Магнитным потоком через поверхность площадью s называют. Поток магнитной индукции. Магнитный поток формула


Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал См. также: Портал:Физика

Магни́тный пото́к - физическая величина, равная произведению модуля вектора магнитной индукции \vec B на площадь S и косинус угла α между векторами \vec B и нормалью \mathbf{n}. Поток \Phi_B как интеграл вектора магнитной индукции \vec B через конечную поверхность S определяется через интеграл по поверхности:

{{{1}}}

При этом векторный элемент dS площади поверхности S определяется как

{{{1}}}

Квантование магнитного потока

Значения магнитного потока Φ , проходящего через

Напишите отзыв о статье "Магнитный поток"

Ссылки

Отрывок, характеризующий Магнитный поток

– C"est bien, mais ne demenagez pas de chez le prince Ваsile. Il est bon d"avoir un ami comme le prince, – сказала она, улыбаясь князю Василию. – J"en sais quelque chose. N"est ce pas? [Это хорошо, но не переезжайте от князя Василия. Хорошо иметь такого друга. Я кое что об этом знаю. Не правда ли?] А вы еще так молоды. Вам нужны советы. Вы не сердитесь на меня, что я пользуюсь правами старух. – Она замолчала, как молчат всегда женщины, чего то ожидая после того, как скажут про свои года. – Если вы женитесь, то другое дело. – И она соединила их в один взгляд. Пьер не смотрел на Элен, и она на него. Но она была всё так же страшно близка ему. Он промычал что то и покраснел.
Вернувшись домой, Пьер долго не мог заснуть, думая о том, что с ним случилось. Что же случилось с ним? Ничего. Он только понял, что женщина, которую он знал ребенком, про которую он рассеянно говорил: «да, хороша», когда ему говорили, что Элен красавица, он понял, что эта женщина может принадлежать ему.
«Но она глупа, я сам говорил, что она глупа, – думал он. – Что то гадкое есть в том чувстве, которое она возбудила во мне, что то запрещенное. Мне говорили, что ее брат Анатоль был влюблен в нее, и она влюблена в него, что была целая история, и что от этого услали Анатоля. Брат ее – Ипполит… Отец ее – князь Василий… Это нехорошо», думал он; и в то же время как он рассуждал так (еще рассуждения эти оставались неоконченными), он заставал себя улыбающимся и сознавал, что другой ряд рассуждений всплывал из за первых, что он в одно и то же время думал о ее ничтожестве и мечтал о том, как она будет его женой, как она может полюбить его, как она может быть совсем другою, и как всё то, что он об ней думал и слышал, может быть неправдою. И он опять видел ее не какою то дочерью князя Василья, а видел всё ее тело, только прикрытое серым платьем. «Но нет, отчего же прежде не приходила мне в голову эта мысль?» И опять он говорил себе, что это невозможно; что что то гадкое, противоестественное, как ему казалось, нечестное было бы в этом браке. Он вспоминал ее прежние слова, взгляды, и слова и взгляды тех, кто их видал вместе. Он вспомнил слова и взгляды Анны Павловны, когда она говорила ему о доме, вспомнил тысячи таких намеков со стороны князя Василья и других, и на него нашел ужас, не связал ли он уж себя чем нибудь в исполнении такого дела, которое, очевидно, нехорошо и которое он не должен делать. Но в то же время, как он сам себе выражал это решение, с другой стороны души всплывал ее образ со всею своею женственной красотою.

В ноябре месяце 1805 года князь Василий должен был ехать на ревизию в четыре губернии. Он устроил для себя это назначение с тем, чтобы побывать заодно в своих расстроенных имениях, и захватив с собой (в месте расположения его полка) сына Анатоля, с ним вместе заехать к князю Николаю Андреевичу Болконскому с тем, чтоб женить сына на дочери этого богатого старика. Но прежде отъезда и этих новых дел, князю Василью нужно было решить дела с Пьером, который, правда, последнее время проводил целые дни дома, т. е. у князя Василья, у которого он жил, был смешон, взволнован и глуп (как должен быть влюбленный) в присутствии Элен, но всё еще не делал предложения.

магнитная индукция - является плотностью магнитного потока в данной точке поля. Единицей магнитной индукции является тесла (1 Тл = 1 Вб/м 2).

Возвращаясь к полученному ранее выражению (1), можно количественно определить магнитный поток через некоторую поверхность как произведение величины заряда, протекающего через проводник совмещенный с границей этой поверхности при полном исчезновении магнитного поля, на сопротивление электрической цепи, по которой протекают эти заряды

.

В описанных выше опытах с пробным витком (кольцом), он удалялся на такое расстояние, при котором исчезали всякие проявления магнитного поля. Но можно просто перемещать этот виток в пределах поля и при этом в нем также будут перемещаться электрические заряды. Перейдем в выражении (1) к приращениям

Ф + Δ Ф = r (q - Δ q ) => Δ Ф = -rΔ q => Δ q = -Δ Ф/r

где Δ Ф и Δ q - приращения потока и количества зарядов. Разные знаки приращений объясняются тем, что положительный заряд в опытах с удалением витка соответствовал исчезновению поля, т.е. отрицательному приращению магнитного потока.

С помощью пробного витка можно исследовать все пространство вокруг магнита или катушки с током и построить линии, направление касательных к которым в каждой точке будет соответствовать направлению вектора магнитной индукции B (рис. 3)

Эти линии называются линиями вектора магнитной индукции или магнитными линиями .

Пространство магнитного поля можно мысленно разделить трубчатыми поверхностями, образованными магнитными линиями, причем, поверхности можно выбрать таким образом, чтобы магнитный поток внутри каждой такой поверхности (трубки) численно был равен единице и изобразить графически осевые линии этих трубок. Такие трубки называют единичными, а линии их осей - единичными магнитными линиями . Картина магнитного поля изображенная с помощью единичных линий дает не только о качественное, но и количественное представление о нем, т.к. при этом величина вектора магнитной индукции оказывается равной количеству линий, проходящих через единицу поверхности, нормальной вектору B , а количество линий, проходящих через любую поверхность равно значению магнитного потока .

Магнитные линии непрерывны и этот принцип можно математически представить в виде

т.е. магнитный поток, проходящий через любую замкнутую поверхность равен нулю .

Выражение (4) справедливо для поверхности s любой формы. Если рассматривать магнитный поток проходящий через поверхность, образованную витками цилиндрической катушки (рис. 4), то ее можно разделить на поверхности, образованные отдельными витками, т.е. s =s 1 +s 2 +...+s 8 . Причем через поверхности разных витков в общем случае будут проходить разные магнитные потоки. Так на рис. 4, через поверхности центральных витков катушки проходят восемь единичных магнитных линий, а через поверхности крайних витков только четыре.

Для того, чтобы определить полный магнитный поток, проходящий через поверхность всех витков, нужно сложить потоки, проходящие через поверхности отдельных витков, или, иначе говоря, сцепляющиеся с отдельными витками. Например, магнитные потоки, сцепляющиеся с четырьмя верхними витками катушки рис. 4, будут равны: Ф 1 =4; Ф 2 =4; Ф 3 =6; Ф 4 =8. Также, зеркально-симметрично с нижними.

Потокосцепление - виртуальный (воображаемый общий) магнитный поток Ψ, сцепляющийся со всеми витками катушки, численно равен сумме потоков, сцепляющихся с отдельными витками: Ψ = w э Ф m , где Ф m - магнитный поток, создаваемый током, проходящим по катушке, а w э - эквивалентное или эффективное число витков катушки. Физический смысл потокосцепления - сцепление магнитных полей витков катушки, которое можно выразить коэффициентом (кратностью) потокосцепления k = Ψ/Ф = w э.

То есть для приведенного на рисунке случая, двух зеркально-симметричных половинок катушки:

Ψ = 2(Ф 1 + Ф 2 + Ф 3 + Ф 4) = 48

Виртуальность, то есть воображаемость потокосцепления проявляется в том, что оно не представляет собой реального магнитного потока, который никакая индуктивность не может кратно увеличивать, но поведение импеданса катушки таково, что кажется, что магнитный поток увеличивается кратно эффективному количеству витков, хотя реально - это просто взаимодействие витков в том же самом поле. Если бы катушка увеличивала магнитный поток своим потокосцеплением, то можно было бы создавать умножители магнитного поля на катушке даже без тока, ибо потокосцепление не подразумевает замкнутости цепи катушки, но лишь совместную геометрию близости витков.

Часто реальное распределение потокосцепления по виткам катушки неизвестно, но его можно принять равномерным и одинаковым для всех витков, если реальную катушку заменить эквивалентной с другим числом витков w э, сохраняя при этом величину потокосцепления Ψ = w э Ф m , где Ф m - поток, сцепляющийся с внутренними витками катушки, а w э - эквивалентное или эффективное число витков катушки. Для рассмотренного на рис. 4 случая w э = Ψ/Ф 4 =48/8=6.

Можно также произвести замену реальной катушки на эквивалентную с сохранением числа витков Ψ = w Ф n . Тогда для сохранения потокосцепления необходимо принять, что со всеми витками катушки сцепляется магнитный поток Ф n = Ψ/w .

Первый вариант замены катушки эквивалентной сохраняет картину магнитного поля, изменяя параметры катушки, второй - сохраняет параметры катушки, изменяя картину магнитного поля.


Взаимосвязь электрических и магнитных полей замечена очень давно. Данную связь еще в 19 веке обнаружил английский ученый-физик Фарадей и дал ему название . Она появляется в тот момент, когда магнитный поток пронизывает поверхность замкнутого контура. После того как происходит изменение магнитного потока в течение определенного времени, в этом контуре наблюдается появление электрического тока.

Взаимосвязь электромагнитной индукции и магнитного потока

Суть магнитного потока отображается известной формулой: Ф = BS cos α. В ней Ф является магнитным потоком, S - поверхность контура (площадь), В - вектор магнитной индукции. Угол α образуется за счет направления вектора магнитной индукции и нормали к поверхности контура. Отсюда следует, что максимального порога магнитный поток достигнет при cos α = 1, а минимального - при cos α = 0.

Во втором варианте вектор В будет перпендикулярен к нормали. Получается, что линии потока не пересекают контур, а лишь скользят по его плоскости. Следовательно, определять характеристики будут линии вектора В, пересекающие поверхность контура. Для расчета в качестве единицы измерения используется вебер: 1 вб = 1в х 1с (вольт-секунда). Еще одной, более мелкой единицей измерения служит максвелл (мкс). Он составляет: 1 вб = 108 мкс, то есть 1 мкс = 10-8 вб.

Для исследования Фарадеем были использованы две проволочные спирали, изолированные между собой и размещенные на катушке из дерева. Одна из них соединялась с источником энергии, а другая - с гальванометром, предназначенным для регистрации малых токов. В тот момент, когда цепь первоначальной спирали замыкалась и размыкалась, в другой цепи стрелка измерительного устройства отклонялась.

Проведение исследований явления индукции

В первой серии опытов Майкл Фарадей вставлял намагниченный металлический брусок в катушку, подключенную к току, а затем вынимал его наружу (рис. 1, 2).

1 2

В случае помещения магнита в катушку, подключенную к измерительному прибору, в цепи начинает протекать индукционный ток. Если магнитный брусок удаляется из катушки, индукционный ток все равно появляется, но его направление становится уже противоположным. Следовательно, параметры индукционного тока будут изменены по направлению движения бруска и в зависимости от полюса, которым он помещается в катушку. На силу тока оказывает влияние быстрота перемещения магнита.

Во второй серии опытов подтверждается явление, при котором изменяющийся ток в одной катушке, вызывает индукционный ток в другой катушке (рис. 3, 4, 5). Это происходит в моменты замыкания и размыкания цепи. От того, замыкается или размыкается электрическая цепь, будет зависеть и направление тока. Кроме того, эти действия есть ни что иное, как способы изменения магнитного потока. При замыкании цепи он будет увеличиваться, а при размыкании - уменьшаться, одновременно пронизывая первую катушку.

3 4

5

В результате опытов было установлено, что возникновение электрического тока внутри замкнутого проводящего контура возможно лишь в том случае, когда они помещаются в переменное магнитное поле. При этом, поток может изменяться во времени любыми способами.

Электрический ток, появляющийся под действием электромагнитной индукции, получил название индукционного, хотя это и не будет током в общепринятом понимании. Когда замкнутый контур оказывается в магнитном поле, происходит генерация ЭДС с точным значением, а не тока, зависящего от разных сопротивлений.

Данное явление получило название ЭДС индукции, которую отражает формула: Еинд = - ∆Ф/∆t. Ее значение совпадает с быстротой изменений магнитного потока, пронизывающего поверхность замкнутого контура, взятого с отрицательным значением. Минус, присутствующий в данном выражении, является отражением правила Ленца.

Правило Ленца в отношении магнитного потока

Известное правило было выведено после проведения цикла исследований в 30-х годах 19 века. Оно сформулировано в следующем виде:

Направление индукционного тока, возбуждаемого в замкнутом контуре изменяющимся магнитным потоком, оказывает влияние на создаваемое им магнитное поле таким образом, что оно в свою очередь создает препятствие магнитному потоку, вызывающему появление индукционного тока.

Когда магнитный поток увеличивается, то есть становится Ф > 0, а ЭДС индукции снижается и становится Еинд < 0, в результате этого появляется электроток с такой направленностью, при которой под влиянием его магнитного поля происходит изменение потока в сторону уменьшения при его прохождении через плоскость замкнутого контура.

Если поток снижается, то наступает обратный процесс, когда Ф < 0 и Еинд > 0, то есть действие магнитного поля индукционного тока, происходит увеличение магнитного потока, проходящего через контур.

Физический смысл правила Ленца заключается в отражении закона сохранения энергии, когда при уменьшении одной величины, другая увеличивается, и, наоборот, при увеличении одной величины другая будет уменьшаться. Различные факторы влияют и на ЭДС индукции. При вводе в катушку поочередно сильного и слабого магнита, прибор соответственно будет показывать в первом случае более высокое, а во втором - более низкое значение. То же самое происходит, когда изменяется скорость движения магнита.

На представленном рисунке видно, как определяется направление индукционного тока с применением правила Ленца. Синий цвет соответствует силовым линиям магнитных полей индукционного тока и постоянного магнита. Они расположены в направлении полюсов от севера к югу, которые имеются в каждом магните.

Изменяющийся магнитный поток приводит к возникновению индукционного электрического тока, направление которого вызывает противодействие со стороны его магнитного поля, препятствующее изменениям магнитного потока. В связи с этим, силовые линии магнитного поля катушки направлены в сторону, противоположную силовым линиям постоянного магнита, поскольку его движение происходит в сторону этой катушки.

Для определения направления тока используется с правой резьбой. Он должен ввинчиваться таким образом, чтобы направление его поступательного движения совпадало с направлением индукционных линий катушки. В этом случае направления индукционного тока и вращения рукоятки буравчика будут совпадать.

Используя силовые линии, можно не только показывать направление магнитного поля, но также характеризовать величину его индукции.

Условились проводить силовые линии таким образом, чтобы через 1 см² площадки, перпендикулярно вектору индукции в определенной точке, проходило число линий, равное индукции поля в этой точке.

В том месте, где индукция поля будет больше, силовые линии будут гуще. И, наоборот, там, где индукция поля меньше, реже и силовые линии.

Магнитное поле с одинаковой индукцией во всех точках называется однородным полем. Графически магнитное однородное поле изображается силовыми линиями, представляющими собой равно отстоящие друг от друга

Примером однородного поля является поле, находящееся внутри длинного соленоида, а также поле между близко расположенными друг к другу параллельными плоскими полюсными наконечниками электромагнита.

Произведение индукции магнитного поля, пронизывающего данный контур, на площадь контура называется магнитным потоком магнитной индукции либо же просто магнитный поток.

Определение ему дал и изучил его свойства английский ученый-физик - Фарадей. Он открыл, что это понятие позволяет глубже рассмотреть единую природу магнитных и электрических явлений.

Обозначая магнитный поток буквой Ф, площадь контура S и угол между направленностью вектора индукции В и нормалью n к площади контура α, можно написать следующее равенство:

Ф = В S cos α.

Магнитный поток - это скалярная величина.

Так как густота силовых линий произвольного магнитного поля равняется его индукции, то магнитный поток равен всему числу силовых линий, которые пронизывают данный контур.

С изменением поля меняется и магнитный поток, который пронизывает контур: при усилении поля он возрастает, при ослаблении - уменьшается.

За единицу магнитного потока в принимается поток, который пронизывает площадку в 1 м², находящуюся в магнитном однородном поле, с индукцией 1 Вб/м², и расположенную перпендикулярно вектору индукции. Такая единица называется вебером:

1 Вб = 1 Вб/м² ˖ 1 м².

Переменяющийся магнитный поток порождает электрическое поле, имеющее замкнутые силовые линии (вихревое электрическое поле). Такое поле проявляется в проводнике как действие посторонних сил. Данное явление называют электромагнитной индукцией, а электродвижущую силу, возникающую при этом — ЭДС индукции.

Кроме того, следует отметить, что магнитный поток дает возможность характеризовать в целом весь магнит (или же любые другие источники магнитного поля). Следовательно, если дает возможность характеризовать его действие в любой отдельно взятой точке, то магнитный поток - целиком. Т.е., можно сказать о том, что это вторая важнейшая А значит, если магнитная индукция выступает в роли силовой характеристики магнитного поля, то магнитный поток - является его энергетической характеристикой.

Вернувшись к опытам, можно сказать также о том, что всякий виток катушки можно вообразить как отдельно взятый замкнутый виток. Тот же контур, сквозь который и будет проходить магнитный поток вектора магнитной индукции. В таком случае будет отмечаться индукционный электрический ток. Таким образом, именно под воздействием магнитного потока формируется электрополе в замкнутом проводнике. А затем уже это электрическое поле формирует электрический ток.

Что такое магнитный поток?

На картинке показано однородное магнитное поле. Однородное означает одинаковое во всех точках в данном объеме. В поле помещена поверхность с площадью S. Линии поля пересекают поверхность.

Магнитный поток определение

Определение магнитного потока:

Магнитным потоком Ф через поверхность S называют количество линий вектора магнитной индукции B, проходящих через поверхность S.

Магнитный поток формула

Формула магнитного потока:

здесь α - угол между направлением вектора магнитной индукции B и нормалью к поверхности S.

Из формулы магнитного потока видно, что максимальным магнитный поток будет при cos α = 1, а это случится, когда вектор B параллелен нормали к поверхности S. Минимальным магнитный поток будет при cos α = 0, это будет, когда вектор B перпендикулярен нормали к поверхности S, ведь в этом случае линии вектора B будут скользить по поверхности S, не пересекая её.

А по определению магнитного потока учитываются только те линии вектора магнитной индукции, которые пересекают данную поверхность.

Магнитный поток является скалярной величиной.

Магнитный поток измеряется

Измеряется магнитный поток в веберах (вольт-секундах): 1 вб = 1 в * с.

Кроме того, для измерения магнитного потока применяют максвелл: 1 вб = 10 8 мкс. Соответственно 1 мкс = 10 -8 вб.



Читайте также: