Отражение солнечной радиации. Альбедо Земли. Суммарная радиация, отражение солнечной радиации, поглощенная радиация, фар, альбедо земли Какая из поверхностей земли имеет наибольшее альбедо

Поверхность Характеристика Альбедо, %
Почвы
чернозем сухой, ровная поверхность свежевспаханный, влажный
суглинистая сухая влажная
песчаная желтоватая белесая речной песок 34 – 40
Растительный покров
рожь, пшеница в период полной спелости 22 – 25
пойменный луг с сочной зеленой травой 21 – 25
трава сухая
лес еловый 9 – 12
сосновый 13 – 15
березовый 14 – 17
Снежный покров
снег сухой свежевыпавший влажный чистый мелкозернистый влажный пропитан водой, серый 85 – 95 55 – 63 40 – 60 29 – 48
лед речной голубовато-зелёный 35 – 40
морской молочно-голубой цв.
Водная поверхность
при высоте Солнца 0,1° 0,5° 10° 20° 30° 40° 50° 60-90° 89,6 58,6 35,0 13,6 6,2 3,5 2,5 2,2 – 2,1

Преобладающая часть прямой радиации, отраженной земной по­верхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство около одной трети рассеянной радиации. Отношение всей уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающему в атмосферу, носит название планетарного аль­бедо Земли. Планетарное альбедо Земли оценивается в 35 – 40 %. Основную его часть составляет отражение солнечной радиации облаками.

Таблица 2.6

Зависимость величины К н от широты места и времени года

Широта Месяцы
III IV V VI VII VIII IX X
0.77 0.76 0.75 0.75 0.75 0.76 0.76 0.78
0.77 0.76 0.76 0.75 0.75 0.76 0.76 0.78
0.77 0.76 0.76 0.75 0.75 0.76 0.77 0.79
0.78 0.76 0.76 0.76 0.76 0.76 0.77 0.79
0.78 0.76 0.76 0.76 0.76 0.76 0.77 0.79
0.78 0.77 0.76 0.76 0.76 0.77 0.78 0.80
0.79 0.77 0.76 0.76 0.76 0.77 0.78 0.80
0.79 0.77 0.77 0.76 0.76 0.77 0.78 0.81
0.80 0.77 0.77 0.76 0.76 0.77 0.79 0.82
0.80 0.78 0.77 0.77 0.77 0.78 0.79 0.83
0.81 0.78 0.77 0.77 0.77 0.78 0.80 0.83
0.82 0.78 0.78 0.77 0.77 0.78 0.80 0.84
0.82 0.79 0.78 0.77 0.77 0.78 0.81 0.85
0.83 0.79 0.78 0.77 0.77 0.79 0.82 0.86

Таблица 2.7

Зависимость величины К в+с от широты места и времени года

(по А.П. Браславскому и З.А. Викулиной)

Широта Месяцы
III IV V VI VII VIII IX X
0.46 0.42 0.38 0.37 0.38 0.40 0.44 0.49
0.47 0.42 0.39 0.38 0.39 0.41 0.45 0.50
0.48 0.43 0.40 0.39 0.40 0.42 0.46 0.51
0.49 0.44 0.41 0.39 0.40 0.43 0.47 0.52
0.50 0.45 0.41 0.40 0.41 0.43 0.48 0.53
0.51 0.46 0.42 0.41 0.42 0.44 0.49 0.54
0.52 0.47 0.43 0.42 0.43 0.45 0.50 0.54
0.52 0.47 0.44 0.43 0.43 0.46 0.51 0.55
0.53 0.48 0.45 0.44 0.44 0.47 0.51 0.56
0.54 0.49 0.46 0.45 0.45 0.48 0.52 0.57
0.55 0.50 0.47 0.46 0.46 0.48 0.53 0.58
0.56 0.51 0.48 0.46 0.47 0.49 0.54 0.59
0.57 0.52 0.48 0.47 0.47 0.50 0.55 0.60
0.58 0.53 0.49 0.48 0.48 0.51 0.56 0.60

Суммарная радиация, достигшая земной поверхности, частично поглощается почвой и водоемами и переходит в тепло, на океанах и морях расходуется на испарение, частично отражается в атмосферу (отраженная радиация). Соотношение усвоенной и отраженной лучистой энергии зависит от характера суши, от угла падения лучей на водную поверхность. Так как поглощенную энергию измерить практически невозможно, то определяют величину отраженной.

Отражательная способность наземных и водных поверхностей называется их альбедо . Оно исчисляется в % отраженном радиации от упавшей на данную поверхность, яльоедо паря ду с углом (точнее синусом угла) падения лучей и количеством оптических масс атмосферы, ими проходимых, является одним из важнейших планетарных факторов климатообразования.

На суше альбедо определяется цветом природных поверхностей. Всю радиацию способно усвоить абсолютно черное тело. Зеркальная поверхность отражает 100% лучей и не способна нагреться. Из реальных поверхностей наибольшим альбедо обладает чистый снег. Ниже приведены альбедо поверхностей суши по зонам природы.

Климатообразующее значение отражательной способности разных поверхностей исключительно велико. В ледовых зонах высоких широт солнечная радиация, уже ослабленная при прохождении большого числа оптических масс атмосферы и упавшая на поверхность под острым углом, отражается вечными снегами.

Альбедо водной поверхности для прямой радиации зависит от того, под каким утлом на нее падают солнечные лучи. Вертикальные лучи проникают в воду глубоко, и она усваивает их тепло. Наклонные лучи от воды отражаются, как от зеркала, и ее не нагревают: альбедо водной поверхности при высоте Солнца 90″ равно 2%, при высоте Солнца 20° - 78%.

Виды поверхности и зональные ландшафты Альбедо

Свежий сухой снег…………………………………………… 80-95

Влажный снег………………………………………………….. 60-70

Морской лед…………………………………………………….. 30-40

Тундра без снежного покрова………………………….. 18

Устойчивый снежный покров в умеренных широтах 70

То же неустойчивый……………………………………….. 38

Хвойный лес летом…………………………………………. 10-15

То же, при устойчивом снежном покрове……….. 45

Лиственный лес летом……………………………………. 15-20

То же, с желтыми листьями осенью……………….. 30-40

Луг…………………………………………………………………… 15-25

Степь летом…………………………………………………….. 18

Песок разных окрасок…………………………………….. 25-35

Пустыня………………………………………………………….. 28

Саванна в сухой сезон……………………………………… 24

То же, в сезон дождей………………………………………. 18

Вся тропосфера………………………………………………… 33

Земля в целом (планета)………………………………….. 45

Для рассеянной радиации альбедо несколько меньше.
Так как 2 /з площади земного шара заняты океаном, то усвоение солнечной энергии водной поверхностью выступает как важный климатообразующнй фактор.

Океаны в субполярных широтах усваивают лишь малую долю того тепла Солнца, которое до них доходит. Тропические моря, наоборот, поглощают почти всю солнечную энергию. Альбедо водной поверхности, как и снежный покров полярных стран, углубляет зональную дифференциацию климатов.

В умеренном поясе отражательная способность поверхностей усиливает разницу между сезонами года. В сентябре и марте Солнце стоит на одинаковой высоте над горизонтом, но март холоднее сентября, так как солнечные лучи отражаются от снегового покрова. Появление осенью сначала желтых листьев, а затем инея и временного снега увеличивает альбедо и снижает температуру воздуха. Устойчивый снежный покров, вызванный низкой температурой, ускоряет выхолаживание и дальнейшее снижение зимних температур.

Суммарная радиация, достигающая земной поверхности, не поглощается ею полностью, а частично отражается от земли. Поэтому при расчетах прихода солнечной энергии для какого-нибудь места необходимо принимать во внимание отражательную способность земной поверхности. Отражение радиации происходит также и от поверхности облаков. Отношение величины всего потока коротковолновой радиации Rк, отраженного данной поверхностью по всем направлениям, к потоку радиации Q, падающему на эту поверхность, называется альбедо (А) данной поверхности. Эта величина

показывает, какая часть падающей на поверхность лучистой энергии отражается от нее. Часто величину альбедо выражают в процентах. Тогда

(1.3)

В табл. № 1.5 приводятся величины альбедо различных видов земной поверхности. Из данных табл. № 1.5 видно, что наибольшей отражательной способностью обладает свежевыпавший снег. В отдельных случаях наблюдалась величина альбедо снега до 87%, а в условиях Арктики и Антарктики даже до 95%. Слежавшийся, подтаявший и тем более загрязненный снег отражает уже гораздо меньше. Альбедо различных почв и растительного покрова, как следует из табл. № 4, отличаются сравнительно незначительно. Многочисленные исследования показали, что величина альбедо часто изменяется в течение суток.

При этом наибольшие значения альбедо отмечаются утром и вечером. Объясняется это тем, что отражательная способность шероховатых поверхностей зависит от угла падения солнечных лучей. При отвесном падении солнечные лучи проникают глубже в растительный покров и там поглощаются. При малой высоте солнца лучи меньше проникают внутрь растительности и в большей мере отражаются от ее поверхности. Альбедо водных поверхностей в среднем меньше, чем альбедо поверхности суши. Объясняется это тем, что солнечные лучи (коротковолновая зелено-голубая часть солнечного спектра) в значительной мере проникают в прозрачные для них верхние слои воды, где рассеиваются и поглощаются. В связи с этим на отражательную способность воды оказывает влияние степень ее мутности.

Таблица № 1.5

Для загрязненной и мутной воды величины альбедо заметно возрастает. Для рассеянной радиации альбедо воды в среднем около 8-10%. Для прямой солнечной радиации альбедо водной поверхности зависит от высоты солнца: с уменьшением высоты солнца величина альбедо увеличивается. Так, при отвесном падении лучей отражается только около 2-5%. При низком положении солнца над горизонтом отражается 30-70%. Очень велика отражательная способность облаков. В среднем альбедо облаков около 80%. Зная величину альбедо поверхности и значение суммарной радиации, можно определить количество радиации, поглощенной данной поверхностью. Если А - альбедо, то величина а = (1-А) представляет собой коэффициент поглощения данной поверхности, показывающий, какая часть падающей на эту поверхность радиации ею поглощается.

Например, если на поверхность зеленой травы (А = 26%) падает поток суммарной радиации Q = 1,2 кал/см 2 мин, то процент поглощенной радиации будет

Q = 1- А = 1 - 0,26 = 0,74, или а = 74%,

а величина поглощенной радиации

В погл = Q (1 - А) = 1,2 ·0,74 = 0,89 кал\см2 ·мин.

Альбедо поверхности воды в большой степени зависит от угла падения солнечных лучей, поскольку чистая вода отражает свет по закону Френеля.

гдеZ п зенитный угол Солнца, Z 0 - угол преломления солнечных лучей.

Приположении Солнца в зените альбедо поверхности спокойного моря равна0,02. При росте зенитного угла СолнцаZ п альбедо увеличивается и достигает 0,35 приZ п =85.Волнение моря приводит к изменению Z п , и существенно уменьшает диапазон значений альбедо, поскольку оно увеличивается при больших Z n благодаря увеличению вероятности попадания лучей на наклоую волновую поверхность.Волнение влияет на отражающих способность не только из-занаклона поверхности волны относительно солнечных лучей, но и за счет образованием пузырей воздуха в воде. Эти пузыри в значительной степени рассеивают свет, увеличивая рассеяннуюрадиацию выходящего из моря. Поэтому при больших волнениях моря, когдавозникает пена и барашки, альбедо под влиянием обоих факторов увеличивается.Рассеянная радиация поступает к поверхности воды под разными углами.Интенсивность лучей различных направлений изменяется при изменении высоты Солнца, от которой зависит, как известно, интенсивность рассеивания солнечной радиации при безоблачном небе. Она зависит также от распределения облаков на небе. Поэтому альбедо поверхности моря для рассеянной радиации не является постоянным. Но границы его колебания более узкие 1 от 0,05 до 0,11.Следовательно, альбедо поверхности воды для суммарной радиации изменяется в зависимости от высоты Солнца, соотношение между прямой и рассеянной радиации, волнения поверхности моря.Надо иметь в виду, что северные части океанов в большой степени покрыты морским льдом. В таком случае надо учитывать и альбедо льда. Как известно, значительные пространства земной поверхности, особенно в средних и высоких широтах, покрытые облаками, которые очень отражают солнечную радиацию. Поэтому знания о альбедо облачности вызывают большой интерес. Были проведены специальные измерения альбедо облаков с помощью самолетов и аэростатов. Они показали, что альбедо облаков зависит от их формы и толщины.Наибольшие значения имеет альбедо высоко-кучевых и слоисто-кучевых облаков.Например, при толщине 300 м альбедо Ас находится в границах 71-73%, Sс - 56-64%, смешанных облаков Сu - Sс - около 50%.

Наиболееполные данные о альбедо облаков полученные в Украине. Зависимость альбедо и функции пропускания р от толщины облаков, является результатомсистематизации данных измерений, приводится в табл. 1.6. Как видно, рост толщины облаков приводит к увеличению альбедо и уменьшение функции пропускания.

Среднеезначение альбедо для облаков St при средней толщине 430 м равна 73%, для облаковS с при среднейтолщине 350м - 66%, а функции пропускания для указанных облаков равны соответственно 21 й 26%.

Альбедо облаков зависит от альбедо земной поверхности r 3 , над которой располагается облако. С физической точки зрения понятно, что чем большеr 3 , тем больше поток отраженной радиации, проходящей вверх через верхнюю границуоблака. Поскольку альбедо - это отношение этого потока до поступающего, то увеличение альбедо земной поверхности приводит к увеличению альбедо облаков.Исследование свойств облаков отражать солнечную радиацию проводились с помощью искусственных спутников Земли путем измерения яркости облаков.Средние значения альбедо облаков, полученные по этим данным, приводятся в табл.1.7.

Таблиця 1.7 - Средние значения альбедо облаков разных форм

По этим данным альбедо облаков колеблется от 29 до 86%. Обращает внимание тот факт, что перистые облака имеют небольшое альбедо по сравнению с другими формами облаков (за исключением кучевых). Только перисто-слоистые облака, которые имеют большую толщину, в значительной степени отражают солнечную радиацию(r= 74%).

Страница 17 из 81

Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли

Всю солнечную радиацию, приходящую к земной поверхности – прямую и рассеянную – называют суммарной радиацией. Таким образом, суммарная радиация

Q = S ? sin h + D ,

где S – энергетическая освещенность прямой радиацией,

D – энергетическая освещенность рассеянной радиацией,

h – высота стояния Солнца.

При безоблачном небе суммарная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая солнечный диск, увеличивает суммарную радиацию по сравнению с безоблачным небом; полная облачность, напротив, ее уменьшает. В среднем облачность уменьшает суммарную радиацию. Поэтому летом приход суммарной радиации в дополуденные часы в среднем больше, чем в послеполуденные.
По той же причине в первую половину года он больше, чем во вторую.

С.П. Хромов и А.М. Петросянц приводят полуденные значения суммарной радиации в летние месяцы под Москвой при безоблачном небе: в среднем 0,78 кВт/м 2 , при Солнце и облаках – 0,80, при сплошной облачности – 0,26 кВт/м 2 .

Падая на земную поверхность, суммарная радиация в большей своей части поглощается в верхнем тонком слое почвы или в более толстом слое воды и переходит в тепло, а частично отражается. Величина отражения солнечной радиации земной поверхностью зависит от характера этой поверхности. Отношение количества отраженной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах.

Итак, из общего потока суммарной радиации (S sin h + D ) от земной поверхности отражается часть его (S · sin h + D )А, где А – альбедо поверхности. Остальная часть суммарной радиации
(S · sin h + D ) (1 – А ) поглощается земной поверхностью и идет на нагревание верхних слоев почвы и воды. Эту часть называют поглощенной радиацией.

Альбедо поверхности почвы меняется в пределах 10–30%; у влажного чернозема оно снижается до 5%, а у сухого светлого песка может повышаться до 40%. С возрастанием влажности почвы альбедо снижается. Альбедо растительного покрова – леса, луга, поля – составляет 10–25%. Альбедо поверхности свежевыпавшего снега – 80–90%, давно лежащего снега – около 50% и ниже. Альбедо гладкой водной поверхности для прямой радиации меняется от нескольких процентов (если Солнце высоко) до 70% (если низко); оно зависит также от волнения. Для рассеянной радиации альбедо водных поверхностей равно 5–10%. В среднем альбедо поверхности Мирового океана составляет 5–20%. Альбедо верхней поверхности облаков – от нескольких процентов до 70–80% в зависимости от типа и мощности облачного покрова – в среднем 50–60% (С.П. Хромов, М.А. Петросянц, 2004).

Приведенные цифры относятся к отражению солнечной радиации не только видимой, но и во всем ее спектре. Фотометрическими средствами измеряют альбедо только для видимой радиации, которое, конечно, может несколько отличаться от альбедо для всего потока радиации.

Преобладающая часть радиации, отраженной земной поверхностью и верхней поверхностью облаков, уходит за пределы атмосферы в мировое пространство. Также уходит в мировое пространство часть (около одной трети) рассеянной радиации.

Отношение уходящей в космос отраженной и рассеянной солнечной радиации к общему количеству солнечной радиации, поступающей к атмосфере, носит название планетарного альбедо Земли, или просто альбедо Земли .

В целом планетарное альбедо Земли оценивается в 31%. Основную часть планетарного альбедо Земли составляет отражение солнечной радиации облаками.

Часть прямой и отраженной радиации участвует в процессе фотосинтеза растений, поэтому ее называют фотосинтетически активной радиацией (ФАР). ФАР – часть коротковолновой радиации (от 380 до 710 нм), наиболее активная в отношении фотосинтеза и продукционного процесса растений, представлена как прямой, так и рассеянной радиацией.

Растения способны потреблять прямую солнечную радиацию и отраженную от небесных и земных объектов в области длин волн от 380 до 710 нм. Поток фотосинтетически активной радиации составляет примерно половину солнечного потока, т.е. половину суммарной радиации, причем практически вне зависимости от метеоусловий и местоположения. Хотя, если для условий Европы характерно именно значение 0,5, то для условий Израиля оно несколько больше (около 0,52). Однако нельзя сказать, что растения одинаково используют ФАР на протяжении своей жизни и в различных условиях. Эффективность использования ФАР различна, поэтому были предложены показатели «коэффициент использования ФАР», который отражает эффективность использования ФАР и «КПД фитоценозов». КПД фитоценозов характеризует фотосинтетическую активность растительного покрова. Этот параметр нашел наиболее широкое применение у лесоводов для оценки лесных фитоценозов.

Необходимо подчеркнуть, что растения сами способны формировать ФАР в растительном покрове. Это достигается благодаря расположению листьев по направлению к солнечным лучам, поворотам листьев, распределением листьев разного размера и угла наклона на разных уровнях фитоценозов, т.е. с помощью так называемой архитектуры растительного покрова. В растительном покрове солнечные лучи многократно преломляются, отражаются от листовой поверхности, тем самым формируя свой внутренний радиационный режим.

Рассеянная внутри растительного покрова радиация имеет такое же фотосинтетическое значение, как и поступающая на поверхность растительного покрова прямая и рассеянная.


Оглавление
Климатология и метеорология
ДИДАКТИЧЕСКИЙ ПЛАН
Метеорология и климатология
Атмосфера, погода, климат
Метеорологические наблюдения
Применение карт
Метеорологическая служба и Всемирная Метеорологическая Организация (ВМО)
Климатообразующие процессы
Астрономические факторы
Геофизические факторы
Метеорологические факторы
О солнечной радиации
Тепловое и лучистое равновесие Земли
Прямая солнечная радиация
Изменения солнечной радиации в атмосфере и на земной поверхности
Явления, связанные с рассеянием радиации
Суммарная радиация, отражение солнечной радиации, поглощенная радиация, ФАР, альбедо Земли
Излучение земной поверхности
Встречное излучение или противоизлучение
Радиационный баланс земной поверхности
Географическое распределение радиационного баланса
Атмосферное давление и барическое поле
Барические системы
Колебания давления
Ускорение воздуха под действием барического градиента
Отклоняющая сила вращения Земли
Геострофический и градиентный ветер
Барический закон ветра
Фронты в атмосфере
Тепловой режим атмосферы
Тепловой баланс земной поверхности
Суточный и годовой ход температуры на поверхности почвы
Температуры воздушных масс
Годовая амплитуда температуры воздуха
Континентальность климата
Облачность и осадки
Испарение и насыщение
Влажность
Географическое распределение влажности воздуха
Конденсация в атмосфере
Облака
Международная классификация облаков
Облачность, ее суточный и годовой ход
Осадки, выпадающие из облаков (классификация осадков)
Характеристика режима осадков
Годовой ход осадков
Климатическое значение снежного покрова
Химия атмосферы
Химический состав атмосферы Земли
Химический состав облаков
Химический состав осадков
Кислотность осадков
Общая циркуляция атмосферы

Суммарная радиация

Всю солнечную радиацию, приходящую к земной поверхности, называют суммарной солнечной радиацией.

Q = S sin h c + D (34)

где S - энергетическая освещенность прямой радиации, h c - высота Солнца, D - энергетическая освещенность рассеянной радиации.

При безоблачном небе суммарная солнечная радиация имеет суточный ход с максимумом около полудня и годовой ход с максимумом летом. Частичная облачность, не закрывающая диск Солнца, увеличивает суммарную радиацию по сравнению с безоблачным небом, полная облачность, наоборот, уменьшает ее. В среднем же, облачность уменьшает радиацию. Поэтому летом приход суммарной радиации в дополуденные часы больше, чем в послеполуденные и в первую половину года больше, чем во вторую. Полуденные значения суммарной радиации в летние месяцы под Москвой при безоблачном небе в среднем составляют 0,78, при открытом Солнце и облаках 0,80, при сплошной облачности - 0,26 кВТ/м 2.

Распределение значений суммарной радиации по земному шару отклоняется от зонального, что объясняется влиянием прозрачности атмосферы и облачности. Максимальные годовые значения суммарной радиации составляют 84*10 2 – 92*10 2 МДж/м 2 и наблюдаются в пустынях Северной Африки. Над областями приэкваториальных лесов с большой облачностью значения суммарной радиации снижены до 42*10 2 – 50*10 2 МДж/м 2 . К более высоким широтам обоих полушарий значения суммарной радиации убывают, составляя под 60-й параллелью 25*10 2 – 33*10 2 МДж/м 2 . Но затем снова растут - мало над Арктикой и значительно - над Антарктидой, где в центральных частях материка составляют 50*10 2 – 54*10 2 МДж/м 2 . Над океанами в целом значения суммарной радиации ниже, чем над соответствующими широтами суши.

В декабре наибольшие значения суммарной радиации отмечаются в пустынях Южного полушария (8*10 2 – 9*10 2 МДж/м 2). Над экватором значения суммарной радиации снижаются до 3*10 2 – 5*10 2 МДж/м 2 . В Северном полушарии радиация быстро убывает к полярным районам и за полярным кругом равна нулю. В Южном полушарии суммарная радиация убывает к югу до 50-60 0 ю.ш. (4*10 2 МДж/м 2), а затем возрастает до 13*10 2 МДж/м 2 в центре Антарктиды.

В июле наибольшие значения суммарной радиации (свыше 9*10 2 МДж/м 2) наблюдаются над северо-восточной Африкой и Аравийским полуостровом. Над экваториальной областью значения суммарной радиации невысоки и равны декабрьским. К северу от тропика суммарная радиация убывает медленно до 60 0 с.ш., а затем возрастает до 8*10 2 МДж/м 2 в Арктике. В южном полушарии суммарная радиация от экватора быстро убывает к югу, достигая нулевых значений у полярного круга.



При поступлении на поверхность суммарная радиация частично поглощается в верхнем тонком слое почвы или воды и переходит в тепло, а частично отражается. Условия отражения солнечной радиации от земной поверхности характеризуются величиной альбедо , равной отношению отраженной радиации к приходящему потоку (к суммарной радиации).

А = Q отр / Q (35)

Теоретически значения альбедо могут меняться от 0 (абсолютно черная поверхность) до 1(абсолютно белая поверхность). Имеющиеся материалы наблюдений показывают, что величины альбедо подстилающих поверхностей меняются в широких пределах, причем их изменения охватывают почти полностью возможный интервал значений отражательной способности различных поверхностей. В экспериментальных исследованиях найдены значения альбедо почти для всех распространенных естественных подстилающих поверхностей. Эти исследования прежде всего показывают, что условия поглощения солнечной радиации на суше и на водоемах заметно различаются. Наибольшие значения альбедо наблюдаются для чистого и сухого снега (90-95%). Но так как снежный покров редко бывает совершенно чистым, то средние значения альбедо снега в большинстве случаев равны 70-80%. Для влажного и загрязненного снега эти значения еще ниже - 40-50%. При отсутствии снега наибольшие альбедо на поверхности суши свойственны некоторым пустынным районам, где поверхность покрыта слоем кристаллических солей (дно высохших озер). В этих условиях альбедо имеет значение 50%. Немногим меньше значения альбедо в песчаных пустынях. Альбедо влажной почвы меньше альбедо сухой почвы. Для влажных черноземов значения альбедо составляют предельно малые величины - 5%. Альбедо естественных поверхностей со сплошным растительным покровом изменяется в сравнительно небольших пределах - от 10 до 20-25%. При этом альбедо леса (особенно хвойного) в большинстве случаев меньше, чем альбедо луговой растительности.

Условия поглощения радиации на водоемах отличаются от условий поглощения на поверхности суши. Чистая вода сравнительно прозрачна для коротковолновой радиации, вследствие чего солнечные лучи, проникающие в верхние слои, многократно рассеиваются и только после этого в значительной мере поглощаются. Поэтому процесс поглощения солнечной радиации зависит от высоты Солнца. Если оно стоит высоко - значительная часть приходящей радиации проникает в верхние слои воды и, в основном, поглощается. Поэтому альбедо водной поверхности составляет первые единицы процента при высоком Солнце, а при низком Солнце альбедо возрастает до нескольких десятков процентов.

Альбедо системы «Земля-атмосфера» имеет более сложную природу. Приходящая в атмосферу солнечная радиация частично отражается в результате обратного рассеивания атмосферы. При наличии облаков значительная часть радиации отражается от их поверхности. Альбедо облаков зависит от толщины их слоя и составляет в среднем 40-50%. При полном или частичном отсутствии облаков альбедо системы «Земля-атмосфера» существенно зависит от альбедо самой земной поверхности. Характер географического распределения планетарного альбедо по наблюдениям со спутников показывает существенные различия между альбедо высоких и средних широт Северного и Южного полушарий. В тропиках наибольшие значения альбедо наблюдаются над пустынями, в зонах конвективной облачности над Центральной Америкой и над акваториями океанов. В Южном полушарии, в отличие от Северного, наблюдается зональный ход альбедо вследствие более простого распределения суши и моря. Наиболее высокие значения альбедо находятся в полярных широтах.

Преобладающая часть радиации, отраженной земной поверхностью и верхней границей облаков, уходит в мировое пространство. Также уходит и треть рассеянной радиации. Отношение уходящей в космос отраженной и рассеянной радиации к общему количеству солнечной радиации, поступающей к атмосфере, носит название планетарного альбедо Земли или альбедо Земли . Его значение оценивают в 30%. Основную часть планетарного альбедо составляет радиация, отраженная облаками.



Читайте также: