Разложить момент на пару сил. Пара сил, момент пары сил. Решение задач на определение опорных реакций

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело (рис. 32, а). Система сил F, F, образующих пару, очевидно, не находится в равновесии (эти силы не направлены вдоль одной прямой). В то же время пара сил не имеет равнодействующей, поскольку, как будет доказано, равнодействующая любой системы сил главному вектору т. е. сумме этих сил, а для пары Поэтому свойства пары сил, как особой меры механического взаимодействия тел, должны быть рассмотрены отдельно.

Плоскость, проходящая через линии действия пары сил, называется плоскостью действия пары. Расстояние d между линиями действия сил пары называется плечом пары. Действие пары сил на твердое тело сводится к некоторому вращательному эффекту, который характеризуется величиной, называемой моментом пары. Этот момент определяется: 1) его модулем, равным произведению положением в пространстве плоскости действия пары; 3) направлением поворота пары в этой плоскости. Таким образом, как и момент силы относительно центра, это величина векторная.

Введем следующее определение: моментом пары сил называется вектор (или М), модуль которого равен произведению модуля одной из сил пары на ее плечо и который направлен перпендикулярно плоскости действия пары в ту сторону, откуда пара видна стремящейся повернуть тело против хода часовой стрелки (рис. 32, б).

Заметим еще, что так как плечо силы F относительно точки А равно d, а плоскость, проходящая через точку А и силу F, совпадает с плоскостью действия пары, то одновременно

Но в отличие от момента силы вектор , как будет показано ниже, может быть приложен в любой точке (такой вектор называется свободным). Измеряется момент пары, как и момент силы, в ньютон-метрах.

Покажем, что моменту пары можно дать другое выражение: момент пары равен сумме моментов относительно любого центра О сил, образующих пару, т. е.

Для доказательства проведем из произвольной точки О (рис. 33) радиусы-векторы

Тогда согласно формуле (14), что получим и, следовательно,

Так как то справедливость равенства (15) доказана. Отсюда, в частности, следует уже отмеченный выше результат:

т. е. что момент пары равен моменту одной из ее сил относительно точки приложения другой силы. Отметим еще, что модуль момента пары

Если принять, что действие пары сил на твердое тело (ее вращательный эффект) полностью определяется значением суммы моментов сил пары относительно любого центра О, то из формулы (15) следует, что две пары сил, имеющие одинаковые моменты, эквивалентны, т. е. оказывают на тело одинаковое механическое действие. Иначе это означает, что две пары сил, независимо от того, где каждая из них расположена в данной плоскости (или в параллельных плоскостях) и чему равны в отдельности модули их сил и их плечи, если их моменты имеют одно и то же значение , будут эквивалентны. Так как выбор центра О произволен, то вектор можно считать приложенным в любой точке, т. е. это вектор свободный.

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

* * *

компанией ЛитРес .

5. Пара сил. Момент силы

Парой сил называется система двух сил, равных по модулю, параллельных и направленных в разные стороны.

Пара сил вызывает вращение тела, и ее действие на тело оценивается моментом. Силы, входящие в пару, не уравновешиваются, так как они приложены к двум точкам.

Действие этих сил на тело не может быть заменено одной равнодействующей силой.

Момент пары сил численно равен произведению модуля силы на расстояние между линиями действия сил плеча пары .

Момент считается положительным, если пара вращает тело по часовой стрелке.

M (f,f ") = Fa; M > 0.

Плоскость, проходящая через линии действия сил пары, называется плоскостью действия пары.

Свойства пар сил.

1. Пару сил можно перемещать в плоскости ее действия.

2. Эквивалентность пар. Две пары, моменты которых равны, эквивалентны (действие их на тело аналогично).

3. Сложение пар сил. Систему пар сил можно заменить равнодействующей парой.

Момент равнодействующей пары равен алгебраической сумме моментов пар, составляющих систему:

M Σ = F 1 a 1 + F 2 a 2 + F 3 a 3 + … + F n a 1 ;

Равновесие пар. Для равновесия пар необходимо и достаточно, чтобы алгебраическая сумма моментов пар системы равнялась нулю:

Момент силы относительно точки. Сила, не проходящая через точку крепления тела, вызывает вращение тела относительно точки, поэтому действие такой силы на тело оценивается моментом.

Момент силы относительно точки численно равен произведению модуля силы на расстояние от точки до линии действия силы. Перпендикуляр, опущенный из точки на линию действия силы, называется плечом силы .

Момент обозначается:

M O = (F ) или m O (F).

Момент считается положительным, если сила разворачивается по часовой стрелке.

* * *

Приведённый ознакомительный фрагмент книги Техническая механика. Шпаргалка (Аурика Луковкина, 2009) предоставлен нашим книжным партнёром -

Пара сил – совокупность двух противоположно направленных равных по модулю параллельных сил, действующих по несовпадающим линиям действия.

Плоскость, в которой действует пара сил, называется плоскостью действия пары.

Момент пары сил не зависит от выбора центра привидения, а определяется лишь модулями сил и расстоянием между л.д. – плечом пары.

Векторный момент пары сил – вектор, равный векторному произведению радиус-вектора ρ, соединяющий точки приложения сил на вектор силы и направленный перпендикулярно плоскости действия пары сил таким образом, чтобы, смотря ему навстречу, пара сил стремилась поворачивать плоскость действия против часовой стрелки.

Алгебраический момент пары сил равен произведению модуля одной из сил, составляющих пару, на плечо пары и имеет знак в соответствии с правилом знаков для момента силы.

Свойства пар сил. Эквивалентность пар. Теоремы об эквивалентности пар.

Свойства пар сил:

1) Не изменяя действия на тело пару сил можно поворачивать в плоскости действия и переносить в любое место этой плоскости

2) Можно изменять модули сил, составляющих пару и плечо пары, но таким образом, чтобы момент пары оставался неизменным.

3) Пару сил можно переносить в параллельную ей плоскость действия.

Две пары сил называются эквивалентными , если они имеют геометрически равные моменты.

Поэтому пара сил характеризуется при решении задач лишь моментом пары и обозначается m=M0(F1;F2).

т-мы: (1)Две пары сил произвольно расположенных в пространстве эквивалентны одной паре сил с моментом, равным геометрической сумме моментов слагаемых пар. (2) еси на тело действует произвольная система пар, то ветор момента результирующей пары равен векторной сумме моментов составляющих пар. (3)Если все пары сил расположены перпендикулярно одной плоскости, то вектора моментов пар направлены перпендикулярно этой плоскости в ту или иную сторону, поэтому моменты пар можно складывать алгебраически. (4) для равновесия тела, находящегося под действием системы произвольно расположенной в пространстве пар необходимо и достаточно, чтобы момент результирующей пары был равен 0.

Сложение пар сил. Условие равновесия системы пар сил.

Теорема о сложении пар сил:

Две пары сил, произвольно расположенные в пространстве, эквивалентны одной паре с моментом равным геометрической сумме моментов слагаемых пар.

Если на тело действует произвольная система (М1,М2,…,Мn) пар, то вектор момента результирующей пары равен векторной сумме моментов, составляющих пары. M=M1+M2+…+Mn=ΣMk (сверху векторы)

Если две пары сил расположены в одной плоскости, то векторы моментов пар направлены перпендикулярно этой плоскости в ту или иную стороны. Поэтому моменты пар можно складывать алгебраически. M=M1+M2+…+Mn=ΣMk

Условие равновесия системы пар сил:

Для равновесия тела, находящегося под действием системы произвольно расположенных в пространстве пар, необходимо и достаточно, чтобы момент результирующей (эквивалентной) пары был равен 0.

В случае, если все пары сил расположены в одной плоскости (или в параллельных плоскостях), то для равновесия необходимо равенство 0 алгебраической суммы моментов составляющих пар.

Основная лемма статики о параллельном переносе силы.

position:relative; z-index:2"> ПАРА СИЛ И МОМЕНТЫ СИЛ

Пара сил и ее действие на тело

Две равные и параллельные силы, направленные в противоположные стороны и не лежащие на одной прямой, называются парой сил. Примером такой системы сил могут служить усилия, передаваемые руками шофера на рулевое колесо автомобиля. Пара сил имеет большое значение в практике. Именно поэтому свойства пары как специфической меры механического взаимодействия тел изучаются отдельно.

Сумма проекций сил пары на ось х и на ось у равна нулю (рис. 19, а), поэтому пара сил не имеет равнодействующей. Несмотря на это тело под действием пары сил не находится в равновесии.

Действие пары сил на твердое тело состоит в том, что она стремится вращать это тело. Спо­собность пары сил производить вращение определяется моментом пары, равным произведе­нию силы на кратчайшее расстояние (взятое по перпендикуляру к силам) между линиями действия сил. Обозначим момент пары М , а кратчайшее расстояние между силами а, тогда абсолютное значение момента (рис. 19, а):

font-size:12.0pt">Кратчайшее расстояние между линиями действия сил называется плечом пары, поэтому можно сказать, что момент пары сил по абсолютному значению равен произведению одной из сил на ее плечо.

Эффект действия пары сил полностью определяется ее моментом. Поэтому момент пары сил можно показывать дугообразной стрелкой, указывающей направление вращения. Так как font-size:12.0pt">пара сил не имеет равнодействующей, ее нельзя уравновесить одной силой. Момент пары в СИ измеряется в ньютонометрах (Нм) или в единицах, кратных ньютонометру: кНм, МНм и т. д.


Момент пары сил будем считать положительным, если пара стремится повернуть тело по направлению хода часовой стрелки (рис. 19, а), и отрицательным, если пара стремится вращать тело против хода часовой стрелки (рис. 19, б). Принятое правило знаков для моментов пар условно: можно было бы принять противоположное правило.

Упражнение 1.

1. Определить, на каком рисунке изображена пара сил:

А. Рис. 20, а. Б. Рис. 20, б. В. Рис. 20, в. Г. Рис. 20, г.

font-size:12.0pt">2. Что определяет эффект действия пары сил?

А. Произведение силы на плечо. Б. Момент пары и направление поворота.

3. Чем можно уравновесить пару сил?

А. Одной силой. Б. Парой сил.

Эквивалентность пар

font-size:12.0pt">Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состоя­ние тела не изменяется, т. е. не изменяется движение тела или не нарушается его равновесие.

Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно пере­но­сить в плоскости ее действия в любое положение.

Рассмотрим еще одно свойство пары сил, которое является осно­вой для сложения пар.

Не нарушая состояния тела, можно как угодно изменять мо­дули сил и плечо пары, только бы момент пары оставался неиз­менным.

Заменим пару сил https://pandia.ru/text/79/460/images/image007_8.gif" width="45" height="24"> с плечом b (рис. 21, б) так, чтобы момент пары оставался тем же.

Момент заданной пары сил font-size:12.0pt">Если, изменив значения сил и плечо новой пары, мы сохраним равенство их моментов М1 = М2 или F1a = F2b, то состояние тела от такой замены не нарушится. Итак, вместо заданной пары с плечом а мы получили эквивалентную пару EN-US style="font-size:12.0pt"">b .

Упражнение 2

1. Зависит ли эффект действия пары сил на тело от ее положения в пло­скости?

А. Да. Б. Нет.

2. Какие из приведенных ниже пар эквивалентны?

А. а) сила пары 100 кН, плечо 0,5 м; б) сила пары 20 кН, плечо 2,5 м; в) сила пары 1000 кН, плечо 0,05 м. Направление всех трех пар одинаково.

Б. а) Мг = -300 Нм; б) М2 = 300 Нм.

3. Момент пары сил равен 100 Нм, плечо пары 0,2 м. Определить значение сил пары. Как изменится значение сил пары, если плечо увеличить в два раза при сохранении численного значения момента.

Сложение и равновесие пар сил на плоскости

Подобно силам, пары можно складывать. Пара, заменяющая собой действие данных пар, называется результирующей.

Как показано выше, действие пары сил полностью определяется ее моментом и направлением вращения. Исходя из этого сложение производится алгебраическим суммированием их моментов, т. е. момент результирующей пары равен алгебраической сумме моментов состав­ляющих пар.

Это применимо к любому количеству пар, лежащих в одной плоскости. Поэтому при произвольном числе слагаемых пар, лежащих в одной плоскости или параллельных плоскостях, момент результирующей пары определится по формуле

font-size:12.0pt">где моменты пар, вращающие по часовой стрелке принимаются положительными, а против часовой стрелки - отрицательными.


На основании приведенного правила сложения пар устанавливается условие равновесия системы пар, лежащих в одной плоскости, а именно: для равновесия системы пар необхо­димо и достаточно, чтобы момент результирующей пары равнялся нулю или чтобы алгебраическая сумма моментов пар равнялась нулю:

a0">Пример .

Определить момент результирующей пары, эквивалентной системе трех пар, лежащих в одной плоскости. Первая пара образована силами F1 = F"1 = 2 кН, имеет плечо h 1 = 1,25 м и действует по часовой стрелке; вторая пара образована силами F2 = F"2 = 3 кН, имеет плечо h2 =. 2 м и действует про­тив часовой стрелки; третья пара образована силами F 3 = F"3 = 4,5 кН, имеет плечо h3 = 1,2 м и действует по часовой стрелке (рис. 22).

font-size:12.0pt">Решение.

Вычисляем моменты составляющих пар:

font-size:12.0pt">Для определения момента результирующей пары складываем алгебраически моменты заданных пар

font-size:12.0pt">Момент сил относительно точки и оси

Момент силы относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы (рис. 23, а).

При закреплении тела в точке О сила стремится поворачи­вать его вокруг этой точки. Точка О, относительно которой берется момент, называется центром момента, а длина перпенди­куляра а называется плечом силы относительно центра момента.

Момент силы font-size:12.0pt">font-size:12.0pt">Измеряют моменты сил в ньютонометрах (Нм) или в соответ­ствующих кратных и дольных единицах, как и моменты пар.

font-size:12.0pt">Момент принято считать по­ложительным, если сила стре­мится вращать тело по часовой стрелке (рис. 23, а), а отри­цательным - против часовой стрелки (рис. 23, б). Когда линия действия силы проходит через данную точку, момент силы относительно этой точки равен нулю, так как в рассматриваемом случае плечо а = 0 (рис. 23, в).

Между моментом пары и моментом силы есть одно существен­ное различие. Численное значение и направление момента пары сил не зависят от положения этой пары в плоскости. Значение и направление (знак) момента силы зависят от положения точки, относительно которой определяется момент.


Рассмотрим, как определяется момент силы относительно оси.

Из опыта известно, что ни сила (рис. 24), линия действия которой пересекает ось Oz , ни сила F2, параллельная оси, не смо­гут повернуть тело вокруг этой оси, т. е. не дают момента.

Пусть на тело в какой-то точке (рис. 25) действует сила . Проведем плоскость H , перпенди­кулярную оси Oz и проходящую через начало вектора силы..gif" width="17 height=24" height="24"> расположенную в плоскости H , и , парал­лельную оси Oz .

Составляющая EN-US style="font-size:12.0pt"">Oz и момента относительно этой оси не создает. Состав­ляющая EN-US" style="font-size:12.0pt">H и создает момент относительно оси Oz или, что то же са­мое, относительно точки О. Момент силы измеряется произведением модуля самой силы на длину а перпендикуляра, опущенного из точки О на направление этой силы, т. е.: font-size:12.0pt">Знак момента по общему правилу опреде­ляется направлением вра­щения тела: плюс (+) – при движении по часовой стрелке, минус (-) – при движении против часовой стрелки. Для опре­деления знака момента наблюдатель должен непременно на­ходиться со стороны положи­тельного направления оси. На рис. 25 момент силы EN-US style="font-size:12.0pt"">Oz положителен, так как для наблюдателя, смотрящего со стороны положительного направле­ния оси (сверху), тело под действием заданной силы представляется вращающимся вокруг оси по ходу часовой стрелки.



Если сила EN-US" style="font-size:12.0pt">H , перпен­дикулярной оси О z , момент этой силы определится произведением полной ее величины на плечо l относительно точки пересечения оси О и плоскости H :

Следовательно, для определения момента силы относительно оси нужно спроецировать силу на плоскость, перпендикулярную оси, и найти момент проекции силы относительно точки пере­сечения оси с этой плоскостью.

Пару сил в механике рассматривают как одно из основных понятий, наряду с понятием силы.

Пара сил система двух параллельных, противоположно направленных и равных по модулю сил, не лежащих на одной прямой.

Плоскость действия пары сил плоскость, в которой находятся линии действия сил.

Плечо пары сил кратчайшее расстояние (длина перпендикуляра) между линиями действия сил, составляющих пару сил.

На рис. 1.34 изображена пара сил, плоскость действия которой лежит в плоскости OXY системы отсчёта OXY.

Силы F 1 , F 2 образуют пару сил. F 1 = F 2 ; F 1 = – F 2 . Однако силы пары не уравновешиваются, так как они направлены не по одной прямой. Пара сил стремится произвести вращение тела, к которому она приложена. Действие пары сил на тело характеризуется её моментом.


Для количественной характеристики действия пары сил на тело и указания направления, в котором пара сил стремится вращать тело, вводится понятие алгебраического момента пары сил .

Алгебраический момент пары сил величина, равная взятому с соответствующим знаком произведению модуля одной из сил на её плечо.

M = ± F 1 ·h = ± F 2 ·h.

Алгебраический момент пары сил считают положительным, если пара сил стремится повернуть тело против вращения часовой стрелки, и отрицательным, если в сторону вращения часовой стрелки. В системе СИ момент пары сил измеряется в Н·м.


На рис. 1. 35 изображена пара сил (F 1 , F 2), линии действия которых лежат в плоскости OXY.

Момент пары сил векторная мера механического действия пары сил, равная моменту одной из сил пары относительно точки приложения другой силы.

Момент пары сил изображается вектором М . Вектор момента М пары сил (F 1 , F 2) направлен перпендикулярно к плоскости действия пары сил в сторону, откуда видно пару сил, стремящуюся вращать плоскость её действия в сторону, противоположную вращению часовой стрелки. Согласно определению (см. рис. 1.35), M ^ j , M ^ i , M = F 1 ×h = F 2 ·h. Таким образом, пара сил полностью характеризуется её моментом M .

Теорема . Пары сил, лежащие в одной плоскости, эквивалентны, если их алгебраические моменты численно равны и одинаковы по знаку.

Доказательство этой теоремы несложно и здесь оно не приводится.

Следствия из теоремы:

1.Пару сил, не изменяя её действия на тело, можно как угодно поворачивать и переносить в любое место плоскости её действия.

2.У пары сил можно изменять плечо и модуль силы, сохраняя при этом алгебраический момент пары и плоскость действия.


Суть теоремы и её следствий иллюстрируется рис. 1.36, на котором приведены пары сил с эквивалентными алгебраическими и векторными моментами. Плоскости действия пар сил совпадают с плоскостью YOZ.

Теорема . Пары сил в пространстве эквивалентны, если их моменты геометрически равны.

Доказательство этой теоремы также достаточно просто и здесь не приведено.

Из теорем о парах сил следует вывод: не изменяя действия пары сил на тело, пару сил можно переносить в любую плоскость, параллельную плоскости её действия, а также изменять её силу и плечо, сохраняя неизменными модуль и направление её момента.

Таким образом, вектор момента пары сил можно переносить в любую точку, то есть момент пары сил является свободным вектором .

Вектор момента пары сил определяет три элемента: положение плоскости действия пары; направление вращения; числовое значение (модуль) момента.

Отметим аналогию: если точку приложения вектора силы можно помещать где угодно на линии действия этой силы (скользящий вектор ), то векторный момент пары сил можно приложить в любой точке тела (свободный вектор ).



Читайте также: