешнюю электронную оболочку. И каждый из атомов выделяет „в общее пользование” по одному электрону. Тем самым правило октета оказывается выполненным. Лучше всего изобра­жать это с помощью формул Льюиса:

Образование ковалентной связи

Обобществленные электроны принадлежат теперь обоим атомам. Атом водорода имеет два электрона (свой собственный и обобществленный электрон атома хлора), а атом хлора - восемь электронов (свои плюс обобществленный электрон атома водорода). Эти два обобществленных электрона образуют ковалентную связь между атомами водорода и хло­ра. Образовавшаяся при связывании двух атомов частица называется молекулой.

Неполярная ковалентная связь

Ковалентная связь может образоваться и между двумя одинаковы­ми атомами. Например:

Эта схема объясняет, почему водород и хлор существуют в виде двухатомных молекул. Благодаря спариванию и обобществлению двух элек­тронов удается выполнить правило октета для обоих атомов.

Помимо одинарных связей может образовываться двойная или тройная ковалентная связь, как, например, в молекулах кислорода О 2 или азота N 2 . Атомы азота имеют по пять валентных электронов, следовательно, для завершения оболочки требуется еще по три электро­на. Это достигается обобществлением трех пар электронов, как показано ниже:

Ковалентные соединения — обычно газы, жидкости или сравнитель­но низкоплавкие твердые вещества. Одним из редких исключений явля­ется алмаз, который плавится выше 3 500 °С. Это объясняется строением алмаза, который представляет собой сплошную решетку ковалентно связанных атомов углерода, а не совокупность отдельных молекул. Фак­тически любой кристалл алмаза, независимо от его размера, представля­ет собой одну огромную молекулу.

Ковалентная связь возникает при объединении электронов двух атомов неметаллов. Возникшая при этом структура называется молекулой.

Полярная ковалентная связь

В большинстве случаев два ковалентно связанных атома имеют раз­ную электроотрицательность и обобществленные электроны не принад­лежат двум атомам в равной степени. Большую часть времени они нахо­дятся ближе к одному атому, чем к другому. В молекуле хлороводорода, например, электроны, образующие ковалентную связь, располагаются ближе к атому хлора, поскольку его электроотрицательность выше, чем у водорода. Однако разница в способности притягивать электроны не столь велика, чтобы произошел полный перенос электрона с атома водо­рода на атом хлора. Поэтому связь между атомами водорода и хлора можно рассматривать как нечто среднее между ионной связью (полный перенос электрона) и неполярной ковалентной связью (симмет­ричное расположение пары электронов между двумя атомами). Частич­ный заряд на атомах обозначается греческой буквой δ. Такая связь называется полярной ковалентной связью, а о молеку­ле хлороводорода говорят, что она полярна, т. е. имеет положительно заряженный конец (атом водорода) и отрицательно заряженный конец (атом хлора).


В таблице ниже перечислены основные типы связей и примеры веществ:


Обменный и донорно-акцепторный механизм образования ковалентной связи

1) Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару.

2) Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь.

7.11. Строение веществ с ковалентной связью

Вещества, в которых из всех типов химической связи присутствует только ковалентная, делятся на две неравные группы: молекулярные (очень много) и немолекулярные (значительно меньше).
Кристаллы твердых молекулярных веществ состоят из слабо связанных между собой силами межмолекулярного взаимодействия молекул. Такие кристаллы не обладают высокой прочностью и твердостью (вспомните лед или сахар). Невысоки у них также температуры плавления и кипения (см. таблицу 22).

Таблица 22. Температуры плавления и кипения некоторых молекулярных веществ

Вещество

Вещество

H 2 – 259 – 253 Br 2 – 7 58
N 2 – 210 – 196 H 2 O 0 100
HCl – 112 – 85 P 4 44 257
NH 3 – 78 – 33 C 10 H 8 (нафталин) 80 218
SO 2 – 75 – 10 S 8 119

В отличие от своих молекулярных собратьев немолекулярные вещества с ковалентной связью образуют очень твердые кристаллы. Кристаллы алмаза (самого твердого вещества) относятся именно к этому типу.
В кристалле алмаза (рис. 7.5) каждый атом углерода связан с четырьмя другими атомами углерода простыми ковалентными связями (sр 3 -гибридизация). Атомы углерода образуют трехмерный каркас. По существу весь кристалл алмаза представляет собой одну огромную и очень прочную молекулу.
Такое же строение имеют и кристаллы кремния, широко применяемые в радиоэлектронике и электронной технике.
Если заменить половину атомов углерода в алмазе на атомы кремния, не нарушая каркасную структуру кристалла, то получится кристалл карбида кремния SiC – также очень твердого вещества, используемого как абразивный материал. Обычный кварцевый песок (диоксид кремния) тоже относится к этому типу кристаллических веществ. Кварц – очень твердое вещество; под названием " наждак" он также используется как абразивный материал. Структуру кварца легко получить, если в кристалле кремния между каждыми двумя атомами кремния вставит атомы кислорода. При этом каждый атом кремния окажется связанным с четырьмя атомами кислорода, а каждый атом кислорода – с двумя атомами кремния.

Кристаллы алмаза, кремния, кварца и подобные им по структуре называют атомными кристаллами.
Атомный кристалл – кристалл, состоящий из атомов одного или нескольких элементов, связанных химическими связями.
Химическая связь в атомном кристалле может быть ковалентной или металлической.
Как вы уже знаете, любой атомный кристалл, как и ионный, представляет собой огромную " супермолекулу" . Структурную формулу такой " супермолекулы" записать нельзя – можно только показать ее фрагмент, например:

В отличие от молекулярных веществ, вещества, образующие атомные кристаллы, – одни из самых тугоплавких (см. таблицу 23.).

Таблица 23. Температуры плавления и кипения некоторых немолекулярных веществ с ковалентными связями

Такие высокие температуры плавления вполне понятны, если вспомнить, что при плавлении этих веществ рвутся не слабые межмолекулярные, а прочные химические связи. По этой же причине многие вещества, образующие атомные кристаллы, при нагревании не плавятся, а разлагаются или сразу переходят в парообразное состояние (возгоняются), например, графит возгоняется при 3700 o С.

Кремний – Si. Очень твердые, хрупкие кристаллы кремния по виду похожи на металлические, тем не менее он – неметалл. По типу электропроводности это вещество относится к полупроводникам, что и определяет его громадное значение в современном мире. Кремний – важнейший полупроводниковый материал. Радиоприемники, телевизоры, компьютеры, современные телефоны, электронные часы, солнечные батареи и многие другие бытовые и промышленные приборы содержат в качестве важнейших элементов конструкции транзисторы, микросхемы и фотоэлементы, изготовленные из монокристаллов особочистого кремния. Технический кремний используется в производстве сталей и в цветной металлургии. По химическим свойствам кремний – довольно инертное вещество, вступает в реакции только при высокой температуре

Диоксид кремния – SiO 2 . Другое название этого вещества – кремнезем. Диоксид кремния встречается в природе в двух видах: кристаллическом и аморфном. Многие полудрагоценные и поделочные камни являются разновидностями кристаллического диоксида кремния (кварца): горный хрусталь, яшма, халцедон, агат. а опал – аморфная форма кремнезема. Кварц очень широко распространен в природе, ведь и барханы в пустынях, и песчаные отмели рек и морей – все это кварцевый песок. Кварц – бесцветное кристаллическое очень твердое и тугоплавкое вещество. По твердости он уступает алмазу и корунду, но, тем не менее, широко используется как абразивный материал. Кварцевый песок широко применяется в строительстве и промышленности стройматериалов. Кварцевое стекло используется для изготовления лабораторной посуды и научных приборов, так как оно не растрескивается при резком изменении температуры. По своим химическим свойствам диоксид кремния – кислотный оксид, но со щелочами реагирует только при сплавлении. При высоких температурах из диоксида кремния и графита получают карбид кремния – карборунд. Карборунд – второе по твердости после алмаза вещество, его тоже используют для изготовления шлифовальных кругов и " наждачной" бумаги.

7.12. Полярность ковалентной связи. Электроотрицательность

Вспомним, что изолированные атомы разных элементов имеют разную склонность как отдавать, так и принимать электроны. Эти различия сохраняется и после образования ковалентной связи. То есть, атомы одних элементов стремятся притянуть к себе электронную пару ковалентной связи сильнее, чем атомы других элементов.

Рассмотрим молекулу HCl.
На этом примере посмотрим, как можно оценить смещение электронного облака связи, используя молярные энергии ионизации и средства к электрону. 1312 кДж/моль, а 1251 кДж/моль – различие незначительно, примерно 5%. 73 кДж/моль, а 349 кДж/моль – здесь различие куда больше: энергия сродства к электрону атома хлора почти в пять раз больше таковой для атома водорода. Отсюда можно сделать вывод, что электронная пара ковалентной связи в молекуле хлороводорода в значительной степени смещена в сторону атома хлора. Иными словами, электроны связи больше времени проводят вблизи атома хлора, чем вблизи атома водорода. Такая неравномерность распределения электронной плотности приводит к перераспределению электрических зарядов внутри молекулы.На атомах возникают частичные (избыточные) заряды; на атоме водорода – положительный, а на атоме хлора – отрицательный.

В этом случае говорят, что связь поляризуется, а сама связь называется полярной ковалентной связью.
Если же электронная пара ковалентной связи не смещена ни к какому из связываемых атомов, то есть, электроны связи в равной степени принадлежат связываемым атомам, то такая связь называется неполярной ковалентной связью.
Понятие " формальный заряд" в случае ковалентной связи также применимо. Только в определении речь должна идти не об ионах, а об атомах. В общем случае может быть дано следующее определение.

В молекулах, ковалентные связи в которых образовались только по обменному механизму, формальные заряды атомов равны нулю. Так, в молекуле HCl формальные заряды на атомах как хлора, так и водорода равны нулю. Следовательно, в этой молекуле реальные (эффективные) заряды на атомах хлора и водорода равны частичным (избыточным) зарядам.
Далеко не всегда по молярным энергиям ионизации и сродства к электрод легко определить знак частичного заряда на атоме того или другого элемента в молекуле, то есть оценить, в какую сторону смещены электронные пары связей. Обычно для этих целей используют еще одну энергетическую характеристику атома – электроотрицательность.

В настоящее время единого, общепринятого обозначения для электроотрицательности нет. Можно обозначать ее буквами Э/О. Также пока нет и единого, общепринятого метода расчета электроотрицательности. Упрощенно ее можно представить как полусумму молярных энергий ионизации и сродства к электрону – таким и был один из первых способов ее расчета.
Абсолютные значения электроотрицательностей атомов различных элементов используются очень редко. Чаще используют относительную электроотрицательность, обозначаемую буквой c . Первоначально эта величина определялась как отношение электроотрицательности атома данного элемента к электроотрицательности атома лития. В дальнейшем методы ее расчета несколько изменились.
Относительная электроотрицательность – величина безразмерная. Ее значения приведены в приложении 10.

Так как относительная электроотрицательность зависит прежде всего от энергии ионизации атома (энергия сродства к электрону всегда намного меньше), то в системе химических элементов она изменяется примерно также, как и энергия ионизации, то есть возрастает по диагонали от цезия (0,86) ко фтору (4,10). Приведенные в таблице значения относительной электроотрицательности гелия и неона не имеют практического значения, так как эти элементы не образуют соединений.

Используя таблицу электроотрицательности, можно легко определить в сторону какого из двух атомов смещены электроны, связывающие эти атомы, и, следовательно, знаки частичных зарядов, возникающих на этих атомах.

H 2 O Связь полярная
H 2 Атомы одинаковые H--H Связь неполярная
CO 2 Связь полярная
Cl 2 Атомы одинаковые Cl--Cl Связь неполярная
H 2 S Связь полярная

Таким образом, в случае образования ковалентной связи между атомами разных элементов такая связь всегда будет полярной, а в случае образования ковалентной связи между атомами одного элемента (в простых веществах) связь в большинстве случаев неполярна.

Чем больше разность электроотрицательностей связываемых атомов, тем более полярной оказывается ковалентная связь между этими атомами.

Сероводород H 2 S – бесцветный газ с характерным запахом, присущим тухлым яйцам; ядовит. Он термически неустойчив, при нагревании разлагается. Сероводород мало растворим в воде, его водный раствор называют сероводородной кислотой. Сероводород провоцирует (катализирует) коррозию металлов, именно этот газ " повинен" в потемнении серебра.
В природе он содержится в некоторых минеральных водах. В процессе жизнедеятельности его образуют некоторые бактерии. Сероводород губителен для всего живого. Сероводородный слой обнаружен в глубинах Черного моря и внушает опасения ученым: жизнь морских обитателей там находится под постоянной угрозой.

ПОЛЯРНАЯ КОВАЛЕНТНАЯ СВЯЗЬ,НЕПОЛЯРНАЯ КОВАЛЕНТНАЯ СВЯЗЬ, АБСОЛЮТНАЯ ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ, ОТНОСИТЕЛЬНАЯ ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ.
1.Эксперименты и последующие расчеты показали, что эффективный заряд кремния в тетрафториде кремния равен +1,64 е, а ксенона в гексафториде ксенона +2,3 е. Определите значения частичных зарядов на атомах фтора в этих соединениях. 2. Составьте структурные формулы следующих веществ и, используя обозначения " " и " " , охарактеризуйте полярность ковалентных связей в молекулах этих соединений: а) CH 4 , CCl 4 , SiCl 4 ; б) H 2 O, H 2 S, H 2 Se, H 2 Te; в) NH 3 , NF 3 , NCl 3 ; г) SO 2 , Cl 2 O, OF 2 .
3.Пользуясь таблицей электроотрицательностей, укажите, в каком из соединений связь более полярна: а) CCl 4 или SiCl 4 ; б) H 2 S или H 2 O; в) NF 3 или NCl 3 ; г) Cl 2 O или OF 2 .

7.13. Донорно-акцепторный механизм образования связи

В предыдущих параграфах вы подробно познакомились с двумя типами связи: ионной и ковалентной. Вспомним, что ионная связь образуется при полной передаче электрона от одного атома другому. Ковалентная – при обобществлении неспаренных электронов связываемых атомов.

Кроме этого, существует еще один механизм образования связи. Рассмотрим его на примере взаимодействия молекулы аммиака с молекулой трифторида бора:

В результате между атомами азота и бора возникает и ковалентная, и ионная связь. При этом атом азота является донором электронной пары (" дает" ее для образования связи), а атом бора – акцептором (" принимает" ее при образовании связи). Отсюда и название механизма образования такой связи – " донорно-акцепторный" .

При образовании связи по донорно-акцепторному механизму образуются одновременно и ковалентная связь, и ионная.
Конечно, после образования связи за счет разницы в электроотрицательности связываемых атомов происходит поляризация связи, возникают частичные заряды, снижающие эффективные (реальные) заряды атомов.

Рассмотрим другие примеры.

Если рядом с молекулой аммиака окажется сильно полярная молекула хлороводорода, в которой на атоме водорода имеется значительный частичный заряд , то в этом случае роль акцептора электронной пары будет выполнять атом водорода. Его 1s -АО хоть и не совсем пустая, как у атома бора в предыдущем примере, но электронная плотность в облаке этой орбитали существенно понижена.

Пространственное строение получившегося катиона, иона аммония NH 4 , подобно строению молекулы метана, то есть все четыре связи N-H совершенно одинаковы.
Образование ионных кристаллов хлорида аммония NH 4 Cl можно наблюдать, смешав газообразный аммиак с газообразным хлороводородом:

NH 3(г) + HCl (г) = NH 4 Cl (кр)

Донором электронной пары может быть не только атом азота. Им может быть, например, атом кислорода молекулы воды. С тем же хлороводородом молекула воды будет взаимодействовать следующим образом:

Образующийся катион H 3 O называется ионом оксония и, как вы скоро узнаете, имеет огромное значение в химии.
В заключение рассмотрим электронное строение молекулы угарного газа (монооксида углерода) СО:

В ней, кроме трех ковалентных связей (тройной связи), есть еще и ионная связь.
Условия образования связи по донорно-акцепторному механизму:
1) наличие у одного из атомов неподеленной пары валентных электронов;
2) наличие у другого атома свободной орбитали на валентном подуровне.
Донорно-акцепторный механизм образования связи распространен довольно широко. Особенно часто он встречается при образовании соединений d -элементов. Атомы почти всех d -элементов имеют много свободных валентных орбиталей. Поэтому они являются активными акцепторами электронных пар.

ДОНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ ОБРАЗОВАНИЯ СВЯЗИ, ИОН АММОНИЯ, ИОН ОКСОНИЯ, УСЛОВИЯ ОБРАЗОВАНИЯ СВЯЗИ ПО ДОНОРНО-АКЦЕПТОРНОМУ МЕХАНИЗМУ.
1.Составьте уравнения реакций и схемы образования
а) бромида аммония NH 4 Br из аммиака и бромоводорода;
б) сульфата аммония (NH 4) 2 SO 4 из аммиака и серной кислоты.
2.Составьте уравнения реакций и схемы взаимодействия а) воды с бромоводородом; б) воды с серной кислотой.
3.Какие атомы в четырех предыдущих реакциях являются донорами электронной пары, а какие акцепторами? Почему? Ответ поясните диаграммами валентных подуровней.
4.Структурная формула азотной кислоты Углы между связями O– N– O близки к 120 o . Определите:
а) тип гибридизации атома азота;
б) какая АО атома азота принимает участие в образовании -связи;
в) какая АО атома азота принимает участие в образовании -связи по донорно-акцепторному механизму.
Как вы думаете, чему примерно равен угол между связями H– O– N в этой молекуле? 5.Составьте структурную формулу цианид-иона CN (отрицательный заряд – на атоме углерода). Известно, что цианиды (соединения, содержащие такой ион) и угарный газ СО – сильные яды, и биологическое действие их очень близко. Предложите свое объяснение близости их биологического действия.

7.14. Металлическая связь. Металлы

Ковалентная связь образуется между атомами, близкими по склонности к отдаче и присоединению электронов, только тогда, когда размеры связываемых атомов невелики. В этом случае электронная плотность в области перекрывания электронных облаков значительна, и атомы оказываются прочно связанными, как, например, в молекуле HF. Если хотя бы один из связываемых атомов имеет большой радиус, образование ковалентной связи становится менее выгодным, так как электронная плотность в области перекрывания электронных облаков у больших атомов значительно меньше, чем у маленьких. Пример такой молекулы с менее прочной связью – молекула HI (пользуясь таблицей 21, сравните энергии атомизации молекул HF и HI).

И все-таки между большими атомами (r o > 1,1) возникает химическая связь, но в этом случае она образуется за счет обобществления всех (или части) валентных электронов всех связываемых атомов. Например, в случае атомов натрия обобществляются все 3s -электроны этих атомов, при этом образуется единое электронное облако:

Атомы образуют кристалл с металлической связью.
Так могут связываться между собой как атомы одного элемента, так и атомы разных элементов. В первом случае образуются простые вещества, называемые металлами , а во втором – сложные вещества, называемые интерметаллическими соединениями .

Из всех веществ с металлической связью между атомами в школе вы будете издать только металлы. Каково же пространственное строение металлов? Металлический кристалл состоит из атомных остовов , оставшихся после обобществления валентных электронов, и электронного облака обобществленных электронов. Атомные остовы обычно образуют плотнейшую упаковку, а электронное облако занимает весь оставшийся свободным объем кристалла.

Основными видами плотнейших упаковок являются кубическая плотнейшая упаковка (КПУ) и гексагональная плотнейшая упаковка (ГПУ). Названия этих упаковок связаны с симметрией кристаллов, в которых они реализуются. Некоторые металлы образуют кристаллы с неплотнейшей упаковкой – объемноцентрированной кубической (ОЦК). Объемные и шаростержневые модели этих упаковок показаны на рисунке 7.6.
Кубическую плотнейшую упаковку образуют атомы Cu, Al, Pb, Au и некоторых других элементов. Гексагональную плотнейшую упаковку – атомы Be, Zn, Cd, Sc и ряд других. Объемноцентрированная кубическая упаковка атомов присутствует в кристаллах щелочных металлов, элементов VB и VIB групп. Некоторые металлы при разных температурах могут иметь разную структуру. Причины таких отличий и особенностей строения металлов до сих пор до конца не выяснены.
При плавлении металлические кристаллы превращаются в металлические жидкости . Тип химической связи между атомами при этом не изменяется.
Металлическая связь не обладает направленностью и насыщаемостью. В этом отношении она похожа на ионную связь.
В случае интерметаллических соединений можно говорить и о поляризуемости металлической связи.
Характерные физические свойства металлов:
1) высокая электропроводность;
2) высокая теплопроводность;
3) высокая пластичность.

Температуры плавления разных металлов очень сильно отличаются друг от друга: наименьшая температура плавления у ртути (- 39 o С), а наибольшая - у вольфрама (3410 o С).

Бериллий Be - светло-серый легкий достаточно твердый, но обычно хрупкий металл. Температура плавления 1287 o С. На воздухе он покрывается оксидной пленкой. Бериллий - достаточно редкий металл, живые организмы в процессе своей эволюции практически не контактировали с ним, поэтому и неудивительно, что он ядовит для животного мира. Применяется он в ядерной технике.

Цинк Zn - белый с голубоватым оттенком мягкий металл. Температура плавления 420 o С. На воздухе и в воде покрывается тонкой плотной пленкой оксида цинка, препятствующей дальнейшему окислению. В производстве используется для оцинковки листов, труб, проволоки, защищая железо от коррозии.
Цинк входит в состав многих сплавов, например, мельхиора и нейзильбера; из его сплавов чеканят монеты. Цинк - составная часть латуней, широко используемых в машиностроении. Сплавы, содержащие цинк, применяют для отливки типографских шрифтов.

Вольфрам W. Это самый тугоплавкий из всех металлов: температура плавления вольфрама 3387 o С. Обычно вольфрам довольно хрупкий, но после тщательной очистки становится пластичным, что позволяет вытягивать из него тонкую проволоку, из которой делают нити электрических лампочек. Однако большая часть получаемого вольфрама идет на производство твердых и износостойких сплавов, способных сохранять эти свойства при нагревании даже до 1000 o С.

МЕТАЛЛ, ИНТЕРМЕТАЛЛИЧЕСКОЕ СОЕДИНЕНИЕ, МЕТАЛЛИЧЕСКАЯ СВЯЗЬ, ПЛОТНЕЙШАЯ УПАКОВКА.
1.Для характеристики различных упаковок используется понятие " коэффициент заполнения пространства" , то есть отношение объема атомов к объему кристалла

где V a - объем атома,
Z - число атомов в элементарной ячейке,
V я - объём элементарной ячейки.
Атомы в этом случае представляются жесткими шарами радиуса R , соприкасающимися друг с другом. Объем шара V ш = (4/3)R 3 .
Определяйте коэффициент заполнения пространства для КПУ и ОЦК упаковки.
2.Используя значения металлических радиусов (приложение 9), рассчитайте размер элементарной ячейки а) меди (КПУ), б) алюминия (КПУ) и в) цезия (ОЦК).

Ковалентная, ионная и металлическая – три основных типа химических связей.

Познакомимся подробнее с ковалентной химической связью . Рассмотрим механизм ее возникновения. В качестве примера возьмем образование молекулы водорода:

Сферически симметричное облако, образованное 1s-электроном, окружает ядро свободного атома водорода. Когда атомы сближаются до определенного расстояния, происходит частичное перекрывание их орбиталей (см. рис.), в результате чего появляется молекулярное двухэлектронное облако между центрами обоих ядер, которое обладает максимальной электронной плотностью в пространстве между ядрами. При увеличении же плотности отрицательного заряда происходит сильное возрастание сил притяжения между молекулярным облаком и ядрами.

Итак, мы видим, что ковалентная связь образуется путем перекрывания электронных облаков атомов, которое сопровождается выделением энергии. Если расстояние между ядрами у сблизившихся до касания атомов составляет 0,106 нм, тогда после перекрывания электронных облаков оно составит 0,074 нм. Чем больше перекрывание электронных орбиталей, тем прочнее химическая связь.

Ковалентной называется химическая связь, осуществляемая электронными парами . Соединения с ковалентной связью называют гомеополярными или атомными .

Существуют две разновидности ковалентной связи : полярная и неполярная .

При неполярной ковалентной связи образованное общей парой электронов электронное облако распределяется симметрично относительно ядер обоих атомов. В качестве примера могут выступать двухатомне молекулы, которые состоят из одного элемента: Cl 2 , N 2 , H 2 , F 2 , O 2 и другие, электронная пара в которых в принадлежит обоим атомам в одинаковой мере.

При полярной ковалентной связи электронное облако смещено к атому с большей относительной электроотрицательностью. Например молекулы летучих неорганических соединений таких как H 2 S, HCl, H 2 O и другие.

Образование молекулы HCl можно представить в следущем виде:

Т.к. относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1), электронная пара смещается к атому хлора.

Помимо обменного механизма образования ковалентной связи – за счет перекрывания, также существует донорно-акцепторный механизм ее образования. Это механизм, при котором образование ковалентной связи происходит за счет двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора). Давайте рассмотрим пример механизма образования аммония NH 4 + .В молекуле аммиака у атома азота есть двухэлектронное облако:

Ион водорода имеет свободную 1s-орбиталь, обозначим это как .

В процессе образования иона аммония двухэлектронное облако азота становится общим для атомов азота и водорода, это значит оно преобразуется в молекулярное электронное облако. Следовательно, появляется четвертая ковалентная связь. Можно представить процесс образования аммония такой схемой:

Заряд иона водорода рассредоточен между всеми атомами, а двухэлектронное облако, которое принадлежит азоту, становится общим с водородом.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.



Читайте также: