Логарифмы в медицине из истории создания логарифмов. Открытие логарифмов. Натуральный и десятичный логарифмы

Логарифмы

История логарифмов

Название введено Непером, происходит от греческих слов logoz и ariumoz - оно означает буквально “числа отношений”. Логарифмы были изобретены Непером. Непер изобрел логарифмы не позднее 1594 года. Логарифмы с основанием a ввел учитель математики Спейдел. Слово основание заимствовано из теории о степенях и перенесено в теорию логарифмов Эйлером. Глагол “логарифмировать” появился в 19 веке у Коппе. Коши первый предложил ввести различные знаки для десятичных и натуральных логарифмов. Обозначения, близкие к современным ввел немецкий математик Прингсхейм в 1893 году. Именно он обозначал логарифм натурального числа через ln . Определение логарифма как показателя степени данного основания можно найти у Валлиса (1665 год), Бернулли (1694 год).

Определение логарифма

Логарифмом числа b>0 по основанию a>0, a ≠ 1 , называется показатель степени, в которую надо возвести число a, чтобы получить число b.

Логарифм числа b по основанию a обозначается: log a b

Основное логарифмическое тождество

Это равенство является просто другой формой определения логарифма. Его часто называют основным логарифмическим тождеством.

Пример

1. 3=log 2 8, так как 2³=8

2. ½=log 3 √3 , так как 3= √3

3. 3 log 3 1/5 =1/5

4. 2=log √5 5, так как (√5)²=5

Натуральный и десятичный логарифмы

Натуральным называется логарифм, основание которого равно e. Обозначается ln b, т.е.

Десятичным называется логарифм, основание которого равно 10. Обозначается lg b, т.е.

Основные свойства логарифмов

Пусть: a > 0, a ≠ 1. Тогда:

1. log a x*y=logax+logay (x>0, y>0)

2. log a y/x=logax−logay (x>0, y>0)

3. log a x p =p*logax (x>0)

4. log a p x=1/p*logax (x>0)

Пример

1) log 8 16+log 8 4= log 8 (16 4)= log 8 64= 2;

2) log 5 375– log 5 3= log 5 375/3=log 5 125= 3;

3) ½log 3 36+ log 3 2- log 3 √6- ½ log 3 8=log 3 √36+ log 3 2-(log 3 √6+log 3 √8) =log 3 12/4 √3=log 3 √3= ½.

Формы перехода от логарифма по одному основанию к логарифмы по другому основанию

1. log a b=log c b/log c a

2. log a b=1/log b a

Логарифмические уравнения

1) Уравнение содержащие переменную под знаком логарифма (log) называются логарифмическими. Простейшим примером логарифмического уравнения служит уравнение вида: log a x=b, где а>0 и а=1.

2) Решение логарифмического уравнения вида: log a f(x)=log a g(x) (1) основано на том, что оно равносильно уравнению вида f(x) = g(x) (2) при дополнительных условиях f(x)>0 и g(x)>0.

3) При переходе от уравнения (1) к уравнению (2) возможно появление посторонних корней поэтому для них выявления требуется проверка.

4) При решении логарифмических уравнений часто используется метод подстановки.

Вывод

Логарифм число, применение которого позволяет упростить многие сложные операции арифметики. Использование в вычислениях вместо чисел их логарифмов позволяет заменить умножение более простой операцией сложения, деление - вычитанием, возведение в степень - умножением и извлечение корней - делением.

Единственным способом реализации дальних путешествий было мореплавание, что всегда связано с выполнением больших объемов навигационных вычислений. Сейчас трудно представить процесс изнурительных расчетов при умножении-делении пяти-шестизначных чисел «вручную». богослов по роду своей основной деятельности, занимаясь на досуге тригонометрическими расчетами, догадался заменить трудоемкую процедуру умножения простым сложением. Он сам говорил, что его целью было «освободиться от трудности и скуки вычислений, которые отпугивают многих от изучения математики». Усилия увенчались успехом - был создан математический аппарат, названный системой логарифмов.

Итак, что такое логарифм? Основой логарифмических вычислений является иное представление числа: вместо обычной позиционной системы, как мы привыкли, число A представляется в виде степенного выражения, где некое произвольное число N, называемое основанием степени, возводится в такую степень n, что в результате получается число A. Таким образом, n - это логарифм числа А по основанию N. Выбор основания логарифмов определяет название системы. Для простых вичислений применяется десятичная система логарифмов, а в науке и технике широко используется система натуральных логарифмов, где основанием служит иррациональное число е=2,718. Выражение, определяющее логарифм числа А, на языке математики записывается так:

n=log(N)A, где N - основание степени.

Десятичный и натуральный логарифмы имеют свое специфичное сокращенное написание - lgA и lnA, соответственно.

В системе расчетов, использующей вычисление логарифмов, основным элементом является преобразование числа к степенному виду с помощью таблицы логарифмов по некоторому основанию, например 10. Эта манипуляция не представляет никаких сложностей. Далее используется свойство степенных чисел, состоящее в том, что при умножении их степени складываются. Практически это означает, что умножение чисел с логарифмическим представлением, заменяется сложением их степеней. Поэтому, вопрос «что такое логарифм», если его продолжить до «а зачем он нам нужен», имеет простой ответ - чтоб упростить процедуру умножения-деления многоразрядных чисел - ведь сложение «в столбик» значительно проще умножения «в столбик». Кто не верит - пусть попробует сложить и умножить два восьмиразрядных числа.

Первые таблицы логарифмов (по основанию с опубликовал в 1614 году Джон Непер, а полностью лишенный ошибок вариант, включающий и таблицы десятичных логарифмов, появился в 1857 году и известен как таблицы Бремикера. Использование логарифмов с основанием в виде обусловлено тем, что число е довольно просто получить через ряд Тейлора, имеющий широкое применение в интегральном и

Суть данной вычислительной системы содержится в ответе на вопрос «что такое логарифм» и вытекает из основного логарифмического тождества: N(основание логарифма) n, равную логарифму числа А(logA), равно этому числу A. При этом А>0, т.е. логарифм определяется только для положительных чисел, а основание логарифма всегда больше 0 и не равно 1. Исходя из сказанного, свойства натурального логарифма можно сформулировать следующим образом:

  1. Область определения натурального логарифма - вся числовая ось от 0 до бесконечности.
  2. ln x = 0 - следствие известного соотношения - любое число в нулевой степени равно 1.
  3. ln (X*Y) = ln X + lnY - наиболее важное для вычислительных манипуляций свойство - логарифм произведения двух чисел рамен сумме логарифмов каждого из них.
  4. ln (X/Y) = ln X - lnY - логарифм частного двух чисел равен разности логарифмов этих чисел.
  5. ln (X)n =n*ln X .
  6. Натуральный логарифм представляет собой дифференцируемую, выпуклую вверх функцию, причем ln’ X = 1 / X
  7. log (N)A =K* ln A - логарифм по любому положительному и отличному от числа е основанию отличается от натурального только коэффициентом.

Сейчас каждый школьник знает, что такое логарифм, но благодаря прогрессу в области прикладной вычислительной техники проблемы вычислительных работ ушли в прошлое. Тем не менее, логарифмы, уже как математический инструмент, используются при решении уравнений с неизвестными в показателе степени, в выражениях для нахождения времени

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь — собственно, определение логарифма:

Логарифм по основанию a от аргумента x — это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a — основание, x — аргумент, b — собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.

С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;
  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ — без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x — это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x — это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

В шестнадцатом веке быстрыми темпами развивалось мореплавание. Поэтому совершенствовались наблюдения за небесными телами. Для упрощения астрономических расчетов в конце 16 – начале 17 веков возникли логарифмические вычисления.

Ценность логарифмического метода заключается в сведении умножения и деления чисел к сложению и вычитанию. Действиям менее трудоемким. Особенно если приходится работать с многозначными числами.

Метод Бюрги

Первые логарифмические таблицы были составлены швейцарским математиком Йостом Бюрги в 1590 году. Суть его метода состояла в следующем.

Чтобы умножить, например, 10 000 на 1 000, достаточно сосчитать число нулей в множимом и множителе, сложить их (4 + 3) и записать произведение 10 000 000 (7 нулей). Сомножители – целые степени числа 10. При умножении показатели степеней складываются. Также выполняется и деление. Оно заменяется вычитанием показателей степеней.

Таким образом, можно делить и умножать не все числа. Но их станет больше, если в качестве основания взять число, близкое к 1. Например, 1,000001.

Так и поступил четыреста лет назад математик Йост Бюрги. Правда свою работу «Таблицы арифметической и геометрической , вместе с основательным наставлением…» он опубликовал только в 1620 году.

Родился Йост Бюрги 28 февраля 1552 года в Лихтенштейне. С 1579 по 1604 год служил придворным астрономом у ландграфа Гессен-Касселя Вильгельма IV. Позже у императора Рудольфа II в Праге. За год до своей смерти, в 1631 году, в Кассель. Бюрги известен и как изобретатель первых маятниковых часов.

Таблицы Непера

В 1614 году появились таблицы Джона Непера. Этот ученый тоже брал за основание число, близкое к единице. Но оно было меньше единицы.

Шотландский барон Джон Непер (1550-1617) учился на родине. Любил путешествовать. Побывал в Германии, Франции и Испании. В 21 год вернулся в семейное поместье недалеко от Эдинбурга и прожил там до смерти. Занимался богословием и математикой. Последнюю изучал по сочинениям Евклида, Архимеда и Коперника.

Десятичные логарифмы

Неперу и англичанину Бриггу принадлежит идея составления таблицы десятичных логарифмов. Работу по пересчету ранее составленных таблиц Непера они начали вместе. После смерти Непера Бригг ее продолжил. Работу он опубликовал в 1624 году. Поэтому десятичные называют еще бригговыми.

Составление логарифмических таблиц потребовало от ученых многолетней трудоемкой работы. Зато во много раз повысилась производительность труда тысяч вычислителей, которые пользовались составленными ими таблицами.



Читайте также: