Полупроводники. Собственная и примесная проводимость полупроводников. Устройство и принцип действия полупроводникового диода. Собственная и примесная проводимость полупроводников Какую проводимость полупроводников называют собственной

Полупроводниками являются твердые тела, которые при T = 0K имеют полностью занятую электронами валентную V зону, отделенную от зоны проводимости C сравнительно узкой запрещенной зоной . Своим названием они обязаны тому, что их проводимость меньше электропроводности металлов и больше электропроводности диэлектриков.

Различают собственные и примесные полупроводники . Собственными полупроводниками являются химически чистые полупроводники (например, Ge, Se), а их проводимость называется собственной проводимостью .

При T = 0K и отсутствии внешнего возбуждения

собственные полупроводники ведут себя как диэлектрики. При повышении температуры электроны с верхних уровней валентной зоны V могут быть переброшены на нижние уровни зоны проводимости C . При наложении на кристалл внешнего электрического поля они перемещаются против поля и создают электрический ток. Проводимость, обусловленная электронами, называется электронной проводимостью или проводимостью n -типа (negative).

В результате переходов электронов в зону проводимости, в валентной зоне возникают вакантные состояния , получившие название дырок (hole, показаны на рисунке белыми кружками). Во внешнем поле на это вакантное место может переместиться соседний валентный электрон, при этом дырка "переместится" на его место. В результате дырка, так же как и перешедший в зону проводимости электрон, будет двигаться по кристаллу, но в направлении противоположном движению электрона. Формально это выглядит так, как если бы по кристаллу двигалась частица с положительным зарядом, равным по величине заряду электрона. Проводимость собственных полупроводников, обусловленная квазичастицами - дырками, называется дырочной проводимостью или p -проводимостью (positive).

В собственных полупроводниках наблюдается, таким образом, электронно-дырочный механизм проводимости.

Примесная проводимость полупроводников.

Проводимость полупроводников , обусловленная примесями (атомы посторонних элементов), тепловыми (пустые узлы или атомы в междоузлии) и механическими (трещины, дислокации) дефектами, называется примесной проводимостью , а сами полупроводники - примесными полупроводниками .

Полупроводники называются электронными (или полупроводниками n -типа ) если проводимость в них обеспечивается избыточными электронами примеси, валентность которой на единицу большевалентности основных атомов .

Например, пятивалентная примесь мышьяка (As) в

матрице четырехвалентного германия (Ge) искажает поле решетки, что приводит к появлению в запрещенной зоне энергетического уровня D валентных электронов мышьяка, называемого примесным уровнем . В данном случае этот уровень располагается от дна зоны проводимости на расстоянии = 0,013эВ < kT, поэтому уже при обычных температурах тепловая энергия достаточна для переброски электронов с примесного уровня в зону проводимости.

Примеси, являющиеся источниками электронов называются донорами донорными уровнями .

Таким образом, в полупроводниках n -типа (донорная примесь) реализуется электронный механизм проводимости.

Полупроводники называются дырочными (или полупроводниками p -типа ) если проводимость в них обеспечивается дырками, вследствие введения примеси, валентность которой на единицу меньше валентностиосновных атомов .

Например, введение трехвалентной примеси бора (B) в матрицу четырехвалентного германия (Ge) приводит к появлению в запрещенной зоне примесного энергетического уровня A не занятого электронами. В данном случае этот уровень располагается от верхнего края валентной зоны на расстоянии = 0,08эВ. Электроны из валентной зоны могут переходить на примесный уровень, локализуясь на атомах бора. Образовавшиеся в валентной зоне дырки становятся носителями тока.

Примеси, захватывающие электроны из валентной зоны, называются акцепторами , а энергетические уровни этих примесей - акцепторными уровнями . В полупроводниках p -типа (акцепторная примесь) реализуется дырочный механизм проводимости.

Таким образом, в отличие от собственной проводимости, примесная проводимость обусловлена носителями одного знака.

Фотопроводимость полупроводников.

Фотопроводимость полупроводников - увеличение электропроводности полупроводников под действием электромагнитного излучения - может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей.

Собственная фотопроводимость . Если энергия фотонов больше ширины запрещенной зоны (h ν ≥ ΔE ) , электроны могут быть переброшены из валентной зоны в зону проводимости (а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). Собственная фотопроводимость обусловлена как электронами, так и дырками.

Примесная фотопроводимость . Если полупроводник содержит примеси, то фотопроводимость может возникать и при h ν < ΔE : при донорной примеси фотон должен обладать энергией h ν ≥ Δ , при акцепторной примеси h ν ≥ Δ . При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n -типа (рис.(б)) или из валентной зоны на акцепторные уровни в случае полупроводника p -типа (рис.(в)).

Примесная фотопроводимость для полупроводников n -типа - чисто электронная , для полупроводников p -типа - чисто дырочная .

Таким образом, если h ν ≥ ΔE для собственных полупроводников, и h ν ≥ Δ для примесных полупроводников, то в полупроводнике возбуждается фотопроводимость (здесь Δ - энергия активации примесных атомов).

Отсюда можно определить красную границу фотопроводимости – максимальную длину волны, при которой еще фотопроводимость возбуждается: для собственных и примесных полупроводников, соответственно.

Наряду с поглощением, приводящим к появлению фотопроводимости, может иметь место поглощение света с образованием экситонов , которое не приводит к фотопроводимости. Экситон – это квазичастица, представляющая собой связанную пару электрон–дырка, которая может свободно перемещаться в кристалле. Экситоны возбуждаются фотонами с энергиями меньшими энергии запрещенной зоны и могут быть наглядно представлены в виде модели спаренных электрона (e) и дырки (h) , движущихся вокруг общего центра масс, которым не хватило энергии, чтобы оторваться друг от друга (так называемый экситон Ванье–Мотта ). В целом экситон электрически нейтрален, поэтому экситонное поглощение света не приводит к увеличению фотопроводимости.

Люминесценция твердых тел.

Люминесценцией называется излучение, избыточное при данной температуре над тепловым излучением тела и имеющее длительность, бóльшую периода световых колебаний.

Вещества, способные под действием различного рода возбуждений светиться, называются люминофорами .

В зависимости от способов возбуждения различают: фотолюминесцен-цию (под действием света), рентгенолюминесценцию (под действием рентгеновского излучения), катодолюминесценцию (под действием электронов), радиолюминесценцию (при возбуждении ядерным излучением, например γ -излучением, нейтронами, протонами), хемилюминесценцию (при химических превращениях), триболюминесценцию (при растирании или раскалывании некоторых кристаллов).

По длительности свечения условно различают: флуоресценцию (t ≤ с) и фосфоресценцию - свечение, продолжающееся заметный промежуток времени после прекращения возбуждения.

Уже в первых количественных исследованиях люминесценции было сформулировано правило Стокса : длина волны люминесцентного излучения всегда больше длины волны света, возбудившего его.

Твердые тела, представляющие собой эффективно люминесцирующие искусственно приготовленные кристаллы с чужеродными примесями, получили название кристаллофосфоров .

На примере кристаллофосфоров рассмотрим механизмы возникновения фосфоресценции с точки зрения зонной теории твердых тел. Между валентной зоной и зоной проводимости кристаллофосфора располагаются примесные уровни активатора A . Для возникновения длительного свечения кристаллофосфор должен содержать центры захвата, или ловушки для электронов (, ). Длительность процесса миграции электрона до момента рекомбинации его с ионом активатора определяется временем пребывания электронов в ловушках.

Контакт электронного и дырочного полупроводников (p-n- переход).

Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой - дырочную проводимость, называется электронно-дырочным переходом (или p-n- переходом ).

p-n- Переход обычно создается при специальной обработке кристаллов, например, при выдержке плотно прижатых кристаллов германия (n -типа) и индия при 500°С в вакууме (а) атомы индия диффундируют на некоторую глубину в германий, образуя промежуточный слой германия, обогащенного индием, проводимость которого p -типа (б).

Электроны из n -полупроводника, где их концентрация выше, будут диффундировать в p -полупроводник. Диффузия дырок происходит в обратном направлении. В n -полупроводнике из-за ухода электронов вблизи границы остается нескомпенсированный положительный объемный заряд неподвижных ионизованных донорных атомов. В p -полупроводнике из-за

Ухода дырок вблизи границы образуется отрицательный объемный заряд неподвижных ионизованных акцепторов. Эти объемные заряды создают запирающий равновесный контактный слой , препятствующий дальнейшему переходу электронов и дырок.

Сопротивление запирающего слоя можно изменить с помощью внешнего электрического поля. Если направление внешнего поля

Совпадает с направлением поля контактного слоя (а), то запирающий слой расширяется и его сопротивление возрастает - такое направление называется запирающим (обратным). Если направление внешнего поля противоположно полю контактного слоя (б), то перемещение электронов и дырок приведет к сужению контактного слоя и его сопротивление уменьшится - такое направление называется пропускным (прямым) .

Полупроводниковые диоды и триоды (транзисторы).

Односторонняя (вентильная) проводимость p-n- перехода используется в полупроводниковых диодах , содержащих один p-n- переход. По конструкции они делятся на точечные и плоскостные .

В точечных диодах p-n- переход образуется в точке касания металлического контакта 1 и полупроводника 2 (например, в точечном германиевом диоде диффузия алюминия в n- германий образует в германии p- слой). Технология изготовления германиевого плоскостного диода описана выше.

p-n- Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерации электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов . Изобретение транзисторов в 1949г. считается самым значительным изобретением ХХ века и было отмечено в 1956 году Нобелевской премией.

Транзисторы могут быть типа n-p-n и типа p-n-p в зависимости от

чередования областей с различной проводимостью. Для примера рассмотрим триод типа p-n-p . Рабочие "электроды" триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов - металлических проводников. Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором - постоянное смещающее напряжение в обратном направлении. Усиливаемое переменное напряжение подается на входное сопротивление , а усиленное - снимается с выходного сопротивления .

Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их "впрыскиванием" - инжекцией - в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), вследствие чего изменяется ток коллектора. Следовательно, всякое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора.

Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении - переменное напряжение. Величина усиления зависит от свойств p-n- переходов, нагрузочных сопротивлений и напряжения батареи . Обычно , поэтому (усиление может достигать 10 000). Так как мощность переменного тока, выделяемая в , может быть больше, чем расходуемая в цепи эмиттера, то транзистор дает и усиление мощности .

Собственная проводимость

Рассмотрим квантовую теорию проводимости различных веществ. Напомним, что проводимостью называется способность носителей заряда осуществлять направленное движение согласно приложенному электрическому полю (носителей отрицательного заряда против поля, положительного заряда – по полю). В случае полупроводниковых веществ возможны два типа проводимости в зависимости от чистоты химического состава вещества.

Различают собственные и примесные полупроводники. К числу собственных относятся химически чистые полупроводники, то есть такие полупроводники, в состав которых входят атомы (или молекулы) только одного вида и отсутствуют посторонние включения. В таких полупроводниках наблюдают только собственную проводимость .

Собственная проводимость возникает при переходе электронов с верхних уровней валентной зоны в зону проводимости в случае получения им дополнительной достаточной энергии, которая равна (или несколько больше) ширине запрещенной зоны E g . Данную энергию, как уже говорилось в лекции 9, электрон может получить в результате тепловых колебаний решетки или под действием кванта света .

Рис. 12.1. Собственная проводимость полупроводника

Так как энергия тепловых колебаний, как правило, значительно меньше энергии кванта света, то какая именно энергия спровоцирует появление проводимости, зависит от ширины запрещенной зоны кристалла. Переход электрона в зону проводимости соответствует рождению двух свободных частиц : электрона, энергия которого оказывается равной одному из разрешенных значений из зоны проводимости, а также дырки, энергия которой равна одному из значений валентной зоны. Эти частицы являются носителями тока, причем вклад в проводимость вносят как электроны, так и дырки. Если приложить разность потенциалов к такому кристаллу, и электроны и дырки смогут двигаться вдоль всего образца. Это явление уже рассмотрено во второй лекции, оно называется внутренним фотоэффектом.

Можно найти электропроводность данного вещества. Для этого воспользуемся распределением электронов и дырок по энергиям (см. раздел 10). Так как электроны и дырки являются фермионами, т.е. частицами с полуцелым спином, это означает, что они подчиняются статистике Ферми-Дирака:

(12.1)

Параметр E F носит название энергии Ферми . Уровень Ферми – это виртуальный уровень, который соответствует середине между всеми занятыми и всеми свободными состояниями при условии, что тех и других имеется одинаковое количество. В идеале все свободные уровни располагаются выше уровня Ферми, все занятые – ниже. Однако в реальных кристаллах свободный уровень может оказаться ниже уровня Ферми, если выше уровня Ферми найдется занятый электроном уровень. Для металлов уровень Ферми находится в зоне проводимости. Для собственных (т.е. чистых) полупроводников энергия Ферми при комнатной температуре соответствует приблизительно середине запрещенной зоны, следовательно:

(12.2)

где E g – ширина запрещенной зоны.

Количество электронов, перешедших в зону проводимости (равно как и дырок, оставшихся в валентной зоне), будет пропорционально вероятности того, что электрон обладает соответствующей энергией:

Проводимость, очевидно, зависит от числа свободных носителей тока, то есть оказывается также пропорциональна функции f(E) :

(12.4)

или (12.5)

Видно, что электропроводность собственных полупроводников экспоненциально растет с температурой (рис. 12.2). Измерив электропроводность полупроводника при различных температурах, можно определить ширину запрещенной зоны. В полулогарифмических координатах (как на рис. 12.2) тангенс угла наклона прямой будет пропорционален E g .

Рис. 12.2. Зависимость электропроводности

собственного полупроводника от температуры

Напомним, что электропроводность металлов линейно уменьшается с ростом температуры. Такое отличие объясняется тем, что природа проводимости в полупроводниках и металлах принципиально различна.

Примесная проводимость

Электрические и оптические свойства примесных полупроводников зависят от природных или искусственно введенных примесей. Разумеется, для эффективного управления свойствами материала необходим строгий контроль количества примеси в составе вещества, такое контролируемое введение примеси называется легированием . Создание заданной концентрации примеси – довольно сложная, но выполнимая задача. Следует понимать, что в составе некоторых веществ неизбежно присутствует какое-то количество природной примеси. В таких случаях ее влияние на оптические и электрические свойства материала необходимо изучать и впоследствии учитывать.

Рассмотрим механизм примесной проводимости на примере классических полупроводников Ge , и Si . Оба элемента являются четырехвалентными, а атомы в кристалле связаны ковалентными силами. Это означает, что каждый атом в решетке окружен четырьмя такими же атомами и связан с ними, имея общую пару электронов.

Рис. 12.3. Сведенное в плоскость изображение кристаллической решетки

идеального 4-валентного кристалла

Если кристалл идеальный, то все связи вокруг атома являются насыщенными – не имеющими свободных мест, а свободных электронов в пространстве между атомами нет (рис. 12.3).

Предположим, что в кристалл вместо одного из основных атомов попал атом, валентность которого на единицу больше (атом фосфора P в кристалле Ge ). 4 из 5 электронов фосфора распределятся между соседними атомами германия, а пятый электрон будет держаться рядом за счет довольно слабой связи (рис. 12.4).

Рис. 12.4. Сведенное в плоскость изображение кристаллической решетки

Ge с 5-валентной примесью фосфора

Эту связь легко нарушить нагреванием кристалла или при его освещении. Оторванный электрон будет свободным и при подаче разности потенциалов сможет двигаться в соответствующую сторону. Примесь, которая добавляет в кристалл свободные электроны, называется донорной .

На энергетической схеме донорной примеси будет соответствовать уровень, расположенный на некотором расстоянии от дна зоны проводимости. Расстояние между уровнем примеси и зоной проводимости пропорционально энергии E примес , которая необходима для отрыва примесного электрона от материнского атома, т.е. для перевода электрона в свободное состояние (рис. 12.6 а). Факт отрыва электрон от своего атома и перехода его в свободное состояние означает переход электрона в зону проводимости. Донорный уровень, освободившийся при этом, впоследствии может на какое-то время захватить любой свободный электрон – то есть оборванная связь фосфора может служить кратковременным хранилищем электронов.

Итак, в результате получаем электрон проводимости, и в отличие от собственной проводимости (см. выше), свободная дырка не образуется. В регистрируемый ток в этом случае вклад будут вносить преимущественно электроны, которые являются в таком полупроводнике основными носителями заряда, а дырки – неосновными. Тип проводимости в таком кристалле называется электронным или n -типа, и сам кристалл получает статус кристалла с электронной проводимостью или кристалл n -типа.

Если же в четырехвалентный кристалл ввести трехвалентную примесь, то одна из четырех связей атома, расположенного рядом с примесью, будет ненасыщенной из-за отсутствия 4-го электрона (рис. 12.5). Такое вакантное место (дырка) легко захватывает электрон из соседнего узла – это соответствует переходу дырки в свободное состояние.

Рис. 12.5. Сведенное в плоскость изображение кристаллической решетки

Si с 3-валентной примесью бора

При подаче на кристалл разности потенциалов дырка перемещается так же как электрон проводимости, только в противоположную сторону. Таким образом, кристалл с примесью указанного типа будет иметь дырочный тип проводимости или называться кристаллом p -типа. На энергетической схеме появление примеси, которая в данном случае называется акцепторной , отразится возникновением уровня в запрещенной зоне вблизи потолка валентной зоны выше на E примес . На этот уровень будет захватываться электрон с занятого уровня в валентной зоне, в которой при этом будет оставаться свободная дырка (рис. 12.6 б).

Рис. 12.6. Примесная проводимость: а) электронная, б) дырочная

Очевидно, что в кристаллах с p-типом проводимости свободными являются только дырки, свободных электронов не появляется без дополнительно сообщенной энергии. Дырки являются основными носителями заряда, а электроны – неосновными. Следовательно, ток будет представлять собой упорядоченное движение преимущественно дырок (направление их движения совпадает с направлением тока).

Специфика донорной и акцепторной примесей такова, что их уровни на энергетической схеме могут располагаться относительно зон только определенным образом: донорные примеси дают уровни в верхней части запрещенной зоны, акцепторные – в нижней. Появление примеси в составе кристалла приводит к изменению положения уровня Ферми (см. выше).

В частности для кристалла с донорной примесью уровень E F поднимается вверх, для кристалла с акцепторной примесью – сдвигается вниз (рис. 12.6). Уровень Ферми является важной характеристикой полупроводника, в частности без использования этого понятия не обходится теория p-n переходов.

Добавим, что при получении кристалла с примесной проводимостью в качестве вводимой примеси можно использовать атомы и других валентностей. Тогда разница валентностей показывает, сколько свободных носителей заряда (электронов или дырок) вносит в кристалл каждый атом примеси.

Для получения высоких показателей электропроводности материала необходимо наличие в образце высокой концентрации носителей заряда (количества носителей заряда на единицу объема кристалла). Этого добиваются путем контролируемого введения примеси требуемого типа. Современные технологии позволяют учитывать количество введенных атомов буквально поштучно. Измерить концентрацию носителей заряда, а также определить их тип (электрон или дырка) можно с помощью эффекта Холла (см. курс электромагнетизма).

В общем случае проводимость полупроводникового материала складывается из собственной и примесной проводимости:

(12.6)

Примесная проводимость имеет также, как и собственная, экспоненциальную зависимость от температуры.

(12.7)

При низких сравнительно температурах основную роль играет примесная проводимость (рис.12.7 участок I). По наклону прямой зависимости проводимости от температуры в полулогарифмических координатах можно определить энергию активации примеси E примес , т.к. tgα прим пропорционален глубине залегания уровня примеси в запрещенной зоне.

При повышении температуры, когда все атомы примеси уже задействованы, в некотором интервале температур проводимость остается постоянной (рис.12.7 участок II).

Рис. 12.7. Зависимость электропроводности полупроводника от температуры

Начиная с температуры активации собственной проводимости, опять наблюдается снижение сопротивления материала (рис.12.7 участок III). Тангенс угла наклона соответствующего участка tgα соб пропорционален энергии активации собственной проводимости полупроводника, т.е. ширине его запрещенной зоны.

Напомним, что полупроводники – это кристаллы, которые при низких температурах имеют полностью заполненную валентную зону. (Название зоны отражает тот факт, что в модели сильно связанных полупроводников эта зона возникает при расщеплении энергетического уровня, на котором в отдельных атомах находились валентные электроны.) Поэтому при низких температурах полупроводники являются изоляторами. В отличие от классических диэлектриков у полупроводников полностью заполненная валентная зона отделена от следующей зоны разрешенных значений энергии запрещенной зоной шириной порядка одного электрон-вольта . В диэлектриках этот параметр составляет порядка 3 эВ. Не очень большая ширина запрещенной зоны обеспечивает возможность осуществления в полупроводниках явления, отличающего их от классических диэлектриков: с ростом температуры и возрастанием интенсивности теплового движения становится возможным получение отдельным электроном энергии, достаточной для перехода в зону разрешенных энергий. (Принципиально этот процесс возможен и в диэлектриках, однако температуры необходимые для этого столь высоки, что не совместимы с существованием кристалла.)

Попав в свободную зону, электроны не могут сразу вернуться в валентную зону, поскольку в окружающем пространстве состояния с соответствующей энергией заняты. Если к кристаллу приложить внешнее электрическое поле, электроны будут получать от него энергию, ускоряться в направлении против вектора его напряженности и переносить заряд, т.е. создавать электрический ток. Поэтому в полупроводниках (!) свободную зону разрешенных значений энергии, ближайшую к валентной называют зоной проводимости .

При переходе электрона в зону проводимости в валентной зоне освобождаются энергетические уровни вблизи ее потолка. Электроны валентной зоны получают возможность ускоряться в электрическом поле, увеличивая свою энергию и занимая освободившиеся уровни. Однако эффективная масса электронов вблизи потолка валентной зоны отрицательна, и движение таких электронов удобнее рассматривать как движение дырок. Причем количество дырок в валентной зоне совпадает с количеством электронов в зоне проводимости. Проводимость полупроводника в условиях, когда носители заряда образуются только за счет термических забросов электронов валентной зоны в зону проводимости, называется собственной . Такой проводимостью обладают химически чистые полупроводники. Процесс возникновения свободного электрона в зоне проводимости и дырки в валентной называют генерацией электронно-дырочной пары.



Распределение электронов по уровням, описывается функций распределения: . График этой функции при температурах, когда собственная проводимость стала существенной приблизительно показан на рисунке 41.1.

Расчеты показывают, что если отчитывать от потолка валентной зоны, то положение уровня Ферми в собственном полупроводнике описывается выражением:

(41.4)

где и - эффективные массы электронов и дырок,

Ширина запрещенной зоны.

Обычно эффективные массы электронов и дырок отличаются незначительно, и вторым слагаемым в (41.4) можно пренебречь по сравнению с . Поэтому с высокой точностью можно утверждать, что в собственных полупроводниках уровень Ферми находится в середине запрещенной зоны :

Для электронов в зоне проводимости справедливо соотношение:

и, . (41.6)

В этом случае вместо распределения Ферми-Дирака можно использовать распределение Больцмана, в соответствии с которым вероятность заполнения энергетического уровня с энергией равна:

Количество электронов в зоне проводимости, а значит и их концентрация, пропорционально этой вероятности. Поскольку проводимость , в свою очередь, пропорциональна концентрации электронов, то температурная зависимость проводимости описывается выражением:

. (41.8)

Логарифмируя это выражение, получаем:

. (41.8)

Таким образом, температурная зависимость электропроводности полупроводника с собственной проводимостью в координатах должна иметь вид прямой линии, наклон которой определяется шириной запрещенной зоны, как это показано на рисунке 41.2. Экспериментальные исследования подтвердили справедливость выводов зонной теории электропроводности.


Очень часто при рассмотрении проводимости полупроводников полезными оказываются модельные представления. Для типичных полупроводников и кристаллическую структуру можно представить на плоскости в виде, показанном на рисунке 41.3. Каждый атом обладает четырьмя валентными электронами, которые образуют связи с четырьмя ближайшими атомами. При достаточно высокой температуре происходит разрыв некоторых связей. Освободившийся электрон оказывается в межузельном пространстве и может участвовать в создании электрического тока, а в окрестности разорванной связи появляется нескомпенсированный положительный заряд. Валентные электроны данного атома могут восстановить связь в месте ее разрыва, однако при этом разорванная связь сместится в другое место. Если разорванная связь за счет перехода электронов от других атомов будет перемещаться по кристаллу, то вместе с ней будет перемещаться и положительный заряд, который можно считать моделью дырки.

При достаточно высокой концентрации свободных электронов и дырок может происходить захват свободного электрона атомом для заполнения разорванной связи. При этом исчезают электрон и дырка. Такой процесс называется рекомбинацией электронно-дырочной пары . В представлениях зонной теории рекомбинации соответствует переход электрона из зоны проводимости в валентную, сопровождающийся выделением энергии, которая может быть унесена фотоном или передана кристаллической решетке.

Примесная проводимость

Примесная проводимость возникает в том случае, когда в полупроводник (например, Ge ) вводятся атомы, у которых количество валентных электронов отличается на единицу (например, As ). Атомы As в кристалле Ge замещают атомы основного вещества, т.е. располагаются не в промежутках между атомами Ge , а в место них. При этом из пяти валентных электронов As четыре задействуются для образования связей с соседними атомами Ge . Пятый (при низких температурах, когда энергия теплового движения мала) связан с атомом примеси и образует с ним систему, напоминающую атом водорода. Поэтому модель легированного такой примесью полупроводника можно представлять в виде идеального кристалла, в котором хаотическираспределены притягивающие центры с зарядами +е и такое же число электронов, которые могут быть связанны с этими центрами.

Если бы примесь находилась в вакууме, то энергия связи электронов с положительными центрами равнялась бы просто энергии ионизации, равной для мышьяка 9,81 эВ. Однако, благодаря тому, что примесь находится в полупроводнике, энергия связи электрона очень сильно уменьшается. Это происходит по следующим причинам. Движение электрона в поле заряда, примесного атома, происходит в кристалле, и напряженность электрического поля уменьшается в e раз (e - диэлектрическая проницаемость полупроводника). Обычные значения e полупроводников заключены в интервале от 10 до 20, но могут быть и значительно большими у полупроводников с малой запрещенной зоной. Электрон, движущийся под действием электрического поля в кристаллической решетке, характеризуется эффективной массой , (учитывающей влияние периодического поля кристаллической решетки) которая меньше массы свободного электрона во многих случаях в 10 и более раз. Поэтому радиус первой боровской орбиты (а о = )) оказывается равным и может достигать 10 –8 м и более, т.е. большого количества межатомных расстояний. Энергия связи в основном состоянии ( для атома водорода) в рассматриваемой система описывается выражением Е св = , т.е. уменьшается в тысячу и более раз и оказывается не просто малой, а малой по сравнению с шириной запрещенной зоны (узкая зона - большая e ).

Таким образом, атомы примеси образуют дополнительные электронные уровни в запрещенной зоне вблизи дна зоны проводимости, соответствующего свободным электронам. Причем энергетический зазор между дополнительными уровнями и дном зоны проводимости намного меньше ширины запрещенной зоны полупроводника. Примерный вид энергетической диаграммы рассматриваемого легированного полупроводника при температуре вблизи абсолютного нуля показан на рисунке 1.

При повышении температуры связанные электроны на примесном уровне получают энергию, достаточную для перехода на свободные уровни зоны проводимости, т.е. разрывают связь с атомом примеси, становятся свободными и могут осуществлять перенос заряда в полупроводнике, создавая электрический ток. Примесные атомы становятся положительно заряженными ионами, суммарный заряд которых равен заряду ставших свободными электронов, и полупроводник в целом остается электрически нейтральным.

Атомы примеси, отдающие электроны в зону проводимости называют донорами , а полупроводник донорным или n-типа (в соответствии со знаком свободных носителей заряда). Уровень Ферми , расположенный в собственном (нелегированном) полупроводнике в середине запрещенной зоны, в примесном полупроводнике располагается вблизи примесного уровня.

Введение в полупроводник атомов примеси с количеством валентных электронов на единицу меньше отражается на энергетической диаграмме полупроводника похожим образом – рис. 2. Вблизи потолка валентной зоны появляется примесный уровень, к которому смещается уровень Ферми . При абсолютном нуле атомы примеси нейтральны, но для образования ковалентных связей с окружающими атомами основного вещества им не хватает по одному электрону. С повышением температуры электроны валентной зоны получают возможность перейти на свободные примесные уровни, оставляя в валентной зоне свободные уровни. Во внешнем электрическом поле электроны валентной зоны получают возможность переходить на освободившиеся уровни, т.е. получать энергию от электрического поля и участвовать в создании электрического тока. Движение электронов с энергиями вблизи потолка валентной зоны эквивалентно движению положительно заряженных частиц, которые называют дырками. Поэтому легирование в данном случае приводит к появлению в валентной зоне значительного количества свободных дырок.

Электроны, перешедшие на примесный уровень, участвуют в образовании ковалентных связей и перемещаться по кристаллу не могут. В окрестности примесного атома, захватившего электрон валентной зоны, образуется избыточный отрицательный заряд. Атомы примеси в этом случае называют акцепторами, а легированный ими полупроводник акцепторным или р-типа (по знаку положительных носителей заряда).

Концентрация свободных носителей заряда в примесных полупроводниках складывается из концентрации , обусловленной переходами в зону проводимости электронов валентной зоны, и , обусловленной легированием полупроводника:

. (1)

Температурная зависимость этих концентраций в соответствии с распределением Больцмана, описывается соотношениями:

И (2)

Поскольку << , то в широкой области температур от нескольких кельвинов до температур, соответствующих kT, сравнимому с , в примесном полупроводнике концентрация носителей одного знака значительно превышает концентрацию носителей другого знака. Носители тока с большей концентрацией называются основными: электроны в донорном полупроводнике, дырки – в акцепторном.

При температурах соответствующих kT порядка , концентрация начинает преобладать над , и примесная проводимость становится пренебрежимой в сравнении с собственной.


P – n переход.

Большинство технических применений полупроводников основано на ис­пользовании свойств кристаллов, в которых специально создается неоднород­ное распределение концентраций донорных и акцепторных примесей . Про­стейшим примером структуры с неодно­родным распределением примесей является p-n -переход, представляющий собой об­ласть полупроводникового кристалла, в окрестности некоторой поверхности, по разные стороны которой преобладают до­норные и акцепторные примеси. Предпо­ложим, для простоты, что p-n -переход об­разуется в результате приведения в контакт идеально отполированных плоских по­верхностей полупроводниковых кристал­лов с различным типом проводимости. При этом вдоль оси ох , перпенди­кулярной плос­кости контакта, в окрестности точки х = 0 (рисунок 3а ) проис­ходит скачкообразное изменение концентрации примесей. В начальный мо­мент распределение концен­траций основных носителей соответствует рас­пределению концентраций примесей. Такое состояние является неравновес­ным и, вследствие наличия градиентов кон­центраций электронов и дырок, возникает их встречная диффузия, со­провождающаяся переносом заряда че­рез поверхность кон­такта и образова­нием областей простран­ственного за­ряда шириной в р – обла­сти и в n –области (рисунок 3б ). и об­ратны концентрациям примесей и сов­падают при их равенстве.

В результате диффузии электронов и дырок потенциал р – области понижа­ется, n – области – возрастает, т.е. ме­жду ними возникает разность потенциа­лов и электрическое поле с вектором напряженности, направленным в сто­рону р – области. Это внутреннее поле прекращает диффузию свободных носи­телей заряда. Примерный вид распреде­ления потенциала в окрестности p n- в .

Типичное значение суммарной ширины областей пространственного заряда имеет величину 10 – 6 – 10 – 8 м. Изменение энергии электрона при переходе между областями - порядка ширины запрещенной зоны. Поэтому напряженность внутреннего поля составляет 10 5 - 10 7 В/м. Поскольку свободные носители заряда весьма подвижны, в равновесном состоянии их концентрация в той области, где существует электрическое поле очень мала. Примерный вид распределения концентрации свободных носителей заряда вблизи p n- пе­рехода показан на рисунке 3г .

Таким образом, в области p n- пе­рехода существует слой шириной 10 – 6 – 10 – 8 м, в котором концентрация носителей намного меньше, чем в однородных областях, расположенных вдали от перехода в обоих направлениях. Соответственно этот слой обладает большим сопротивлением, и всю систему можно рассматривать как электрическую цепь с последовательными

тремя сопротивлениями, в которой большое сопротивление помещено между двумя малыми. Поэтому внешнее напряжение , приложенное к системе, в основном падает в обедненном слое. Изменение потенциала в этом слое будет равно:

. (3)

Будем считать положительным, если напряженность внешнего поля направлена навстречу внутреннему. Изменение разности потенциалов в обедненном слое связано с изменением величины объемного заряда, его ширины и показано на рисунке 4. При приложении внешнего поля в прямом направлении ( > 0), объемный заряд и ширина обедненной области уменьшаются; при приложении внешнего поля в обратном направлении ( < 0), эти величины увеличиваются.

С энергетической точки зрения процессы, происходящие в области p n- пе­рехода могут быть описаны следующим образом. Условием равновесия системы является вытекающее из термодинамических соображений требование постоянства уровня Ферми во всем объеме полупроводника. В исходном состоянии (рисунок 5а ) уровни Ферми в р и n областях не совпадают: . Вследствие диффузии основных носителей заряда потенциал р -области уменьшается, а потенциальная энергия электронов возрастает. Энергетические уровни р и n областей смещаются в противоположных направлениях до совпадения уровней Ферми в обеих областях – рисунок 5б . Поэтому в равновесном состоянии электронам для перехода из n- области в р- область необходимо преодолеть потенциальный барьер высотой , которая определяется разницей в положении уровней Ферми в р и n областях. Аналогичное утверждение

справедливо и для дырок р- области. Необходимо только учитывать, что потенциальная энергия дырок противоположна по знаку энергии электронов. Поэтому уменьшение потенциальной энергии электронов при переходе из р в n область означает ее увеличение для дырок.

Приложение к p n- пе­реходу положительного (прямого, отпирающего) напряжения приводит к уменьшению потенциального барьера для перехода свободных носителей в смежную область: снимается запрет на встречную диффузию электронов и дырок, через переход протекает большой ток, его сопротивление мало – рисунок 5в .

Отрицательное (обратное, запирающее) напряжение повышает потенциальный барьер для носителей заряда, вероятность прохождения через переход основных носителей заряда оказывается малой, сопротивление перехода очень велико – рисунок 5г .

В отсутствие внешнего напряжения ток через переход равен нулю. Но это означает только то, что отсутствует перенос заряда через переход. При этом в каждом из направлений могут двигаться равные количества электронов и дырок.

Рассмотрим электронную составляющую тока через переход (имея в виду, что для дырочной составляющей справедливы совершенно аналогичные рассуждения). Она включает в себя две компоненты: электронный ток генерации и электронный ток рекомбинации . создается электронами, генерируемыми в р -области обедненного слоя в результате теплового возбуждения электронов с уровней валентной зоны в зону проводимости. Хотя концентрация таких электронов (неосновных носителей) в р -области очень мала, они играют важную роль в протекании тока через переход. Это обусловлено тем, что каждый электрон, попавший в обедненный слой, тут же перебрасывается в n -область сильным электрическим полем перехода. Поэтому величина тока генерации не зависит от изменения потенциала в обедненном слое.

Ток создается электронами n -области, движущимися в сторону р -области. Попав в р -область с большой концентрацией дырок электроны очень быстро рекомбинируют с ними, чем и объясняется название этого тока. Протеканию тока рекомбинации препятствует электрическое поле обедненного слоя. Поэтому в его создании принимают участие только те электроны, которые попадают на границу обедненного слоя из n -области, имея кинетическую энергию, достаточную для преодоления потенциального барьера. Вероятность преодоления электроном потенциального барьера высотой (а значит число таких электронов и величина ) пропорциональна, в соответствии с распределением Больцмана, . Поэтомуp –n- пе­рехода, т.е. ВАХ полупроводникового диода. Примерный вид графика этой зависимости показан на рисунке 6.

Проводимость химически чистых полупроводников называется собственной проводимостью, а сами полупроводники - собственными полупроводниками, В чистом полупроводнике число свободных электронов и дырок одинаково. Под действием приложенного к полупроводнику напряжения скорость направленного движения свободных электронов в нем больше, чем дырок. Поэтому сила тока электронной проводимостью I э больше силы тока дырочной проводимостью I д. Общий ток в полупроводнике I = I э + I д .

Собственная проводимость полупроводника увеличивается с повышением температуры. При неизменной температуре наступает динамическое равновесие между процессом образования дырок и рекомбинаций электронов и дырок. При таком условии количество электронов проводимости и дырок в единице объема сохраняется постоянным.

На проводимость полупроводников сильно влияет наличие в них примесей. При введении в полупроводник некоторых примесей можно получить сравнительно большое количество свободных электронов при малом числе "дырок" или, наоборот, большое количество "дырок" при очень малом числе свободных электронов. Проводимость проводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники - примесными полупроводниками. Примеси, легко отдающие свои электроны основному полупроводнику и, следовательно, увеличивающие в нем число свободных электронов, называются донорными (отдающими) примесями. В качестве таких примесей используются элементы, атомы которых имеют большее количество валентных электронов, чем атомы основного полупроводника. Так, по отношению к германию донорными являются примеси мышьяка, сурьмы.

Для получения в германии примеси мышьяка их смешивают и расплавляют. Германий - четырехвалентный элемент. Мышьяк - пятивалентный. При затвердевании в узле кристаллической решетки германия происходит замещение атома германия атомом мышьяка. Электроны последнего образуют прочные ковалентные связи с четырьмя соседними атомами германия (рис. 102, а). Оставшийся пятый валентный электрон мышьяка, не участвующий в парноэлектронных связях, продолжает двигаться вокруг атома мышьяка. Вследствие того что диэлектрическая проницаемость германия ε = 16 , сила притяжения электрона к ядру уменьшается, размеры орбиты электрона увеличиваются в 16 раз; энергия связи его с атомом уменьшается в 256 раз (т. е. в ε 2 раз), и энергии теплового движения становится достаточно для отрыва от атома этого электрона. Он начинает свободно перемещаться в решетке германия, превращаясь таким образом в электрон проводимости.

Атом мышьяка, находясь в узле кристаллической решетки германия, потеряв электрон, становится положительным ионом.

Он прочно связан с кристаллической решеткой германия, поэтому в образовании тока участия не принимает.

Энергия, необходимая для перевода электрона из валентной зоны в зону проводимости (см. рис. 96), называется энергией активизации. У примесных носителей тока она обычно во много раз меньше, чем у носителя тока основного полупроводника. Поэтому при незначительном нагревании, освещении освобождаются главным образом электроны атомов примеси. На месте ушедшего электрона в атоме донора образуется дырка. Однако перемещения электронов в дырки почти не наблюдается, т. е. дополнительная дырочная проводимость, создаваемая донором, очень мала. Это объясняется следующим. По причине небольшого количества атомов примеси ее электроны проводимости редко оказываются рядом с дыркой и не могут ее заполнить. А электроны атомов основного полупроводника хотя и находятся вблизи дырок, но не в состоянии их занять ввиду своего гораздо более низкого энергетического уровня.

Небольшое добавление донорной примеси делает число свободных электронов проводимости в тысячи раз больше, чем число свободных электронов проводимости в чистом полупроводнике при тех же условиях. В полупроводнике с донорной примесью основными носителями заряда являются электроны. полупроводниками n-типа .

Примеси, захватывающие электроны у основного полупроводника и, следовательно, увеличивающие в нем число дырок, называются акцепторными (принимающими) примесями. В качестве таких примесей используются элементы, атомы которых имеют меньшее количество валентных электронов, чем атомы основного полупроводника. Так, по отношению к германию акцепторными являются примеси индия, алюминия.

Для получения в германии примеси индия их смешивают и расплавляют. Германий - четырехвалентный элемент. Индий - трехвалентный. Для образования ковалентных связей с четырьмя ближайшими соседними атомами германия у атома индия не хватает одного электрона. Индий его заимствует у атома германия (рис. 102, б). Для этого электронам атомов германия нагреванием сообщается энергия, достаточная только для разрыва ковалентной связи, после чего освободившиеся электроны захватываются атомами индия. Будучи не свободными, эти электроны не участвуют в образовании тока. Атомы индия становятся отрицательными ионами, они прочно связаны с кристаллической решеткой германия, поэтому в образовании тока участия не принимают.

На месте ушедшего из атома германия электрона образуется дырка, которая является свободным носителем положительного заряда. Эта дырка может быть заполнена электроном А из соседнего атома германия и т. д. В полупроводнике с акцепторной примесью основными носителями заряда являются дырки. Такие полупроводники называются полупроводниками р-типа.

Таким образом, в отличие от собственной проводимости, осуществляющейся одновременно электронами и дырками, примесная проводимость полупроводника обусловлена в основном носителями одного знака: электронами в случае донорной примеси и дырками в случае акцепторной примеси. Эти носители заряда в примесном полупроводнике являются основными. Кроме них в таком полупроводнике содержатся неосновные носители: в электронном полупроводнике - дырки, в дырочном полупроводнике - электроны. Концентрация их значительно меньше концентрации основных носителей.

Рассмотрим квантовую теорию проводимости различных веществ. Напомним, что проводимостью называется способность носителей заряда осуществлять направленное движение согласно приложенному электрическому полю (носителей отрицательного заряда против поля, положительного заряда – по полю). В случае полупроводниковых веществ возможны два типа проводимости в зависимости от чистоты химического состава вещества.

Различают собственные и примесные полупроводники. К числу собственных относятся химически чистые полупроводники, то есть такие полупроводники, в состав которых входят атомы (или молекулы) только одного вида и отсутствуют посторонние включения. В таких полупроводниках наблюдают только собственную проводимость .

Собственная проводимость возникает при переходе электронов с верхних уровней валентной зоны в зону проводимости в случае получения им дополнительной достаточной энергии, которая равна (или несколько больше) ширине запрещенной зоны E g . Данную энергию, как уже говорилось в лекции 9, электрон может получить в результате тепловых колебаний решетки или под действием кванта света .

Рис. 12.1. Собственная проводимость полупроводника

Так как энергия тепловых колебаний, как правило, значительно меньше энергии кванта света, то какая именно энергия спровоцирует появление проводимости, зависит от ширины запрещенной зоны кристалла. Переход электрона в зону проводимости соответствует рождению двух свободных частиц : электрона, энергия которого оказывается равной одному из разрешенных значений из зоны проводимости, а также дырки, энергия которой равна одному из значений валентной зоны. Эти частицы являются носителями тока, причем вклад в проводимость вносят как электроны, так и дырки. Если приложить разность потенциалов к такому кристаллу, и электроны и дырки смогут двигаться вдоль всего образца. Это явление уже рассмотрено во второй лекции, оно называется внутренним фотоэффектом.

Можно найти электропроводность данного вещества. Для этого воспользуемся распределением электронов и дырок по энергиям (см. раздел 10). Так как электроны и дырки являются фермионами, т.е. частицами с полуцелым спином, это означает, что они подчиняются статистике Ферми-Дирака:

(12.1)

Параметр E F носит название энергии Ферми . Уровень Ферми – это виртуальный уровень, который соответствует середине между всеми занятыми и всеми свободными состояниями при условии, что тех и других имеется одинаковое количество. В идеале все свободные уровни располагаются выше уровня Ферми, все занятые – ниже. Однако в реальных кристаллах свободный уровень может оказаться ниже уровня Ферми, если выше уровня Ферми найдется занятый электроном уровень. Для металлов уровень Ферми находится в зоне проводимости. Для собственных (т.е. чистых) полупроводников энергия Ферми при комнатной температуре соответствует приблизительно середине запрещенной зоны, следовательно:

(12.2)

где E g – ширина запрещенной зоны.

Количество электронов, перешедших в зону проводимости (равно как и дырок, оставшихся в валентной зоне), будет пропорционально вероятности того, что электрон обладает соответствующей энергией:

Проводимость, очевидно, зависит от числа свободных носителей тока, то есть оказывается также пропорциональна функции f(E) :

(12.4)

или (12.5)

Видно, что электропроводность собственных полупроводников экспоненциально растет с температурой (рис. 12.2). Измерив электропроводность полупроводника при различных температурах, можно определить ширину запрещенной зоны. В полулогарифмических координатах (как на рис. 12.2) тангенс угла наклона прямой будет пропорционален E g .

Рис. 12.2. Зависимость электропроводности

собственного полупроводника от температуры

Напомним, что электропроводность металлов линейно уменьшается с ростом температуры. Такое отличие объясняется тем, что природа проводимости в полупроводниках и металлах принципиально различна.

Примесная проводимость

Электрические и оптические свойства примесных полупроводников зависят от природных или искусственно введенных примесей. Разумеется, для эффективного управления свойствами материала необходим строгий контроль количества примеси в составе вещества, такое контролируемое введение примеси называется легированием . Создание заданной концентрации примеси – довольно сложная, но выполнимая задача. Следует понимать, что в составе некоторых веществ неизбежно присутствует какое-то количество природной примеси. В таких случаях ее влияние на оптические и электрические свойства материала необходимо изучать и впоследствии учитывать.

Рассмотрим механизм примесной проводимости на примере классических полупроводников Ge , и Si . Оба элемента являются четырехвалентными, а атомы в кристалле связаны ковалентными силами. Это означает, что каждый атом в решетке окружен четырьмя такими же атомами и связан с ними, имея общую пару электронов.

Рис. 12.3. Сведенное в плоскость изображение кристаллической решетки

идеального 4-валентного кристалла

Если кристалл идеальный, то все связи вокруг атома являются насыщенными – не имеющими свободных мест, а свободных электронов в пространстве между атомами нет (рис. 12.3).

Предположим, что в кристалл вместо одного из основных атомов попал атом, валентность которого на единицу больше (атом фосфора P в кристалле Ge ). 4 из 5 электронов фосфора распределятся между соседними атомами германия, а пятый электрон будет держаться рядом за счет довольно слабой связи (рис. 12.4).

Рис. 12.4. Сведенное в плоскость изображение кристаллической решетки

Ge с 5-валентной примесью фосфора

Эту связь легко нарушить нагреванием кристалла или при его освещении. Оторванный электрон будет свободным и при подаче разности потенциалов сможет двигаться в соответствующую сторону. Примесь, которая добавляет в кристалл свободные электроны, называется донорной .

На энергетической схеме донорной примеси будет соответствовать уровень, расположенный на некотором расстоянии от дна зоны проводимости. Расстояние между уровнем примеси и зоной проводимости пропорционально энергии E примес , которая необходима для отрыва примесного электрона от материнского атома, т.е. для перевода электрона в свободное состояние (рис. 12.6 а). Факт отрыва электрон от своего атома и перехода его в свободное состояние означает переход электрона в зону проводимости. Донорный уровень, освободившийся при этом, впоследствии может на какое-то время захватить любой свободный электрон – то есть оборванная связь фосфора может служить кратковременным хранилищем электронов.

Итак, в результате получаем электрон проводимости, и в отличие от собственной проводимости (см. выше), свободная дырка не образуется. В регистрируемый ток в этом случае вклад будут вносить преимущественно электроны, которые являются в таком полупроводнике основными носителями заряда, а дырки – неосновными. Тип проводимости в таком кристалле называется электронным или n -типа, и сам кристалл получает статус кристалла с электронной проводимостью или кристалл n -типа.

Если же в четырехвалентный кристалл ввести трехвалентную примесь, то одна из четырех связей атома, расположенного рядом с примесью, будет ненасыщенной из-за отсутствия 4-го электрона (рис. 12.5). Такое вакантное место (дырка) легко захватывает электрон из соседнего узла – это соответствует переходу дырки в свободное состояние.

Рис. 12.5. Сведенное в плоскость изображение кристаллической решетки

Si с 3-валентной примесью бора

При подаче на кристалл разности потенциалов дырка перемещается так же как электрон проводимости, только в противоположную сторону. Таким образом, кристалл с примесью указанного типа будет иметь дырочный тип проводимости или называться кристаллом p -типа. На энергетической схеме появление примеси, которая в данном случае называется акцепторной , отразится возникновением уровня в запрещенной зоне вблизи потолка валентной зоны выше на E примес . На этот уровень будет захватываться электрон с занятого уровня в валентной зоне, в которой при этом будет оставаться свободная дырка (рис. 12.6 б).

Рис. 12.6. Примесная проводимость: а) электронная, б) дырочная

Очевидно, что в кристаллах с p-типом проводимости свободными являются только дырки, свободных электронов не появляется без дополнительно сообщенной энергии. Дырки являются основными носителями заряда, а электроны – неосновными. Следовательно, ток будет представлять собой упорядоченное движение преимущественно дырок (направление их движения совпадает с направлением тока).

Специфика донорной и акцепторной примесей такова, что их уровни на энергетической схеме могут располагаться относительно зон только определенным образом: донорные примеси дают уровни в верхней части запрещенной зоны, акцепторные – в нижней. Появление примеси в составе кристалла приводит к изменению положения уровня Ферми (см. выше).

В частности для кристалла с донорной примесью уровень E F поднимается вверх, для кристалла с акцепторной примесью – сдвигается вниз (рис. 12.6). Уровень Ферми является важной характеристикой полупроводника, в частности без использования этого понятия не обходится теория p-n переходов.

Добавим, что при получении кристалла с примесной проводимостью в качестве вводимой примеси можно использовать атомы и других валентностей. Тогда разница валентностей показывает, сколько свободных носителей заряда (электронов или дырок) вносит в кристалл каждый атом примеси.

Для получения высоких показателей электропроводности материала необходимо наличие в образце высокой концентрации носителей заряда (количества носителей заряда на единицу объема кристалла). Этого добиваются путем контролируемого введения примеси требуемого типа. Современные технологии позволяют учитывать количество введенных атомов буквально поштучно. Измерить концентрацию носителей заряда, а также определить их тип (электрон или дырка) можно с помощью эффекта Холла (см. курс электромагнетизма).

В общем случае проводимость полупроводникового материала складывается из собственной и примесной проводимости:

(12.6)

Примесная проводимость имеет также, как и собственная, экспоненциальную зависимость от температуры.

(12.7)

При низких сравнительно температурах основную роль играет примесная проводимость (рис.12.7 участок I). По наклону прямой зависимости проводимости от температуры в полулогарифмических координатах можно определить энергию активации примеси E примес , т.к. tgα прим пропорционален глубине залегания уровня примеси в запрещенной зоне.

При повышении температуры, когда все атомы примеси уже задействованы, в некотором интервале температур проводимость остается постоянной (рис.12.7 участок II).

Рис. 12.7. Зависимость электропроводности полупроводника от температуры

Начиная с температуры активации собственной проводимости, опять наблюдается снижение сопротивления материала (рис.12.7 участок III). Тангенс угла наклона соответствующего участка tgα соб пропорционален энергии активации собственной проводимости полупроводника, т.е. ширине его запрещенной зоны.



Читайте также: