Как найти моду и медиану ряда чисел. Структурные характеристики вариационного ряда распределения. Определение моды в статистике

Мода и медиана – особого рода средние, которые используются для изучения структуры вариационного ряда. Их иногда называют структурными средними, в отличие от рассмотренных ранее степенных средних.

Мода – это величина признака (варианта), которая чаще всего встречается в данной совокупности, т.е. имеет наибольшую частоту.

Мода имеет большое практическое применение и в ряде случаев только мода может дать характеристику общественных явлений.

Медиана – это варианта, которая находится в середине упорядоченного вариационного ряда.

Медиана показывает количественную границу значения варьирующего признака, которой достигла половина единиц совокупности. Применение медианы наряду со средней или вместо нее целесообразно при наличии в вариационном ряду открытых интервалов, т.к. для вычисления медианы не требуется условное установление границ отрытых интервалов, и поэтому отсутствие сведений о них не влияет на точность вычисления медианы.

Медиану применяют также тогда, когда показатели, которые нужно использовать в качестве весов, неизвестны. Медиану применяют вместо средней арифметической при статистических методах контроля качества продукции. Сумма абсолютных отклонений варианты от медианы меньше, чем от любого другого числа.

Рассмотрим расчет моды и медианы в дискретном вариационном ряду:

Определить моду и медиану.

Мода Мо = 4 года, так как этому значению соответствует наибольшая частота f = 5.

Т.е. наибольшее число рабочих имеют стаж 4 года.

Для того, чтобы вычислить медиану, найдем предварительно половину суммы частот. Если сумма частот является числом нечетным, то мы сначала прибавляем к этой сумме единицу, а затем делим пополам:

Медианой будет восьмая по счету варианта.

Для того, чтобы найти, какая варианта будет восьмой по номеру, будем накапливать частоты до тех пор, пока не получим сумму частот, равную или превышающую половину суммы всех частот. Соответствующая варианта и будет медианой.

Ме = 4 года.

Т.е. половина рабочих имеет стаж меньше четырех лет, половина больше.

Если сумма накопленных частот против одной варианты равна половине сумме частот, то медиана определяется как средняя арифметическая этой варианты и последующей.

Вычисление моды и медианы в интервальном вариационном ряду

Мода в интервальном вариационном ряду вычисляется по формуле

где Х М0 - начальная граница модального интервала,

h м 0 – величина модального интервала,

f м 0 , f м 0-1 , f м 0+1 – частота соответственно модального интервала, предшествующего модальному и последующего.

Модальным называется такой интервал, которому соответствует наибольшая частота.

Пример 1

Группы по стажу

Число рабочих, чел

Накопленные частоты

Определить моду и медиану.

Модальный интервал , т.к. ему соответствует наибольшая частота f = 35. Тогда:

Хм 0 =6, 0 =35

Кроме степенных средних в статистике для относительной характеристики величины варьирующего признака и внутреннего строения рядов распределения пользуются структурными средними, которые представлены,в основном, модой и медианой .

Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:

Медиана — это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Для определения медианы в дискретном ряду при наличии частот сначала вычисляют полусумму частот , а затем определяют, какое значение варианта приходится на нее. (Если отсортированный ряд содержит нечетное число признаков, то номер медианы вычисляют по формуле:

М е = (n (число признаков в совокупности) + 1)/2,

в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда).

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:

Пример . Найти моду и медиану.

Решение :
В данном примере модальный интервал находится в пределах возрастной группы 25-30 лет, так как на этот интервал приходится наибольшая частота (1054).

Рассчитаем величину моды:

Это значит что модальный возраст студентов равен 27 годам.

Вычислим медиану. Медианный интервал находится в возрастной группе 25-30 лет, так как в пределах этого интервала расположена варианта, которая делит совокупность на две равные части (Σf i /2 = 3462/2 = 1731). Далее подставляем в формулу необходимые числовые данные и получаем значение медианы:

Это значит что одна половина студентов имеет возраст до 27,4 года, а другая свыше 27,4 года.

Кроме моды и медианы могут быть использованы такие показатели, как квартили, делящие ранжированный ряд на 4 равные части, децили -10 частей и перцентили — на 100 частей.

Основные понятия

Для экспериментальных данных, полученных по выборке, можно вычислить ряд числовых характеристик (мер).

Мода - числовое значение, которое встречается в выборке наиболее часто. Мода обозначается иногда как Мо.

Например, в ряду значении (2 6 6 8 9 9 9 10) модой является 9, потому что 9 встречается чаше любого другого числа.

Мода представляет собой наиболее часто встречающееся значение (в данном примере это 9) а не частоту встречаемости этого значения (в данном примере равную 3).

Моду находят согласно правилам

1. В случае, когда все значения в выборке встречаются одинаково часто, принято считать, что этот выборочный ряд не имеет моды.

Например, 556677 - в этой выборке моды нет.

2. Когда два соседних (смежных) значения имеют одинаковую частоту и их частота больше частот любых других значений, мода вычисляется как среднее арифметическое этих двух значении.

Например, в выборке 1 2 2 2 5 5 5 6 частоты рядом расположенных значении 2 и 5 совпадают и равняются 3. Эта частота больше чем частота других значении 1 и 6 (у которых она равна 1).

Следовательно, модой этого ряда будет величина .

3) Если два несмежных (не соседних) значения в выборке имеют равные частоты которые больше частот любого другого значения, то выделяют две моды. Например, в ряду 10 11 11 11 12 13 14 14 14 17 модами являются значения 11 и 14. В таком случае говорят, что выборка является бимодальной.

Могут существовать и так называемые мультимодальные распределения, имеющие более двух вершин (мод)

4)Если мода оценивается по множеству сгруппированных данных, то для нахождения моды необходимо определить группу с наибольшей частотой признака. Эта группа называется модальной группой .

Медиана - обозначается Ме и определяется как величина по отношению к которой по крайней мере 50% выборочных значении меньше нее и по крайней мере 50% - больше.

Медиана - это значение которое делит упорядоченное множество данных пополам.

Задача 1. Найдем медиану выборки 9 3 5 8 4 11 13

Решение Сначала упорядочим выборку по величинам входящих в нее значении. Получим, 3 4 5 8 9 11 13. Поскольку в выборке семь элементов, четвертый по порядку элемент будет иметь значение большее чем первые три и меньшее чем последние три. Таким образом, медианой будет четвертый элемент - 8

Задача 2. Найдем медиану выборки 20, 9, 13, 1, 4, 11.

Упорядочим выборку 1, 4, 9, 11, 13, 20 Поскольку здесь имеется четное число элементов, то существует две «середины» - 9 и 13 В этом случае медиана определяется как среднее арифметическое этих значений

Среднее арифметическое


Среднее арифметическое ряда из n числовых значений подсчитывается как

Чтобы показать обманчивость этого показателя, приведём известный пример: в одном купе вагона поместилась бабушка 60 лет с четырьмя внуками: один – 4 года, двое – по 5 лет и один – 6 лет. Среднее арифметическое возраста всех пассажиров этого купе 80/5 = 16. В другом купе расположилась компания молодежи: двое – 15-ти летних, один – 16-летний и двое – 17-летних. Средний возраст пассажиров этого купе так же равен 80/5 = 16. Таким образом, по средним арифметическим пассажиры этих купе не отличаются. Но если обратиться к показателю стандартного отклонения, то окажется, что средний разброс относительно среднего возраста в первом случае окажется 24,6, а во втором случае 1.

Кроме того, среднее оказывается достаточно чувствительным к очень маленьким или очень большим величинам, отличающимся от основных значений измеренных характеристик. Пусть 9 человек имеют доход от 4500 до 5200 тыс долларов в месяц. Величина их среднего дохода равняется 4900 долларов Если же к этой группе добавить человека имеющего доход в 20000 тыс долларов в месяц, то средняя всей группы сместится и окажется равной 6410 долларов, хотя никто из всей выборки (кроме одного человека) реально не получает такой суммы.

Понятно что аналогичное смещение, но в противоположную сторону можно получить и в том случае, если добавить в эту группу человека с очень маленьким годовым доходом.

Разброс выборки

Разброс (размахом ) выборки – разность между максимальной и минимальной величинами данного конкретного вариационного ряда. Обозначается буквой R.

Размах = максимальное значение - минимальное значение

Понятно, что чем сильнее варьирует измеряемый признак, тем больше величина R, и наоборот.

Однако может случиться так, что у двух выборочных рядов и средние, и размах совпадают, однако характер варьирования этих рядов будет различный Например, даны две выборки

Дисперсия

Дисперсия представляет собой наиболее часто использующуюся меру рассеяния случайной величины (переменной).

Дисперсия – среднее арифметическое квадратов отклонений значений переменной от ее среднего значения

Наряду со средними величинами в качестве статистических характеристик вариационных рядов распределения рассчитываются структурные средние – мода и медиана .
Мода (Mo) представляет собой значение изучаемого признака, повторяющееся с наибольшей частотой, т.е. мода – значение признака, встречающееся чаще всего.
Медианой (Me) называется значение признака, приходящееся на середину ранжированной (упорядоченной) совокупности, т.е. медиана – центральное значение вариационного ряда.
Главное свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины ∑|x i - Me|=min.

Определение моды и медианы по несгруппированным данным

Рассмотрим определение моды и медианы по несгруппированным данным . Предположим, рабочие бригады, состоящей из 9 человек, имеют следующие тарифные разряды: 4 3 4 5 3 3 6 2 6 . Так как в данной бригаде больше всего рабочих 3-го разряда, этот тарифный разряд будет модальным. Mo = 3.
Для определения медианы необходимо провести ранжирование: 2 3 3 3 4 4 5 6 6 . Центральным в этом ряду является рабочий 4-го разряда, следовательно, данный разряд и будет медианным. Если ранжированный ряд включает четное число единиц, то медиана определяется как средняя из двух центральных значений.
Если мода отражает наиболее распространенный вариант значения признака, то медиана практически выполняет функции средней для неоднородной, не подчиняющейся нормальному закону распределения совокупности. Проиллюстрируем ее познавательное значение следующим примером.
Допустим, нам необходимо дать характеристику среднего дохода группы людей, насчитывающей 100 человек, из которых 99 имеют доходы в интервале от 100 до 200 долларов в месяц, а месячные доходы последнего составляют 50000 долларов (табл. 1).
Таблица 1 - Месячные доходы исследуемой группы людей. Если воспользоваться средней арифметической, то получим средний доход, равный примерно 600 – 700 долларов, который имеет мало общего с доходами основной части группы. Медиана же, равная в данном случае Me = 163 доллара, позволит дать объективную характеристику уровня доходов 99 % данной группы людей.
Рассмотрим определение моды и медианы по сгруппированным данным (рядам распределения).
Предположим, распределение рабочих всего предприятия в целом по тарифному разряду имеет следующий вид (табл. 2).
Таблица 2 - Распределение рабочих предприятия по тарифному разряду

Расчет моды и медианы для дискретного ряда

Расчет моды и медианы для интервального ряд

Расчет моды и медианы для вариационного ряда

Определение моды по дискретному вариационному ряду

Используется построенный ранее ряд значений признака, отсортированных по величине. Если объем выборки нечетный, берем центральное значение; если объем выборки четный, берем среднее арифметическое двух центральных значений.
Определение моды по дискретному вариационному ряду : наибольшую частоту (60 человек) имеет 5-й тарифный разряд, следовательно, он и является модальным. Mo = 5.
Для определения медианного значения признака по следующей формуле находят номер медианной единицы ряда (N Me): , где n - объем совокупности.
В нашем случае: .
Полученное дробное значение, всегда имеющее место при четном числе единиц совокупности, указывает, что точная середина находится между 95 и 96 рабочими. Необходимо определить, к какой группе относятся рабочие с этими порядковыми номерами. Это можно сделать, рассчитав накопленные частоты. Рабочих с этими номерами нет в первой группе, где всего лишь 12 человек, нет их и во второй группе (12+48=60). 95-й и 96-й рабочие находятся в третьей группе (12+48+56=116), следовательно, медианным является 4-й тарифный разряд.

Расчет моды и медианы в интервальном ряду

В отличие от дискретных вариационных рядов определение моды и медианы по интервальным рядам требует проведения определенных расчетов на основе следующих формул:
, (5.6)
где x 0 – нижняя граница модального интервала (модальным называется интервал, имеющий наибольшую частоту);
i – величина модального интервала;
f Mo – частота модального интервала;
f Mo -1 – частота интервала, предшествующего модальному;
f Mo +1 – частота интервала, следующего за модальным.
(5.7)
где x 0 – нижняя граница медианного интервала (медианным называется первый интервал, накопленная частота которого превышает половину общей суммы частот);
i – величина медианного интервала;
S Me -1 – накопленная интервала, предшествующего медианному;
f Me – частота медианного интервала.
Проиллюстрируем применение этих формул, используя данные табл. 3.
Интервал с границами 60 – 80 в данном распределении будет модальным, т.к. он имеет наибольшую частоту. Использую формулу (5.6), определим моду:

Для установления медианного интервала необходимо определять накопленную частоту каждого последующего интервала до тех пор, пока она не превысит половины суммы накопленных частот (в нашем случае 50 %) (табл. 5.11).
Установили, что медианным является интервал с границами 100 – 120 тыс. руб. Определим теперь медиану:

Таблица 3 - Распределение населения РФ по уровню среднедушевых номинальных денежных доходов в марте 1994г.
Группы по уровню среднедушевого месячного дохода, тыс. руб. Удельный вес населения, %
До 20 1,4
20 – 40 7,5
40 – 60 11,9
60 – 80 12,7
80 – 100 11,7
100 – 120 10,0
120 – 140 8,3
140 –160 6,8
160 – 180 5,5
180 – 200 4,4
200 – 220 3,5
220 – 240 2,9
240 – 260 2,3
260 – 280 1,9
280 – 300 1,5
Свыше 300 7,7
Итого 100,0

Таблица 4 - Определение медианного интервала
Таким образом, в качестве обобщенной характеристики значений определенного признака у единиц ранжированной совокупности могут быть использованы средняя арифметическая, мода и медиана.
Основной характеристикой центра распределения является средняя арифметическая, для которой характерно то, что все отклонения от нее (положительные и отрицательные) в сумме равняются нулю. Для медианы характерно, что сумма отклонений от нее по модулю является минимальной, а мода представляет собой значение признака, которое наиболее часто встречается.
Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию. В симметричных распределениях все три характеристики совпадают. Чем больше расхождение между модой и средней арифметической, тем более асимметричен ряд. Для умеренно асимметричных рядов разность между модой и средней арифметической примерно в три раза превышает разность между медианой и средней, т.е.:
|Mo –`x| = 3 |Me –`x|.

Определение моды и медианы графическим методом

Моду и медиану в интервальном ряду можно определить графически . Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Из точки их пересечения опускаем перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения (рис. 5.3).


Рис. 5.3. Графическое определение моды по гистограмме.


Рис. 5.4. Графическое определение медианы по кумуляте
Для определения медианы из точки на шкале накопленных частот (частостей), соответствующей 50 %, проводится прямая, параллельная оси абсцисс до пересечения с кумулятой. Затем из точки пересечения опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Квартили, децили, перцентили

Аналогично с нахождением медианы в вариационных рядах распределения можно отыскать значение признака у любой по порядку единицы ранжированного ряда. Так, например, можно найти значение признака у единиц, делящих ряд на четыре равные части, на 10 или на 100 частей. Эти величины называются «квартили», «децили», «перцентили».
Квартили представляют собой значение признака, делящее ранжированную совокупность на 4 равновеликие части.
Различают квартиль нижний (Q 1), отделяющий ¼ часть совокупности с наименьшими значениями признака, и квартиль верхний (Q 3), осекающий ¼ часть с наибольшими значениями признака. Это означает, что 25 % единиц совокупности будут меньше по величине Q 1 ; 25 % единиц будут заключены между Q 1 и Q 2 ; 25 % - между Q 2 и Q 3 , а остальные 25 % превосходят Q 3 . Средним квартилем Q 2 является медиана.
Для расчета квартилей по интервальному вариационному ряду используются формулы:
, ,
где x Q 1 – нижняя граница интервала, содержащего нижний квартиль (интервал определяется по накопленной частоте, первой превышающей 25 %);
x Q 3 – нижняя граница интервала, содержащего верхний квартиль (интервал определяется по накопленной частоте, первой превышающей 75 %);
i – величина интервала;
S Q 1-1 – накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль;
S Q 3-1 – накопленная частота интервала, предшествующего интервалу, содержащему верхний квартиль;
f Q 1 – частота интервала, содержащего нижний квартиль;
f Q 3 – частота интервала, содержащего верхний квартиль.
Рассмотрим расчет нижнего и верхнего квартилей по данным табл. 5.10. Нижний квартиль находится в интервале 60 – 80, накопленная частота которого равна 33,5 %. Верхний квартиль лежит в интервале 160 – 180 с накопленной частотой 75,8 %. С учетом этого получим:
,
.
Кроме квартилей в вариационных радах распределения могут определяться децили – варианты, делящие ранжированный вариационный ряд на десять равных частей. Первый дециль (d 1) делит совокупность в соотношении 1/10 к 9/10, второй дециль (d 1) – в соотношении 2/10 к 8/10 и т.д.
Вычисляются они по формулам:
, .
Значения признака, делящие ряд на сто частей, называются перцентилями. Соотношения медианы, квартилей, децилей и перцентилей представлены на рис. 5.5.



Читайте также: