Термоядерный реактор откроет человечеству новую эру. Что такое «токамак»? Термоядерный реактор откроет человечеству новую эру Тороидальная камера с магнитными катушками

Слово "ТОКАМАК" - это сокращение слов ТОроидальная, КАмера, МАгнитные Катушки, которые описывают основные элементы этой магнитной ловушки, изобретенной А.Д. Сахаровым в 1950 г. Схема ТОКАМАКа показана на Рис.4.

Рисунок 4. Схема принципиальных узлов ТОКАМАКа

Основное магнитное поле в тороидальной камере, содержащей горячую плазму, создается тороидальными магнитными катушками. Существенную роль в равновесии плазмы играет плазменный ток, который протекает вдоль тороидального плазменного шнура и создает полоидальное магнитное поле, направленное вдоль малого обхода тора. Результирующее магнитное поле имеет силовые линии в виде бесконечных спиралей, охватывающих центральную линию плазменного тора - магнитную ось. Таким образом, силовые линии магнитного поля образуют в ТОКАМАКе замкнутые, вложенные друг в друга тороидальные магнитные поверхности. Ток в плазме поддерживается вихревым электрическим полем, создаваемым первичной обмоткой индуктора. При этом, плазменный виток играет роль вторичной обмотки. Очевидно, что индукционное поддержание тока в ТОКАМАКе ограничено запасом потока магнитного поля в первичной обмотке и возможно лишь в течении конечного времени. Кроме тороидальных катушек и первичной обмотки индуктора в ТОКАМАКе должны быть полоидальные обмотки, которые нужны для поддержания равновесия плазмы и контроля ее положения в камере. Токи, текущие в полоидальных катушках создают электромагнитные силы действующие на плазменный ток и таким образом могут изменить ее положение в камере и форму сечения плазменного шнура.

Первый ТОКАМАК был построен в России в Институте Атомной Энергии им И.В. Курчатова в 1956 г. Десять лет напряженных исследований и усовершенствований этого устройства привели к существенному прогрессу в плазменных параметрах ТОКАМАКов. ТОКАМАК Т-З получил к 1968 г температуру плазмы 0.5 КэВ и достиг параметров, существенно превосходящих достигнутых на других магнитных ловушках. С этого момента началось активное развитие этого направления и в других странах. В семидесятые года были построены ТОКАМАКи следующего за Т-З поколения: Т-7, Т-10, Т-11 в СССР, PLT и DIII-D в США, ASDEX в Германии, TFR во Франции, JFT-2 в Японии и др. На ТОКАМАКах этого поколения были разработаны методы дополнительного нагрева плазмы, такие как инжекция нейтральных атомов, электронный и ионный циклотронный нагрев, различные плазменные диагностики и разработаны системы управления плазмой. В результате на ТОКАМАКах второго поколения были получены внушительные параметры плазмы: температура в несколько КэВ, плотности плазмы превышающие 1020 м-3. Параметр ntE (Критерий Лоусона) достиг величины 5 ·1018. Кроме того, ТОКАМАК получил дополнительный, принципиально важный для реактора элемент - дивертор. С помощью токов в системе полоидальных витков силовые линии магнитного поля выводятся в современном ТОКАМАКе в специальную часть камеры. Диверторная конфигурация плазмы показана на Рис.5 на примере ТОКАМАКа DIII-D.

Рис.5. Сечение современного ТОКАМАКа DIII-D с вытянутой по вертикали плазмой и диверторной магнитной конфигурацией.

Дивертор позволяет лучше контролировать потоки энергии из плазмы и уменьшать поступление примесей в плазму. Важным достижением этого поколения ТОКАМАКов было открытие режимов с улучшенным удержанием плазмы - Н-моды.

В начале 80-х годов в строй вошло третье поколение ТОКАМАКов - машин с большим радиусом тора 2-3 м и плазменным током в несколько МА. Были построены пять таких машин: JET и TORUS-SUPRA в Европе, JT60-U в Японии, TFTR - в США и Т-15 в СССР. Параметры больших ТОКАМАКов приведены в Таблице 2. Две из этих машин, JET и TFTR, предусматривали работу с тритием и получение термоядерного выхода на уровне Qfus = Рсинтез/Рзатрат = 1.

ТОКАМАКи Т- 15 и TORUS-SUPRA имеют сверхпроводящие магнитные катушки, подобные тем, которые будут нужны в ТОКАМАКе-реакторе. Основная физическая задача машин этого поколения заключалась в исследовании удержания плазмы с термоядерными параметрами, уточнении предельных плазменных параметров, получение опыта работы с дивертором и др. Технологические задачи включали в себя: разработку сверхпроводящих магнитных систем, способных создавать поле с индукцией до 5 Тл в больших объемах, разработку систем для работы с тритием, приобретение опыта снятия высоких потоков тепла в диверторе, разработку систем для дистанционной сборки и разборки внутренних узлов установки, совершенствование плазменных диагностик и др.

Таблица 2. Основные параметры больших экспериментальных ТОКАМАКов. ТОКАМАК TFTR, уже, выполнил свою программу и был остановлен в 1997 г. Остальные машины продолжают работать.

1) ТОКАМАК Т-15 пока работал только в режиме с омическим нагревом плазмы и, поэтому, параметры плазмы, полученные на этой установке, достаточно низкие. В будущем, предусматривается ввести 10 МВт нейтральной инжекции и 10 МВт электронно-циклотронного нагрева.
2) Приведенное Qfus пересчитано с параметров DD-плазмы, полученных в установке, на DT-плазму.

И хотя экспериментальная программа на этих ТОКАМАКах еще не закончена, это поколение машин, практически, выполнило поставленные перед ним задачи. ТОКАМАКи JET и TFTR впервые получили большую термоядерную мощность DT-реакций в плазме, 11 МВт в TFTR и 16 МВт в JET.

Это поколение ТОКАМАКов достигло пороговой величины Qfus = 1 и получило ntE всего в несколько раз ниже, чем то, которое требуется для полномасштабного ТОКАМАКа-реактора. В ТОКАМАКах научились поддерживать стационарный плазменный ток с помощью ВЧ полей и нейтральных пучков. Была изучена физика нагрева плазмы быстрыми частицами и, в том числе, термоядерными альфа-частицами, изучена работа дивертора и разработаны режимы его работы с низкими тепловыми нагрузками. Результаты этих исследований позволили создать физические основы, необходимые для следующего шага - первого ТОКАМАКа-реактора, который будет работать в режиме горения.

Многолетние исследования удержания плазмы в ТОКАМАКах показали, что процессы переноса энергии и частиц поперек магнитного поля определяются сложными турбулентными процессами в плазме. И хотя плазменные неустойчивости, ответственные за аномальные потери плазмы, уже обозначены, теоретическое понимание нелинейных процессов еще недостаточно для того, чтобы, основываясь на первых принципах, описать время жизни плазмы. Поэтому, для экстраполяции времен жизни плазмы, полученных в современных установках, к масштабам ТОКАМАКа-реактора, в настоящее время, используются эмпирические закономерности - скейлинги. Один из таких скейлингов, полученный с помощью статистической обработки экспериментальной базы данных с различных ТОКАМАКов, предсказывает, что время жизни растет с ростом размера плазмы, плазменного тока, вытянутости сечения плазмы и падает с ростом мощности нагрева плазмы.

Cкейлинг предсказывает, что ТОКАМАК, в котором будет происходить самоподдерживающееся термоядерное горение, должен иметь большой радиус 7-8 м и плазменный ток на уровне 20 МА. В таком ТОКАМАКе энергетическое время жизни будет превышать 5 секунд, а мощность термоядерных реакций будет на уровне 1-1.5 ГВт.

С целью достижения условий, необходимых для протекания . Плазма в токамаке удерживается не стенками камеры, которые не способны выдержать необходимую для термоядерных реакций температуру, а специально создаваемым комбинированным магнитным полем - тороидальным внешним и полоидальным полем тока, протекающего по плазменному шнуру. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, использование электрического тока является главной особенностью токамака. Ток в плазме обеспечивает разогрев плазмы и удержание равновесия плазменного шнура в вакуумной камере. Этим токамак, в частности, отличается от стелларатора , являющегося одной из альтернативных схем удержания, в котором и тороидальное, и полоидальное поля создаются с помощью внешних магнитных катушек.

Токамак-реактор на данный момент разрабатывается в рамках международного научного проекта ITER .

История

Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком О. А. Лаврентьевым в работе середины 1950-го года. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза. А. Д. Сахаров и И. Е. Тамм в 1951 году предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем. Одновременно эта же идея была предложена американскими учёными, но «забыта» до 1970-х годов .

В настоящее время токамак считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза .

Устройство

Токамак представляет собой тороидальную вакуумную камеру , на которую намотаны катушки для создания тороидального магнитного поля . Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития . Затем с помощью индуктора в камере создают вихревое электрическое поле . Индуктор представляет собой первичную обмотку большого трансформатора , в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы .

Протекающий через плазму ток выполняет две задачи:

  • нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев);
  • создаёт вокруг себя магнитное поле. Это магнитное поле называется полоидальным (то есть направленное вдоль линий, проходящих через полюсы сферической системы координат).

Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя так называемые «магнитные поверхности» тороидальной формы.

Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счёт увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке пока ограничено несколькими секундами. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение .

Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля . Они представляют собой кольцевые витки вокруг вертикальной оси камеры токамака.

Одного только нагрева за счёт протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на так называемых резонансных частотах (например, совпадающих с циклотронной частотой либо электронов , либо ионов) или инжекция быстрых нейтральных атомов.

Токамаки и их характеристики

Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

СССР и Россия

Казахстан

  • Казахстанский Токамак материаловедческий (КТМ) - это экспериментальная термоядерная установка для исследований и испытаний материалов в режимах энергетических нагрузок, близких к

Токамак (ТОроидальная КАмера с МАгнитными Катушками) – тороидальная установка для магнитного удержания плазмы. Плазма удерживается не стенками камеры, которые не способны выдержать её температуру, а специально создаваемым магнитным полем. Особенностью токамака является использование электрического тока, протекающего через плазму для создания полоидального поля, необходимого для равновесия плазмы. Этим он отличается от стелларатора, в котором и тороидальное и полоидальное поле создается с помощью магнитных катушек.

История

Термин «токамак» был введён русскими физиками Игорем Евгеньевичем Таммом и Андреем Дмитриевичем Сахаровым в 50х годах как сокращение фразы «тороидальная камера с магнитными катушками». Первый токамак был разработан под руководством академика Л. А. Арцимовича в Институте атомной энергии им. И. В. Курчатова в Москве и продемонстрирован в 1968 в Новосибирске.

В настоящее время токамак считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза.

Устройство

Токамак представляет собой тороидальную вакуумную камеру, на которую намотаны катушки для создания (тороидального) магнитного поля. Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития. Затем, с помощью индуктора, в камере создают вихревое электрическое поле. Индуктор представляет собой первичную обмотку большого трансформатора, в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы.

Протекающий через плазму ток выполняет две задачи:

Нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев).
- Создает вокруг себя магнитное поле. Это магнитное поле называется полоидальным (т. е. направленное вдоль линий, проходящих через полюсы сферической системы координат).

Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя т. н. «магнитные поверхности» тороидальной формы.

Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счет увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке ограничено. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение.

Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля. Они представляют собой кольцевые витки, вокруг вертикальной оси камеры токамака.

Одного только нагрева за счет протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на т. н. резонансных частотах (например, совпадающих с циклотронной частотой либо электронов, либо ионов) или инжекция быстрых нейтральных атомов.

Управляемый термоядерный синтез


Солнце – природный термоядерный реактор

Управляемый термоядерный синтез (УТС) – синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который носит управляемый характер в отличие от взрывного термоядерного синтеза (используемого в термоядерном оружии). Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He).

Судьба термоядерного синтеза

Идея создания термоядерного реактора зародилась в 1950-х годах. Тогда от нее было решено отказаться, поскольку ученые были не в состоянии решить множество технических проблем. Прошло несколько десятилетий прежде, чем ученым удалось «заставить» реактор произвести хоть сколько-нибудь термоядерной энергии.

Схема Международного термоядерного реактора (ИТЭР)

Решение о проектировании Международного термоядерного реактора (ИТЭР) было принято в Женеве в 1985 году. В проекте участвуют СССР, Япония, США, объединенная Европа и Канада. После 1991 года к участникам присоединился Казахстан. За 10 лет многие элементы будущего реактора удалось изготовить на военно-промышленных предприятиях развитых стран. Например, в Японии разработали уникальную систему роботов, способных работать внутри реактора. В России создали виртуальный вариант установки.

В 1998 году США по политическим мотивам прекратили финансирование своего участия в проекте. После того, как к власти в стране пришли республиканцы, а в Калифорнии начались веерные отключения электроэнергии, администрация Буша объявила об увеличении вложений в энергетику. Участвовать в международном проекте США не намеревались и занимались собственным термоядерным проектом. В начале 2002 года советник президента Буша по технологиям Джон Марбургер III заявил, что США передумали и намерены вернуться в проект.

Проект по числу участников сравним с другим крупнейшим международным научным проектом – Международной космической станции. Стоимость ИТЭР, прежде достигавшая 8 миллиардов долларов, потом составила менее 4 миллиардов. В результате выхода из числа участников Соединенных Штатов было решено уменьшить мощность реактора с 1,5 ГВт до 500 МВт. Соответственно «похудела» и цена проекта.

В июне 2002 года в российской столице прошел симпозиум «Дни ИТЭР в Москве». На нем обсуждались теоретические, практические и организационные проблемы возрождения проекта, удача которого способна изменить судьбу человечества и дать ему новый вид энергии, по эффективности и экономичности сравнимый только с энергией Солнца.

Если участники договорятся о месте строительства станции и о начале ее строительства, то, по прогнозу академика Велихова, к 2010 году будет получена первая плазма. Тогда можно будет приступать к строительству первой термоядерной электростанции, которая, при благоприятном стечении обстоятельств, может дать первый ток в 2030 году.

В декабре 2003 года ученые, участвующие в проекте ИТЭР, собрались в Вашингтоне, чтобы окончательно определить место его будущего строительства. Агентство новостей ФрансПресс передало со ссылкой на одного из участников встречи, что принятие решение перенесено на 2004 год. Очередные переговоры по этому проекту пройдут в мае 2004 года в Вене. Реактор начнут создавать в 2006 году и планируют запустить в 2014.

Принцип работы

Термоядерный синтез – это дешевый и экологически безопасный способ добычи энергии. На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез – из тяжелого изотопа водорода дейтерия образуется гелий. При этом выделяется колоссальное количество энергии. Однако на Земле люди пока не научились управлять подобными реакциями.

Плазма в термоядерном реакторе

В качестве топлива в реакторе ИТЭР будут использоваться изотопы водорода. В ходе термоядерной реакции энергия выделяется при соединении легких атомов в более тяжелые. Чтобы добиться этого, необходимо разогреть газ до температуры свыше 100 миллионов градусов – намного выше температуры в центре Солнца. Газ при такой температуре превращается в плазму. Атомы изотопов водорода при этом сливаются, превращаясь в атомы гелия с выделением большого количества нейтронов. Электростанция, работающая на этом принципе, будет использовать энергию нейтронов, замедляемых слоем плотного вещества (лития)

На строительство станции уйдет как минимум 10 лет и 5 млрд долларов. За престижное право быть родиной гиганта энергетики соревнуются Франция и Япония.

Место постройки

С предложениями разместить реактор на своих территориях выступили Канада, Япония, Испания и Франция.

Канада обосновывает необходимость разместить реактор на своей территории тем, что именно в этой стране находятся значительные запасы трития, являющегося отходом атомной энергетики. Строительство термоядерного реактора позволит их утилизировать.

В Японии, по сообщениям агентства «Киодо цусин», три префектуры вели отчаянную борьбу за право строительства реактора у себя. В то же время жители северного острова Хоккайдо выступали против возведения его на их земле.

В ноябре этого года Европейский союз рекомендовал французский город Кадараш в качестве будущего места строительства. Однако как пойдет голосование, предсказать трудно. Ожидается, что эксперты будут принимать решение на основе сугубо объективных научных фактов, однако политическая подоплека может также сказаться на голосовании. США уже высказались против того, чтобы отдать строительство реактора Франции, припоминая ее раскольническое поведение во время конфликта в Ираке.

«У нас есть уже существующая научная и техническая структура, компетентность и опыт, что является гарантом выполнения намеченных сроков», – сказал министр исследований Франции.

Япония также имеет ряд преимуществ – Роккашо-мура находится рядом с портом и рядом с военной базой США. К тому же японцы готовы вложить в проект куда больше денег, чем Франция. «Если будет выбрана Япония, мы покроем все необходимые расходы», – заявил министр науки и образования Японии.

Представитель правительства Франции рассказал журналистам, что перед встречей он провел «очень интенсивные переговоры на высоком уровне». Однако, по некоторым данным, все страны, кроме Евросоюза, предпочтительней относятся к Японии, чем Франции.

Экологическая безопасность

Новая установка, по оценке ученых, экологически более безопасна, нежели работающие сегодня ядерные реакторы. В качестве отработанного топлива в установке ITER образуется гелий, а не его изотопы, которые нужно хранить в специальных хранилищах десятки лет.

Ученые считают, что запасы топлива для таких электростанций практически неисчерпаемы – дейтерий и тритий легко добываются из морской воды. Килограмм этих изотопов может выделить столько же энергии, сколько 10 млн кг органического топлива.

– устройство для осуществления реакции термоядерного синтеза в горячей плазме в квазистационарном режиме, причем плазма создается в тороидальной камере и ее стабилизирует магнитное поле. Предназначение установки – преобразование внутриядерной энергии в тепловую и далее – в электрическую. Само cлово «токамак» является аббревиатурой от названия «тороидальная камера магнитная», однако создатели установки заменили в конце «г» на «к», чтобы не вызывать ассоциаций с чем-то магическим.

Атомную энергию (и в реакторе, и в бомбе) человек получает, разделяя ядра тяжелых элементов на более легкие. Энергия, приходящаяся на нуклон, максимальна для железа (так называемый «железный максимум»), а т.к. максимум посредине, то энергия будет выделяться не только при распаде тяжелых, но и при соединении легких элементов. Этот процесс называется термоядерным синтезом, он происходит в водородной бомбе и термоядерном реакторе. Термоядерных реакций, реакций синтеза, известно много. Источником энергии могут быть те, для которых есть недорогое топливо, причем возможны два принципиально разных пути запуска реакции синтеза.

Первый путь – «взрывной»: часть энергии тратится на то, чтобы привести в необходимое исходное состояние очень небольшое количество вещества, происходит реакция синтеза, выделившаяся энергия преобразуется в удобную форму. Собственно, это водородная бомба, только весом в миллиграмм. В качестве источника исходной энергии использовать атомную бомбу нельзя она не бывает «маленькой». Поэтому предполагалось, что миллиметровая таблетка из дейтерий-тритиевого льда (или стеклянная сфера со сжатой смесью дейтерия и трития) будет облучаться со всех сторон лазерными импульсами. Плотность энергии на поверхности должна быть при этом такой, чтобы превратившийся в плазму верхний слой таблетки оказался нагрет до температуры, при которой давление на внутренние слои и сам нагрев внутренних слоев таблетки станут достаточными для реакции синтеза. При этом импульс должен быть настолько коротким, чтобы вещество, превратившееся за наносекунду в плазму с температурой в десять миллионов градусов, не успевало разлететься, а давило на внутреннюю часть таблетки. Эта внутренняя часть сжимается до плотности, в сто раз большей, чем плотность твердых тел, и нагревается до ста миллионов градусов.

Второй путь. Исходные вещества можно нагреть относительно медленно – они превратятся в плазму, а потом в нее можно любым способом вводить энергию, вплоть до достижения условий начала реакции. Для протекания термоядерной реакции в смеси дейтерия с тритием и получения положительного выхода энергии (когда энергия, выделившаяся в результате термоядерной реакции окажется больше энергии, затраченной на осуществление этой реакции), нужно создать плазму с плотностью хотя бы 10 14 частиц/см 3 (10 –5 атм.), и нагреть ее примерно до 10 9 градусов, при этом плазма становится полностью ионизованной.

Такой нагрев необходим, чтобы ядра могли сблизиться, несмотря на кулоновское отталкивание. Можно показать, что для получения энергии нужно поддерживать это состояние не менее секунды (так называемый «критерий Лоусона»). Более точная формулировка критерия Лоусона – произведение концентрации и времени поддержания этого состояния должно быть порядка 10 15 сЧ см –3 . Главная проблема – устойчивость плазмы: за секунду она много раз успеет расшириться, коснуться стенок камеры и охладиться.

В 2006 международное сообщество приступает к строительству демонстрационного реактора. Этот реактор не будет настоящим источником энергии, но он спроектирован так, что после него – если все нормально заработает – можно будет приступить к строительству «энергетических», т.е. предназначенных для включения в энергосеть, термоядерных реакторов. Самые крупные физические проекты (ускорители, радиотелескопы, космические станции) становятся настолько дорогими, что рассмотрение двух вариантов оказывается не по карману даже объединившему свои усилия человечеству, поэтому приходится делать выбор.

Начало работ над управляемым термоядерным синтезом следует отнести к 1950, когда И.Е.Тамм и А.Д.Сахаров пришли к выводу, что реализовать УТС (управляемый термоядерный синтез) можно с помощью магнитного удержания горячей плазмы. На начальном этапе работы у нас в стране велись в Курчатовском институте под руководством Л.А.Арцимовича. Основные проблемы можно разделить на две группы – проблемы неустойчивости плазмы и технологические (чистый вакуум, стойкость к облучению и т.п.) Первые токамаки были созданы в 1954–1960, сейчас в мире построено более 100 токамаков. В 1960-х было показано, что только с помощью нагрева за счет пропускания тока («омического нагрева») нельзя довести плазму до термоядерных температур. Наиболее естественным путем повышения энергосодержания плазмы казался метод внешней инжекции быстрых нейтральных частиц (атомов), но только в 1970-х был достигнут необходимый технический уровень и поставлены реальные эксперименты с применением инжекторов. Сейчас наиболее перспективными считаются нагрев нейтральных частиц инжекцией и электромагнитным излучением СВЧ-диапазона. В 1988 в Курчатовском институте построен токамак предреакторного поколения Т-15 со сверхпроводящими обмотками. С 1956, когда во время визита Н.С.Хрущева в Великобританию И.В.Курчатов сообщил о проведении этих работ в СССР. работы в этой области ведутся совместно несколькими странами. В 1988 СССР, США, Европейский Союз и Япония начали проектирование первого экспериментального реактора-токамака (установка будет строиться во Франции).

Размеры спроектированного реактора – 30 метров в диаметре при 30-метровой высоте. Ожидаемый срок сооружения этой установки – восемь лет, а срок эксплуатации – 25 лет. Объем плазмы в установке – порядка 850 кубических метров. Ток в плазме – 15 мегаампер. Термоядерная мощность установки 500 Мегаватт поддерживается в течение 400 секунд. В дальнейшем это время предполагается довести до 3000 секунд, что даст возможность проводить на реакторе ИТЭР первые реальные исследования физики термоядерного синтеза («термоядерного горения») в плазме.

Лукьянов С.Ю. Горячая плазма и управляемый ядерный синтез . М., Наука, 1975
Арцимович Л. А., Сагдеев Р.З. Физика плазмы для физиков . М., Атомиздат, 1979
Хеглер М., Кристиансен М. Введение в управляемый термоядерный синтез . М., Мир, 1980
Киллин Дж. Управляемый термоядерный синтез . М., Мир, 1980
Бойко В.И. Управляемый термоядерный синтез и проблемы инерциального термоядерного синтеза . Соросовский образовательный журнал. 1999, № 6

Мы знаем, что русские слова «белуга», «водка», «самовар» вошли в иностранные языки без перевода. Но, кроме иронии, это ничего не вызывает. Другое дело такое «непереводимое» слово, как «спутник», показывающее высокий потенциал отечественной науки и техники. Но «спутник» уже в прошлом. Появился ли какой-то новый термин, который может вызывать гордость за страну?

200 тыс. кВт-ч электроэнергии достаточно, чтобы обеспечить все потребности современного европейца в течение 30 лет. Для выработки такого количества элект­ричества достаточно одной ванны воды (45 л) и столько лития, сколько его содержится в одной батарейке для компьютера. Но при нынешних технологиях получения энергии за счёт ископаемого топлива на это уходит 70 т угля.

Есть ещё одно слово, которое на всех языках произносится одинаково - «токамак». Русская аббревиатура дала название многочисленным сооружённым по миру установкам, в которых плазма в процессе термоядерного синтеза удерживается магнитным полем. Токамаком называют и будущий реактор международного проекта ИТЭР, который должен дать человечест-ву доступ к практически неисчерпаемому источнику энергии.

«Это русское слово, - говорит участникам пресс-тура в Международную организацию ИТЭР (Интернациональный термоядерный экспериментальный реактор. - Авт. ) Роберт Арно из службы коммуникаций. - А что оно означает, скажет мой коллега из России».

И Александр Петров, представитель российского Проектного центра ИТЭР , охотно поясняет: «Тороидальная камера с магнитными катушками!» Потом ему ещё не раз пришлось повторять это в диктофоны и камеры журналистов стран Европы, Кореи, Китая, Канады…

Как происходит синтез?

Идею токамака предложил академик Лаврентьев, а доработали её Андрей Сахаров и Игорь Тамм . Если нынешние технологии ядерной энергетики основаны на реакции распада, когда из более тяжёлых ядер образуются более лёгкие, то при термоядерном синтезе, наоборот, лёгкие атомные ядра соединяются, образуя более тяжёлые.

В основном речь идёт об изотопах водорода - дейтерии и тритии. Ядро первого состоит из протона и нейтрона, а ядро второго - из протона и двух нейтронов. В обычных условиях одинаково заряженные ядра, конечно, отталкиваются друг от друга, но при сверхвысоких температурах, наоборот, соединяются. В результате образуется ядро гелия плюс один свободный нейтрон, но главное - при этом высвобождается огромное количество энергии, которую раньше атомы тратили на взаимодействие друг с другом. Дейтерий легко «достаётся» из воды, а тритий более нестабилен, поэтому нарабатывается внутри установки за счёт реакции с литием.

Один термоядерный реактор - Солнце - дал человечеству возможность жить на нашей планете, согревая своим теплом. В центре звезды, где под воздействием гравитации достигается очень высокая плотность плазмы, реакция протекает при температуре 15 млн°С. На Земле достигнуть такой плотности не получится - остаётся только повышать температуру. В реакторе проекта ИТЭР она должна достигать 150 млн°С - в 10 раз выше, чем в солнечном ядре!

Кто-нибудь, кроме физиков, может себе такую представить? А какой из возможных на Земле материалов может её выдержать? Нет такого. Поэтому и придуман токамак. Его вакуумная камера в форме пустотелого «бублика» окружается сверхпроводящими электромагнитами - они создают тороидальное и полоидальное магнитные поля, которые не позволяет раскалённой плазме касаться стенок камеры. Есть ещё и центральный электромагнит - индуктор. Изменение тока в нём вызывает в плазме движение частиц, необходимое для синтеза.

Топлива для термоядерного синтеза нужно минимум, а без-опасность значительно выше, чем при нынешних технологиях. Ведь плотность плазмы очень мала (в миллион раз ниже плотности атмосферы!) - соответственно никакого взрыва быть не может. А при малейшем снижении температуры реакция прекращается - тогда плазма, как говорят физики, просто «осыпается», не нанося никакого вреда окружающей среде. Кроме того, загружаться топливо будет непрерывно, то есть работу реактора легко остановить в любой момент. Радиоактивных отходов он практически не производит.

Сколь долог путь?

С конца 60-х, когда успех советских физиков в области управляемой термоядерной реакции стал очевиден, токамаки появились не только в России, но и в Казахстане, США, Европе, Японии, Китае. Они доказали, что создавать и удерживать высокотемпературную плазму, в которой идёт реакция, реально. Однако до сих пор удержание было коротким, исчисляясь секундами, а также затратным в смысле энергии, потраченной на разогрев. Для науки такие результаты были достаточными, а для того чтобы человечество могло шагнуть в новую энергетическую эру - нет.

И тогда родилась идея международного проекта, основная задача которого - построить реактор, способный вырабатывать энергию в объёмах, значительно больших, чем необходимо для поддержания термоядерной реакции. Q ≥ 10 - так формулируют её физики.

Начало было положено в 1985 г. на встрече глав СССР и США. Проект назвали Интернациональным термоядерным экспериментальным реактором: ITER - в английской транскрипции, ИТЭР - в русской. Он решает общую для всего человечест-ва задачу, да и масштаб таков, что одной стране не потянуть, потому и стал международным. Сегодня в нём участвуют страны ЕС, Китай, Индия, Япония, Республика Корея, Россия и США. Участие каждой стороны определено: Европа - 45%, остальные - по 9% с небольшим, но выражается это не валютой, а осязаемым вкладом - выполненными работами или изготовленным оборудованием.

Понадобились десятилетия, чтобы проект выстроился и «вычертился» - на бумаге, в 3D-моделях. И теперь уже его черты и линии наносятся на реальной площадке на юге Франции, по соседству с исследовательским центром Кадараш, в котором имеется свой токамак.

В чём наш вклад?

Запах прованских трав обволакивает холмистый пейзаж, в том числе и внушительных размеров площадку (42 га, или 60 футбольных полей) с пятью огромными башенными кранами, где полным ходом идёт строительство корпусов, которых будет здесь 39. К 2020 г. оно должно закончиться, но оборудование начнёт поступать раньше - по мере завершения определённых этапов.

Основные поставки из России приходятся по графику на 2016-2017 гг. Наша страна участвует в сооружении всех основных конструкций мегатокамака, изготавливает сверхпроводники, создаёт системы испытаний и диагностики. Более 30 российских предприятий и организаций задействованы в этом, большинство из них - дочерние предприятия Госкорпорации «Росатом». Ведь именно в атомной отрасли, несмотря на пережитые страной тяжёлые времена, удалось сохранить высокий научный и производственный потенциал.

«В рамках российских обязательств изготавливается 25 систем для ИТЭР. Это не эксперименты и не НИОКР - это оборудование, которое надо поставить в Кадараш в срок», - говорит Анатолий Красильников, руководитель Проектного центра ИТЭР - российского агентства ИТЭР .

Само оборудование это уникально - в большинстве случаев для его создания разрабатываются абсолютно новые технологии. К примеру, первая стенка бланкета («одеяла») плазменной камеры, на которую придётся максимальная температурная нагрузка. Какие материалы смогут выдержать? Какие нюансы в конструкцию нужно заложить? На эти вопросы уже нашли ответы в Научно-исследовательском институте электрофизической аппаратуры им. Д. В. Ефремова (НИИЭФА). Стенка будет из бериллия, и не сплошная, а нарезанная маленькими квадратными пластинками - чтобы материалу легче было «дышать» и он не растрескался от высоких температур, как земля в летний зной.

Ещё одна серьёзная задача, которую уже решили росатомовские учёные и специалисты, - соединение друг с другом разных материалов: бериллия - бронзы, меди - нержавеющей стали, вольфрама - меди. Обычная сварка для условий проекта не подходит, поэтому медь наплавляют на вольфрам в вакуумной камере, сталь соединяют с медью методом «сварки взрывом» - тогда образуется единый металлический блок, который уже не разъединить даже сверхвысоким температурам.

Участие в проекте - серьёзный толчок не только для отечественной науки, но и для экономики страны, поскольку даёт возможность шагнуть на иной уровень технологий и производств, а иногда и прыгнуть. К примеру, на Чепецком механическом заводе за 4 года с нуля освоили производство продукции из титановых сплавов. В прошлом году наши атомщики уже завершили поставки сверхпроводящих стрендов для ИТЭР. Благодаря участию в проекте на заводе запущена новая - сложная и дорогостоящая - номенклатура изделий, что значительно повысило доходы предприятия.

Отчего пробуксовки?

Собственно, желанием овладеть технологиями во многом объясняется международная кооперация в проекте. Ведь независимо от того, кто занимался разработкой или производством конкретной детали или конст-рукции, созданные технологии становятся общим для всех стран-участниц интеллектуальным продуктом и могут использоваться ими в других целях.

Правда, демократичные условия участия и отсутствие общего бюджета проекта обернулись тем, что не все справляются со своими обязательствами в срок. Начались задержки и разногласия. И если к России никаких претензий нет, она - самая обязательная сторона в проекте, то в той же Европе наметилось заметное отставание.

Сдвинулись и намеченные поначалу сроки. Получить первую плазму к 2020 г., а первую энергию в сети - к 2027 г. уже нереально. Конечно, во многом это объясняется новаторством проекта - никто в мире ничего подобного преж-де не делал. И естественно, что жизнь вносит в бумажные расчёты свои корректировки. Но, с другой стороны, есть и элементарная необязательность. Исключить её намерен новый генеральный директор проекта Бернар Биго . По его словам, к концу этого года должен быть утверждён скорректированный график и пересмотрена система управления проектом. Он не исключает, что какие-то работы могут быть перераспределены между участниками.

«Мы думали, что соблюдать поставленные сроки получится просто благодаря добросовест-ности и добрым намерениям. Теперь поняли, что без строгого менеджмента ничего не выйдет. Но речь не о том, кто кем будет управлять, - мы должны научиться работать сообща», - говорит Б. Биго.

Зачем мечтать?

Новый гендиректор - из тех учёных, которые не просто верят в проект, но убеждены в его успехе. «Нет «плана Б», нет альтернативы, - считает он. - Мы можем вносить корректировки. Но это уже - реальная история».

Реальностью называют проект и сотни наших учёных и специалистов. А как же ещё? Ведь в организации ИТЭР пока ничего, кроме офисного здания и стройплощадки, нет. Но в наших росатомовских НИИ и на его предприятиях, а также в других организациях и компаниях, задействованных в проекте, - есть. Уже сделали сверхпроводники, выпустили невиданные доселе кабели, где сотни скрученных проводов помещены в оболочку из меди и стали, приступили к намотке катушек. Недавно в питерском НИИЭФА прошли успешные испытания прототипа резисторов для быст-рого вывода энергии из обмоток магнитной системы, а в Нижнем Новгороде в НПП «Гиком» - испытания прототипа гиротронного комплекса для генерации тока и нагрева плазмы. В институте ТРИНИТИ обрели реальные черты алмазные детекторы для вертикальной нейтронной камеры.

Однако реальность и мечта в ИТЭР неотделимы друг от друга. Учёным и специалистам, увлечённым своей работой, проект не просто открыл новые перспективы - он их одухотворил. Евгений Вещев, специалист по диагностике, вспоминает, как, будучи студентом МИФИ, впервые увидел токамак и прослушал лекцию про перспективы термоядерной энергетики . Он был просто окрылён, узнав о проекте, и подумал: «Как это здорово - быть причастным к такому важному для человечества делу!» И теперь счастлив, потому что каждый день вносит в него свою лепту.

«Мечты могут быть затратными - как миссия «Аполлон» или программы NASA, - с воодушевлением говорит Марк Хендерссон, руководитель секции электронного циклотрона . - Но мы должны мечтать! В том числе о новом ядерном синтезе, который можно назвать Прометеем сегодняшнего дня».

Мнение эксперта:

Сергей Кириенко, генеральный директор Госкорпорации «Рос-атом» :

Необходимо объединить усилия всех участников для того, чтобы обеспечить развитие нашей отрасли, сформировать новое поколение в ней, объединив при этом и деньги, и время, и главное - опыт.

Мы все должны объединить усилия для реализации таких международных проектов, как ИНПРО под эгидой МАГАТЭ или осуществляемый во Франции проект ИТЭР.



Читайте также: