Лекция_4_Химия. Метод молекулярных орбиталей Основные положения метода молекулярных орбиталей

Рассмотренные выше недостатки МВС способствовали развитию другого квантовомеханического метода описания химической связи, который получил название метода молекулярных орбиталей (ММО) . Основные принципы данного метода были заложены Ленардом-Джонсом, Гундом и Малликеном. В его основе лежит представление о многоатомной частице как о единой системе ядер и электронов. Каждый электрон в такой системе испытывает притяжение со стороны всех ядер и отталкивание со стороны всех других электронов. Такую систему удобно описывать при помощи молекулярных орбиталей , которые являются формальными аналогами атомных орбиталей. Отличие атомных и молекулярных орбиталей заключается в том, что одни описывают состояние электрона, находящегося в поле единственного ядра, а другие состояние электрона в поле нескольких ядер. Учитывая аналогичность подхода к описанию атомных и молекулярных систем, можно сделать вывод, что орбитали n-атомной молекулы должны обладать следующими свойствами:

а) состояние каждого электрона в молекуле описывается волновой функцией ψ, а величина ψ 2 выражает вероятность нахождения электрона в любом единичном объёме многоатомной системы; указанные волновые функции называют молекулярными орбиталями (МО) и они, по определению, являются многоцентровыми, т.е. описывают движение электрона в поле всех ядер (вероятность нахождения в любой точке пространства);

б) каждая молекулярная орбиталь характеризуется определённой энергией;

в) каждый электрон в молекуле имеет определённое значение спинового квантового числа, принцип Паули в молекуле выполняется;

г) молекулярные орбитали конструируются из атомных, путём линейной комбинации последних: ∑с n ψ n (если общее число использованных при суммировании фолновых функций равно k, то n принимает значения от 1 до k), с n – коэффициенты;

д)минимум энергии МО достигают при максимальном перекрывании АО;

е) чем ближе по энергии исходные АО, тем ниже энергия МО, сформированных на их основе.

Из последнего положения можно сделать вывод, что внутренние орбитали атомов, имеющие очень низкую энергию, практически не будут принимать участия в образовании МО и их вкладом в энергию этих орбиталей можно пренебречь.

С учётом описанных выше свойств МО рассмотрим их построение для двухатомной молекулы простого вещества, например для молекулы Н 2 . Каждый из атомов, составляющих молекулу (Н А и Н В) имеют по одному электрону на 1s орбитале, тогда МО можно представить в виде:



Ψ МО = с А ψ А (1s) + с В ψ В (1s)

Так как в рассматриваемом случае атомы, образующие молекулу идентичны, нормирующие множители (с), показывающие долю участия АО при конструировании МО, равны по абсолютному значению и, следовательно возможны два варианта Ψ МО при с А = с В и с А = - с В:

Ψ МО(1) = с А ψ А (1s) + с В ψ В (1s) и

Ψ МО(2) = с А ψ А (1s) - с В ψ В (1s)

Молекулярная орбиталь Ψ МО(1) соответствует состоянию с более высокой электронной плотностью между атомами по сравнению с изолированными атомными орбиталями, а электроны располагающиеся на ней и имеющие противоположные значения спинов в соответствии с принципом Паули – более низкую энергию по сравнению с их энергией в атоме. Такая орбиталь в ММО ЛКАО называется связывающей.

В то же время молекулярная орбиталь Ψ МО(2) представляет собой разность волновых функций исходных АО, т.е. характеризует состояние системы с пониженной электронной плотностью в межъядерном пространстве. Энергия такой орбитали выше, чем исходных АО и нахождения на ней электронов приводит к росту энергии системы. Такие орбитали носят название разрыхляющих. На рисунке 29.3 показано формирование связывающей и разрыхляющей орбиталей в молекуле водорода.



Рис.29.3. Образование σ - связывающей и σ-разрыхляющей орбиталей в молекуле водорода.

Ψ МО(1) и Ψ МО(2) имеют цилиндрическую симметрию относительно оси, проходящей через центры ядер. Орбитали такого типа называются σ – симметричными и записываются: связывающая – σ1s, разрыхляющая - σ ٭ 1s . Таким образом молекуле водорода в основном состоянии отвечает конфигурация σ1s 2 , а конфигурации иона Не 2 + , который образуется в электрическом разряде, в основном состоянии может быть записана в виде σ1s 2 σ ٭ 1s (рис. 30.3).

Рис. 30.3. Энергетическая диаграмма образования связующей и разрыхляющей орбиталей и электронное строение молекул и ионов элементов первого периода.

В молекуле Н 2 оба электрона занимают связывающую орбиталь, что приводит к снижению энергии системы по сравнению с исходной (два изолированных атома водорода). Как уже отмечалось энергия связи в этой молекуле 435 кДж/моль, а длина связи равна 74 пм. Удаление электрона со связывающей орбитали повышает энергию системы (понижает стабильность продукта реакции по сравнению с прекурсором): энергия связи в Н 2 + составляет 256 кДж/моль, а длина связи увеличивается до 106 пм. В частице Н 2 - число электронов увеличивается до трёх, поэтому один из них располагается на разрыхляющей орбитали, что приводит к дестабилизации системы по сравнению с ранее описанными: Е(Н 2 -) = 14,5 кДж/моль. Следовательно, появление электрона на разрыхляющей орбитали в большей степени влияет на энергию химической связи, чем удаление электрона со связывающей орбитали. Приведённые выше данные свидетельствуют о том, что суммарная энергия связи определяется разностью между числом электронов на связывающих и разрыхляющих орбиталях. Для бинарных частиц эта разность, делённая пополам называется порядком связи:

ПС = (ē св – ē несв.)/2

Если ПС равен нулю, то химическая связь не образуется (молекула Не 2 рис 30.3). Если в нескольких системах число электронов на разрыхляющих орбиталях одинаково, то наибольшую стабильность имеет частица с максимальным значением ПС. В то же время при одинаковом значении ПС более стабильна частица с меньшим числом электронов на разрыхляющих орбиталях (например, ионы Н 2 + и Н 2 -). Из рисунка 30.3 следует и ещё один вывод: атом гелия может образовывать химическую связь с ионом Н + . Несмотря на то, что энергия 1s орбитали Не очень низка (- 2373 кДж/моль), её линейная комбинация с 1s орбиталью атома водорода (Е =-1312 кДж/моль) приводит к образованию связывающей орбитали, энергия которой ниже АО гелия. Так как на разрыхляющих орбиталях частицы НеН + нет электронов, она более стабильна, по сравнению с системой образованной атомами гелия и ионами водорода.

Аналогичные рассуждения применимы и к линейным комбинациям атомных р-орбиталей. Если ось z совпадает с осью, проходящей через центры ядер, как показано на рисунке 31.3, то связывающая и разрыхляющая орбитали описываются уравнениями:

Ψ МО(1) = с А ψ А (2р z) + с В ψ В (2р z) и Ψ МО(2) = с А ψ А (2р z) - с В ψ В (2р z)

Когда МО конструируются из р-орбиталей, оси которых перпендикулярны линии соединяющей атомные ядра, то происходит образование π-связывающих и π-разрыхляющих молекулярных орбиталей рис.32.3. Молекулярные π у 2р и π у ٭ 2р- орбитали аналогичны представленным на рис. 32.3, но повёрнуты относительно первых на 90 о. Таким образом π2р и π ٭ 2р- орбитали дважды вырождены.

Следует отметить, что линейную комбинацию можно строить не из любых АО, а только из тех, которые обладают достаточно близкой энергией и перекрывание которых возможно с геометрической точки зрения. Парами таких орбиталей пригодными для образования σ-связывающих σ-разрыхляющих орбиталей могут s – s, s – p z , s – d z 2 , p z – p z , p z – d z 2 , d z 2 - d z 2 , тогда как при линейной комбинации p x – p x , p y – p y , p x – d xz , p y – d yz , образуются молекулярные π-связывающие и π-разрыхляющие молекулярных орбитали.

Если же строить МО из АО типа d x 2- y 2 - d x 2- y 2 или d xy - d xy то образуются δ-МО. Таким образом, как отмечалось выше, деление МО на σ,π и δ предопределяется их симметрией относительно линии соединяющей атомные ядра. Таким образом, для σ-МО число узловых плоскостей равно нулю, π-МО имеет одну такую плоскость, а δ-МО – две.

Для описания в рамках ММО ЛКАО гомоатомных молекул второго периода необходимо учесть, что линейная комбинация атомных орбиталей возможна только в том случае, когда АО орбитали близки по энергии и обладают одинаковой симметрией.

Рис.31.3. Образование σ-связывающих σ-разрыхляющих орбиталей из атомных р-орбиталей

Рис.32.3.Образование π-связывающих и π-разрыхляющих молекулярных орбиталей из атомных р-орбиталей.

Из орбиталей второго периода одинаковой симмерией относительно оси z обладают орбитали 2s и 2p z . Различие в их энергиях для атомов Li, Be, B и C относительно невелико, поэтому волновые функции 2s и 2p в данном случае могут смешиваться. Для атомов O и F различия в энергии 2s и 2p значительно больше, поэтому их смешение не происходит (таблица 4.3)

Таблица 4.3.

∆Е энергии между 2s и 2p орбиталями различных элементов

атом ∆Е в эВ атом ∆Е в эВ
Li 1,85 N 10,9
Be 2,73 O 15,6
B 3,37 F 20,8
C 4,18

Согласно данными таблицы 4.3, а также проведённых расчётов показано, что относительная энергия МО различна для молекул Li 2 – N 2 c одной стороны и для молекул О 2 – F 2 c другой. Для молекул первой группы порядок возрастания энергии МО можно представить в виде ряда:

σ2sσ ٭ 2sπ2p x π2p y σ2p z π٭2p x π ٭ 2p y σ ٭ 2p z , а для молекул О 2 и F 2 в виде:

σ2sσ ٭ 2sσ2p z π2p x π2p y π٭2p x π ٭ 2p y σ ٭ 2p z (рис 33.3).

Орбитали типа 1s имеющих очень низкую энергию по сравнения с орбиталями второго энергетического уровня, переходят в молекулу в неизменном виде, т.е остаются атомными и на энергетической диаграмме молекулы не указываются.

На основе энергетических диаграмм молекул и молекулярных ионов можно сделать выводы о стабильности частиц и их магнитных свойствах. Так о стабильности молекул, МО которых конструируются из одинаковых АО, ориентировочно можно судить по значению порядка связи, а о магнитных свойствах – по числу неспаренных электронов на МО (рис.34.3).

Необходимо отметить, что АО орбитали не валентных, внутренних уровней с точки зрения ММО ЛКАО не принимают участия в образовании МО, но оказывают заметное влияние на энергию связи. Так, например, при переходе от Н 2 к Li 2 энергия связи понижается более чем в четыре раза (с 432 кДж/моль до 99 кДж/моль).

Рис.33.3 Распределение МО по энергии в молекулах (а) О 2 и F 2 и (б) Li 2 – N 2 .

Рис.34.3 Энергетические диаграммы бинарных молекул элементов второго периода.

Отрыв электрона от молекулы Н 2 снижает энергию связи в системе до 256 кДж/моль, что вызвано уменьшением числа электронов на связывающей орбитали и снижением ПС с 1 до 0,5. В случае же отрыва электрона от молекулы Li 2 энергия связи возрастает со 100 до 135,1 кДж/моль, хотя как видно из рисунка 6.9, электрон, также как в предыдущем случае удаляется со связывающей орбитали и ПС снижается до 0,5. Причина этого заключается в том, что при удалении электрона из молекулы Li 2 снижается отталкивание между электронами, находящимися на связывающей МО и электронами занимающими внутреннюю 1s орбиталь. Эта закономерность наблюдается для молекул всех элементов главной подгруппы первой группы Периодической системы.

По мере увеличения заряда ядра влияние электронов 1s орбиталь на энергию МО снижается, потому в молекулах В 2 , С 2 и N 2 отрыв электрона будет повышать энергию системы (снижение значения ПС, уменьшение суммарной энергии связей) из за того, что электрон удаляется со связывающей орбитали. В случае же молекул O 2 , F 2 и Ne 2 удаление электрона происходит с разрыхляющей орбитали, что ведёт к росту ПС и суммарной энергии связи в системе, например, энергия связи в молекуле F 2 равна 154,8 кДж/моль, а в ионе F 2 + практически в два раза выше (322,1 кДж/моль). Приведённые рассуждения справедливы для любых молекул, независимо от их качественного и количественного состава. Рекомендуем читателю провести сравнительный анализ стабильности бинарных молекул и их отрицательно заряженных молекулярных ионов, т.е. оценить изменение энергии системы в процессе А 2 + ē = А 2 - .

Из рисунка 34.3 также следует, что только молекулы В 2 и О 2 , имеющие неспаренные электроны, парамагнитны, тогда как остальные бинарные молекулы элементов второго периода относятся к диомагнитным частицам.

Доказательством справедливости ММО, т.е. свидетельством реального существования уровней энергии в молекулах, служит различие в значениях потенциалов ионизации атомоа и образованных из них молекул (таблица 5.3).

Таблица 5.3.

Потенциалы ионизации атомов и молекул

Представленные в таблице данные свидетельствуют о том, что у одних молекул потенциалы ионизации больше, чем у атомов из которых они образованы, у других – меньше. Данный факт необъясним с точки зрения МВС. Анализ данных рисунка 34.3 приводит к выводу, что потенциал молекулы больше чем у атома в том случае, когда электрон удаляется со связывающей орбитали (молекулы Н 2 , N 2 , С 2). Если же электрон удаляется с разрыхляющей МО (молекулы О 2 и F 2), то этот потенциал будет меньше, по сравнению с атомным.

Переходя к рассмотрению гетероатомных бинарных молекул в рамках ММО ЛКАО, необходимо напомнить, что орбитали атомов различных элементов, имеющие одинаковые значения главного и побочного квантовых чисел отличаются по своей энергии. Чем выше эффективный заряд ядра атома по отношению к рассматриваемым орбиталям, тем ниже их энергия. На рисунке 35.3 приведена энергетическая диаграмма МО гетероатомных молекул типа АВ, в которой атом В более электроотрицателен. Орбитали этого атома по энергии ниже аналогичных орбиталей атома А. В связи с этим вклад орбиталей атома В в связывающие МО будет больше, чем в разрыхляющие. Наоборот, основной вклад в разрыхляющие МО будут вносить АО атома А. Энергия внутренних орбиталей обоих атомов при образовании молекулы практически не изменяется, например, в молекуле фтороводорода орбитали 1s и 2s атома фтора сосредоточены вблизи его ядра, что, в частности, обуславливает полярность данной молекулы (µ = 5,8 ∙ 10 -30). Рассмотрим с использованием рисунка 34 описание молекулы NO. Энергия АО кислорода ниже АО азота, вклад первых выше в связывающие орбитали, вторых – в разрыхляющие. Орбитали 1s и 2s обоих атомов не изменяют свою энергию (σ2s и σ ٭ 2s заняты электронными парами, σ1s и σ ٭ 1s на рисунке не показаны). На 2р орбиталях атомов, соответственно, кислорода и азота находятся четыре и три электрона. Общее число этих электронов 7, а связующих орбиталей образованных за счёт 2р орбиталей три. После их заполнения шестью электронами становится очевидным, что седьмой электрон в молекуле расположен на одной из разрыхляющих π-орбиталей и, следовательно локализован вблизи атома азота. ПС в молекуле: (8 – 3)/2 = 2,5 т.е. суммарная энергия связи в молекуле высокая. Однако электрон расположенный на разрыхляющей орбитали имеет большую энергию и его удаление из системы приведёт к её стабилизации. Указанный вывод позволяет прогнозировать, что энергия активации процессов окисления NO будет низкой, т.е. эти процессы могут протекать даже при с.у..

В то же время, термическая стабильность этих молекул будет высокой, ион NO + по суммарной энергии связи будет близок к молекулам азота и СО, при низких температурах NO будет димеризоваться.

Анализ молекулы NO в рамках данного метода приводит к ещё одному важному выводу – наиболее стабильными будут бинарные гетероатомные молекулы, в состав которых входят атомы с суммарным числом электронов на валентных s и р-орбиталях, равных 10. В этом случае ПС = 3. Увеличение или уменьшение этого числа приведёт к уменьшению значения ПС, т.е. к дестабилизации частицы.

Многоатомные молекулы в ММО ЛКАО рассматриваются исходя из тех же принципов, которые описаны выше для духатомных частиц. Молекулярные орбитали в данном случае формируют путём линейной комбинации АО всех атомов, входящих в состав молекулы. Следовательно, МО в таких частицах многоцентровые, делокализованные и описывают химическую связь в системе как единое целое. Равновесные расстояния между центрами атомов в молекуле, отвечают минимуму потенциальной энергии системы.

Рис.35.3. Энергетическая диаграмма МО бинарных гетероатомных молекул

(атом В имеет большую электроотрицательность).

Рис.36.3.Энергетические диаграммы молекул различных типов в

рамках ММО. (ось р х орбитали совпадает с осью связей)

На рисунке 36.3 представлены МО молекул различных типов. Принцип их построения рассмотрим на примере молекулы ВеН 2 (рис.37.3). В образовании трёхцентровых МО в данной частице принимают участие 1s орбитали двух атомов водорода, а также 2s и 2р орбитали атома Ве (1s орбиталь этого атома в образовании МО участия не принимает и локализована вблизи его ядра). Примем, что ось р z -орбитали Ве совпадает с линией связи в рассматриваемой частице. Линейная комбинация s орбиталей атомов водорода и бериллия приводит к образованию σ s и σ s ٭ , а такая же операция с участием s орбиталей атомов водорода и р z -орбитали Ве к образованию связывающей и разрыхляющей МО σ z и σ z ٭ , соответсвенно.

Рис.37.3. МО в молекуле ВеН 2

Валентные электроны располагаются в молекуле на связывающих орбиталях, т.е. её электронная формула может быть представлена в виде (σ s) 2 (σ z) 2 . Энергия этих связывающих орбиталей ниже энергии орбиталей атома Н, что обеспечивает относительную стабильность рассматриваемой молекулы.

В том случае, когда все системы атомы имеют подходящие для линейной комбинации р-орбитали, наряду с σ-МО, образуются многоцентровые связывающие, несвязывающие и разрыхляющие π-МО. Рассмотрим такие частицы на примере молекулы СО 2 (рис.38.3 и 39.3).

Рис.38.3 Связывающие и разрыхляющие σ-МО молекулы СО 2

Рис.39.3. Энергетическая диаграмма МО в молекуле СО 2 .

В этой молекуле σ-МО образуются при комбинации 2s и 2р х орбиталей атома углерода с 2р х орбиталями атомов кислорода. Делокализованные π-МО формируются за счёт линейной комбинации p y и p z орбиталей всех атомов,

входящих в состав молекулы. В результате этого образуется три пары π-МО с различной энергией: связывающие - π y c в π z св, несвязывающие - π y π z (по энергии соответствующие р-орбиталям атомов кислорода), и разрыхляющие - π y разр π z разр.

При рассмотрении молекул в рамках ММО ЛКАО часто используют сокращённые схемы описания частиц (рис.40.3). При формировании МО, например, в молекуле BCI 3 достаточно указать только те АО, которые принимают реальное участие в линейной комбинации (на рисунке не указаны одна из АО р-орбиталей бора и 6 из 9 р-орбиталей атомов хлора, линейная комбинация которых даёт несвязывающие МО)

Рис.40.3. МО в молекуле BCI 3

Энергетическая диаграмма МО в молекуле СН 4 представлена на рис.41.3.. Анализ электронного строения атома углерода показывает, что в связи с разнонаправленностью его 2р орбиталей образование в молекуле СН 4 пятицентровых МО с участием этих АО невозможно по геометрически соображениям. В то же время, 2s орбиталь углерода в равной степени способна перекрываться с 1s орбиталями атомов водорода, в результате чего образуется пятицентровые σ s и σ s ٭ МО. В случае комбинаций 2р и 1s орбиталей, число атомных функций в линейной комбинации равно только трём, т.е. энергия σ-МО в данном случае будет выше, чем у соответствующих σ s и σ s ٭ .

Рис.41.3.. Энергетическая диаграмма МО молекулы СН 4 .

Различную энергию пятицентровой и трёхцентровых связывающих орбиталей подтверждают экспериментальные данные по потенциалам ионизации, которые различны для электронов удаляющихся с σ s и с σ x (σ y . σ z).

Как было показано в предыдущих параграфах, метод ВС позволяет понять способность атомов к образованию определенного числа ковалентных связей, объясняет направленность ковалентной связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС не может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул.

Так, согласно методу ВС, все ковалентные связи осуществляются общей парой электронов. Между тем, еще в конце прошлого века было установлено существование довольно прочного молекулярного иона водорода : энергия разрыва связи составляет здесь . Однако никакой электронной пары в этом случае образоваться не может, поскольку в состав иона входит всего один электрон. Таким образом, метод ВС не дает удовлетворительного объяснения существованию иона .

Согласно такому описанию, молекула не содержит неспаренных электронов. Однако магнитные свойства кислорода указывают на то, что в молекуле имеются два неспаренных электрона.

Каждый электрон, благодаря наличию у него спина, создает собственное магнитное поле. Направление этого поля определяется направлением спина, так что магнитные поля, образованные двумя спареиными электронами, взаимнокомпенсируют друг друга.

Поэтому молекулы, в состав которых входят только спаренные электроны, не создают собственного магнитного поля. Вещества, состоящие из таких молекул, являются диамагнитными - они выталкиваются из магнитного поля. Напротив, вещества, молекулы которых содержат неспаренные электроны, обладают собственным магнитным полем и являются парамагнитными; такие вещества втягиваются в магнитное поле.

Кислород - вещество парамагнитное, что свидетельствует о наличии в его молекуле неспаренных электронов.

На основе метода ВС трудно объяснить и то, что отрыв электронов от некоторых молекул приводит к упрочнению химической связи. Так, энергия разрыва связи в молекуле составляет , а в молекулярном ионе - ; аналогичные величины для молекул и молекулярного иона составляют соответственно 494 и .

Приведенные здесь и многие другие факты получают более удовлетворительное объяснение на основе метода молекулярных орбиталей (метод МО).

Мы уже знаем, что состояние электронов в атоме описывается квантовой механикой как совокупность атомных электронных орбиталей (атомных электронных облаков); каждая такая орбиталь характеризуется определенным набором атомных квантовых чисел. Метод МО исходит из предположения, что состояние электронов в молекуле также может быть описано как совокупность молекулярных электронных орбиталей (молекулярных электронных облаков), причем каждой молекулярной орбитали (МО) соответствует определенный набор молекулярных квантовых чисел. Как и в любой другой многоэлектронной системе, в молекуле сохраняет свою справедливость принцип Паули (см. § 32), так что на каждой МО может находиться не более двух электронов, которые должны обладать противоположно направленными спинами.

Молекулярное электронное облако может быть сосредоточено вблизи одного из атомных ядер, входящих в состав молекулы: такой электрон практически принадлежит одному атому и не принимает участия в образовании химических связей. В других случаях преобладающая часть электронного облака расположена в области пространства, близкой к двум атомным ядрам; это соответствует образованию двухцентровой химической связи. Однако в наиболее общем случае электронное облако принадлежит нескольким атомным ядрам и участвует в образовании многоцентровой химической связи. Таким образом, с точки зрения метода МО двухцентровая связь представляет собой лишь частный случай многоцентровой химической связи.

Основная проблема метода МО - нахождение волновых функций, описывающих состояние электронов на молекулярных орбиталях. В наиболее распространенном варианте этого метода, получившем сокращенное обозначение «метод МО ЛКАО» (молекулярные орбитали, линейная комбинация атомных орбиталей), эта задача решается следующим образом.

Пусть электронные орбитали взаимодействующих атомов характеризуются волновыми функциями и т. д. Тогда предполагается, что волновая функция , отвечающая молекулярной орбитали, может быть представлена в виде суммы

где некоторые численные коэффициенты.

Для уяснения физического смысла такого подхода вспомним, что волновая функция соответствует амплитуде волнового процесса, характеризующего состояние электрона (см. § 26). Как известно, при взаимодействии, например, звуковых или электромагнитных волн их амплитуды складываются. Как видно, приведенное уравнение равносильно предположению, что амплитуды молекулярной «электронной волны» (т. е. молекулярная волновая функция) тоже образуются сложением амплитуд взаимодействующих атомных «электронных волн» (т. е. сложением атомных волновых функций). При этом, однако, под влиянием силовых полей ядер и электронов соседних атомов волновая функция каждого атомного электрона изменяется по сравнению с исходной волновой функцией этого электрона в изолированном атоме. В методе МО ЛКАО эти изменения учитываются путем введения коэффициентов и т. д., так что при нахождении молекулярной волновой функции складываются не исходные, а измененные амплитуды - и т. д.

Выясним, какой вид будет иметь молекулярная волновая функция , образованная в результате взаимодействия волновых функций ( и ) -орбиталей двух одинаковых атомов. Для этого найдем сумму В данном случае оба рассматриваемых атома одинаковы, так что коэффициенты и равны по величине , и задача сводится к определению суммы . Поскольку постоянный коэффициент С не влияет на вид искомой молекулярной волновой функции, а только изменяет ее абсолютные значения, мы ограничимся нахождением суммы .

Для этого расположим ядра взаимодействующих атомов на том расстоянии друг от друга (r), на котором они находятся в молекуле, и изобразим волновые функции -орбиталей этих атомов (рис. 43,а); каждая из этих функций имеет вид, показанный на рис. 9, а(стр. 76). Чтобы найти молекулярную волновую функцию , сложим величины и : в результате получится кривая, изображенная на рис. 43,б. Как видно, в пространстве между ядрами значения молекулярной волновой функции больше, чем значения исходных атомных волновых функций. Но квадрат волновой функции характеризует вероятность нахождения электрона в соответствующей области пространства, т. е. плотность электронного облака (см. § 26). Значит, возрастание в сравнении с и означает, что при образовании МО плотность электронного облака в межъядерном пространстве увеличивается.

Рис. 43. Схема образования связывающей МО из атомных -орбиталей.

В результате возникают силы притяжения положительно заряженных атомных ядер к этой области--образуется химическая связь. Поэтому МО рассматриваемого типа называется связывающей.

В данном случае область повышенной электронной плотности находится вблизи оси связи, так что образовавшаяся МО относится к -типу. В соответствии с этим, связывающая МО, полученная в результате взаимодействия двух атомных -орбиталей, обозначается .

Электроны, находящиеся на связывающей МО, называются связывающими электронами.

Как указывалось на стр. 76, волновая функция -орбитали обладает постоянным знаком. Для отдельного атома выбор этого знака произволен: до сих пор мы считали его положительным. Но при взаимодействии двух атомов знаки волновых функций их -орбиталей могут оказаться различными. Значит, кроме случая, изображенного на рис. 43, а, где знаки обеих волновых функций одинаковы, возможен и случай, когда знаки волновых функций взаимодействующих -орбиталей различны. Такой случай представлен на рис. 44,а: здесь волновая функция -орбитали одного атома положительна, а другого - отрицательна. Пр и сложении этих волновых функций получится кривая, показанная на рис. 44, б. Молекулярная орбиталь, образующаяся при подобном взаимодействии, характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с ее значением в исходных атомах: на оси связи появляется даже точка, в которой значение волновой функции, а, следовательно, и ее квадрата, обращается в нуль. Это означает, что в рассматриваемом случае уменьшится и плотность электронного облака в пространстве между атомами.

Рис. 44. Схема образования разрыхляющей МО из атомных -орбиталей.

В результате притяжение каждого атомного ядра в направлении к межъядерной области пространства окажется более слабым, чем в противоположном направлении, т. е. возникнут силы, приводящие к взаимному отталкиванию ядер. Здесь, следовательно, химическая связь не возникает; образовавшаяся в этом случае МО называется разрыхляющей , а находящиеся на ней электроны - разрыхляющими электронами.

Переход электронов с атомных -орбиталей на связывающую МО, приводящий к возникновению химической связи, сопровождается выделением энергии. Напротив, переход электронов с атомных -орбиталей на разрыхляющую МО требует затраты энергии. Следовательно, энергия электронов на орбитали ниже, а на орбитали выше, чем на атомных -орбиталях. Это соотношение энергий показано на рис. 45, на котором представлены как исходные -орбитали двух атомов водорода, так и молекулярные орбитали и сразу . Приближенно можно считать, что при переходе -электрона на связывающую МО выделяется столько же энергии, сколько необходимо затратить для его перевода на разрыхляющую МО.

Мы знаем, что в наиболее устойчивом (невозбужденном) состоянии атома электроны занимают атомные орбитали, характеризующиеся наименьшей возможной энергией. Точно так же наиболее устойчивое состояние молекулы достигается в том случае, когда электроны занимают МО, отвечающие минимальной энергии. Поэтому при образовании молекулы водорода оба электрона перейдут с атомных -орбиталей на связывающую молекулярную орбиталь (рис. 46); в соответствии с принципом Паули, электроны, находящиеся на одной МО, должны обладать противоположно направленными спинами.

Рис. 45. Энергетическая схема образования МО при взаимодействии -орбиталей двух одинаковых атомов.

Рис. 46. Энергетическая схема образования молекулы водорода.

Используя символы, выражающие размещение электронов на атомных и молекулярных орбиталях, образование молекулы водорода можно представить схемой:

В методе ВС кратность связи определяется числом общих электронных пар: простой считается связь, образованная одной общей электронной парой, двойной - связь, образованная двумя общими электронными парами, и т. д. Аналогично этому, в методе МО кратность связи принято определять по числу связывающих электронов, участвующих в ее образовании: два связывающих электрона соответствуют простой связи, четыре связывающих электрона - двойной связи и т. д. При этом разрыхляющие электроны компенсируют действие соответствующего числа связывающих электронов. Так, если в молекуле имеются 6 связывающих и 2 разрыхляющих электрона, то избыток числа связывающих электронов над числом разрыхляющих равен четырем, что соответствует образованию двойной связи. Следовательно, с позиции метода МО химическую связь в молекуле водорода,образованную двумя связывающими электронами, следует рассматривать как простую связь.

Теперь становится понятной возможность существования устойчивого молекулярного иона его образовании единственный электрон переходит с атомной орбитали на связывающую орбиталь , что сопровождается выделением энергии (рис. 47) и может быть выражено схемой:

В молекулярном ионе (рис. 48) имеется всего три электрона. На связывающей молекулярной орбитали могут разместиться, согласно принципу Паули, только два электрона, по этому третий электрон занимает разрыхляющую орбиталь .

Рис. 47. Энергетическая схема образования молекулярного иона водорода .

Рис. 48. Энергетическая схема образования молекулярного иона гелия .

Рис. 49. Энергетическая схема образования молекулы лития .

Рис. 50. Энергетическая схема образования МО при взаимодействии -орбиталей двух одинаковых атомов.

Таким образом, число связывающих электронов здесь на единицу больше числа разрыхляющих. Следовательно, ион должен быть энергетически устойчивым. Действительно, существование иона экспериментально подтверждено и установлено, что при его образовании выделяется энергия;

Напротив, гипотетическая молекула должна быть энергетически неустойчивой, поскольку здесь из четырех электронов, которые должны разместиться на МО, два займут связывающую, а два - разрыхляющую МО. Следовательно, образование молекулы не будет сопровождаться выделением энергии. Действительно, молекулы экспериментально не обнаружены.

В молекулах элементов второго периода МО образуются в результате взаимодействия атомных и -орбиталей; участие внутренних -электронов в образовании химической связи здесь пренебрежимо мало. Так, на рис. 49 приведена энергетическая схема образования молекулы : здесь имеются два связывающих электрона, что соответствует образованию простой связи. В молекуле же число связывающих и разрыхляющих электронов одинаково, так что эта молекула, подобно молекуле , энергетически неустойчива. Действительно, молекул обнаружить не удалось.

Схема образования МО при взаимодействии атомных -орби-талей показана на рис. 50. Как видно, из шести исходных -орбиталей образуются шесть МО: три связывающих и три разрыхляющих. При этом одна связывающая () и одна разрыхляющая орбитали принадлежат к -типу: они образованы взаимодействием атомных -орбиталей, ориентированных вдоль связи. Две связывающие и две разрыхляющие () орбитали образованы взаимодействием -орбиталей, ориентировванных перпендикулярно оси связи; эти орбитали принадлежат к -типу.

Задача 241.
Описать электронное строение молекул СО и СN с позиций методов ВС и МО. Какая из молекул характеризуется большей кратностью связи?
Решение:
а) Электронное строение молекул CO и CN с позиции метода ВС.
Электронная конфигурация атома углерода 1s 2 2s 2 2p 2 , атома кислорода 1s 2 2s 2 2p 4 , атома азота 1s 2 2s 2 2p 3 . Электронное строение их валентных орбиталей в невозбуждённом состоянии может быть представлено следующими графическими схемами:
а) атом углерода:

б) атом азота:

При возбуждении атом углерода переходит в состояние 1s 2 2s 1 2p 3 , а электронное строение его валентных орбиталей соответствует схеме:

Два неспаренных электрона невозбуждённого атома углерода могут участвовать в образовании двух ковалентных связей по обычному механизму с атомом кислорода, имеющем два неспаренных электрона, с образованием молекулы СО. При образовании молекулы CN образуются две ковалентные связи по обычному механизму за счёт двух неспаренных электрона атома углерода и двух неспаренных электронов атома азота. Электронные схемы CO и CN:

б) Электронное строение молекул CO и CN с позиции метода МО.

Энергетические схемы образования молекул а) CO и б) CN:

Из приведённых схем следует, что кратность связи в молекуле СО равна 3 [(6 - 0)/2 = 3], а в молекуле NO – 2,5[(5 – 0)/2 = 2,5]. Следовательно, молекула СО по отношению к молекуле NO характеризуется большей устойчивостью, чем больше кратность связи, тем короче связь. Молекула СN имеет один неспаренный электрон на связывающей орбитали, следовательно, она парамагнитна. Молекула СО не имеет неспаренных электронов на связывающих и разрыхляющих орбиталях, значит, она диамагнитна .

Задача 242.
Рассмотреть с позиций метода МО возможность образования молекул В 2 , F 2 , BF. Какая из этих молекул наиболее устойчива?
Решение:
Энергетические схемы образования молекул а)В 2 , б) F 2 , в) BF:

Из составленных энергетических схем В 2 , F 2 , BF вытекает, что разность между числом связывающих и разрыхляющих электронов соответственно равны 2, 2 и 6, что отвечает кратности связи соответственно 1, 1 и 3. Следовательно, молекула BF характеризуется большей кратностью связи между атомами, она должна быть более прочной, чем у В 2 и F 2 .

Сокращенно метод молекулярных орбиталей (МО) в литературе получил название как метод линейной комбинации атомных орбиталей (ЛКАО). Молекула рассматривается как целое, а не как совокупность сохраняющих свою индивидуальность атомов. Каждый электрон принадлежит всей молекуле в целом и движется в поле всех ее ядер и других электронов.

Состояние электрона в молекуле описывается одноэлектронной волновой функцией i (i означает i -й электрон). Эта функция называется молекулярной орбиталью (МО) и характеризуется определенным набором квантовых чисел. Находится она в результате решения уравнения Шредингера для молекулярной системы с одним электроном. В отличие от одноцентровой атомной орбитали (АО) молекулярная орбиталь всегда многоцентровая, так как число ядер в молекуле не менее двух. Как и для электрона в атоме, квадрат модуля волновой функции | i | 2 определяет плотность вероятности нахождения электрона или плотность электронного облака. Каждая молекулярная орбиталь i характеризуется определенным значением энергии Е i . Ее можно определить, зная потенциал ионизации данной орбитали. Электронная конфигурация молекулы (ее нижнее невозбужденное состояние) задается совокупностью МО, занятых электронами. Заполнение молекулярных орбиталей электронами основывается на двух основных положениях. Электрон в молекуле занимает свободную орбиталь с наименьшей энергией, и на одной МО не может находиться более двух электронов с антипараллельными спинами (принцип Паули). Если молекула содержит 2n электронов, то для описания ее электронной конфигурации требуется n молекулярных орбиталей. Правда, на практике часто рассматривают меньшее число МО, пользуясь понятием валентных электронов, т. е. тех электронов, которые вступают в химическую связь.

При переходе одного электрона молекулы с занятой МО на более высокую свободную МО молекула в целом переходит из основного состояния (Ψ) в возбужденное состояние (* ). Для молекулы существует определенный набор разрешенных состояний, которым отвечают определенные значения энергии. Переходы между этими состояниями с поглощением и испусканием света порождают электронный спектр молекулы.

Для нахождения энергетического спектра молекулы необходимо решить уравнение Шредингера вида

Ĥ = Е , (5.15)

если известна молекулярная волновая функция . Однако трудность решения уравнения (5.35) заключается в том, что зачастую нам не известна. Поэтому одна из главных задач квантовой механики – это нахождение молекулярной волновой функции. Наиболее распространенный способ записи молекулярной орбитали состоит в использовании определенного набора атомных орбиталей, полученных для составляющих молекулу атомов. Если молекулярную орбиталь обозначить как i , а атомную – через φ k , то общее соотношение для МО имеет вид


т. е. МО есть линейная комбинация атомных орбиталей φ k со своими коэффициентами C ik . Число независимых решений для i равно числу φ k в исходном базисе. чтобы сократить число атомных волновых, функций выбирают только такие АО, которые дают вклад в химическую связь. Свойства симметрии МО могут быть определены из знаков и числовых значений коэффициентов C ik (коэффициентов ЛКАО) и свойств симметрии атомных орбиталей. Заполнение молекулярных орбиталей электронами проводится по аналогии с атомными. Наиболее точные расчеты для молекул выполняются методом самосогласованного поля (ССП). Молекулярные орбитали, вычисленные методом ССП, наиболее близки к истинным и называются хартри – фоковскими орбиталями.

5.3.3 Применение метода молекулярных орбиталей
для описания химической связи в ионе H 2 +

Самой простейшей двухатомной молекулой является молекула водорода H 2 , химическая связь в которой образована двумя электронами (типа 1s ), принадлежащими атомам водорода. Если удалить один электрон, то получаем еще более простую систему H 2 + – молекулярный ион водорода, в котором химическая связь осуществляется одним электроном. Эта устойчивая частица с межъядерным расстоянием r e (H 2 +) = 0,106 нм энергией диссоциации D 0 (H 2 +) = 2,65 эВ. С точки зрения квантовой механики эта задача многоцентровая, один электрон вращается вокруг ядер (рис. 5.10).

Уравнение Шредингера для такой системы запишется в виде (5.15), где – волновая функция молекулярного иона H 2 + , которая составляется из волновых функций атома водорода в виде

= с 1 j 1 + с 2 j 2 , (5.17)

где j 1 и j 2 – атомные волновые функции (1s атомные орбитали водорода); с 1 и с 2 – коэффициенты, которые требуется определить; Ĥ – оператор Гамильтона, имеющий вид

Последние три члена дают значение потенциальной энергии ядерного и электрон-ядерного взаимодействия, R 12 – расстояние между ядрами, r 1 и r 2 – расстояния от электрона до соответствующих ядер.

Как следует из рис. 5.10, один электрон движется вокруг двух ядер, которые предполагаются неподвижными. Такая задача в квантовой механике точно не решается, поэтому будем рассматривать приближенное ее решение методом МО. Это позволит нам познакомиться с наиболее характерными особенностями метода. Качественно будет раскрыта физическая картина образования химической связи, несмотря на приближенные значения параметров с 1 и с 2 при записи волновой функции. Основы теории метода для простейшего иона H 2 + послужат исходным пунктом для понимания природы химической связи в более сложных молекулах.

Задачу о нахождении коэффициентов с 1 и с 2 и энергии системы H 2 + будем решать при помощи вариационного метода. Суть метода заключается в следующем. Умножим обе части уравнения (5.15) на комплексно–сопряженную волновую функцию Ψ* и проинтегрируем по всей области изменения переменных. В результате получим выражение:

где d τ – элементарный объем (в декартовой системе координат d τ = dx dy dz ).

Если известна волновая функция (у нас она задана с коэффициентами с 1 и с 2) и гамильтониан Ĥ , то можно вычислить энергию системы Е . в состоянии устойчивого равновесия (r e (H 2 +) = 0,106 нм), энергия системы H 2 + должна быть минимальной.

Подставив в выражение для энергии (5.19) значение функции (5.17), получим

Выполнив соответствующие преобразования получим

В целях упрощения записи (5.21) введем обозначения интегралов:

Из свойств интегралов перекрывания следует, что S 12 = S 21 . учитывая далее коммутационные свойства оператора Гамильтона, можно показать, что Н 21 = Н 12 .

Подставив в (5.21) значения интегралов (5.22), получим

Рассчитать значение энергии по (5.23) можно, если известны значения коэффициентов с 1 и с 2 . Однако они в условиях нашей задачи не известны. Для их нахождения используют вариационный метод, согласно которому функции Ψ (5.17) должен отвечать минимум энергии Е . Условием минимума Е как функции с 1 и с 2 будет равенство нулю частных производных: и

Найдем вначале частную производную от Е по с 1 и приравняем ее нулю.

После преобразования получим

Сравнив (5.23) и (5.25), можем записать

Сгруппировав по переменным с 1 и с 2 , перепишем (5.26) следующим образом:

Дифференцируя значение энергии (5.24) по с 2 , аналогично получим

Выражения (5.27) и (5.28) представляют линейную систему уравнений с двумя неизвестными с 1 и с 2 . Для разрешимости этой системы необходимо, чтобы определитель, состоящий из коэффициентов при неизвестных, был равен нулю, т. е.

Так как МО образована из двух атомных функций, то получили определитель второго порядка, при комбинации трех атомных волновых функций получили бы определитель третьего порядка и т. д. Цифры в индексах совпадают с номером строки (первая) и с номером столбца (вторая). Это соответствие можно обобщить на функции, являющиеся линейной комбинацией n атомных орбиталей. Получим тогда определитель n -го порядка типа

где i и j имеют n значений.

Определитель можно упростить, положив интегралы S 11 = S 22 = 1, если атомные волновые функции нормированы. Интеграл S 12 обозначим через S . В нашем случае Н 11 = Н 22 , так как атомные волновые функции φ 1 и φ 2 одинаковы. Обозначим интегралы Н 11 = Н 22 = α , а Н 12 через β. Тогда определитель (5.29) будет иметь вид

Раскрыв этот определитель, получим

Решив уравнение (5.33) относительно Е , получим два значения энергии

Итак, при решении уравнения Шредингера с известной волновой функцией с точностью до коэффициентов с 1 и с 2 получим два собственных значения энергии. Определим значения коэффициентов с 1 ис 2 , вернее их соотношение, так как из двух уравнений (5.27) и (5.28) нельзя получить три неизвестных – Е, с 1 и с 2 . Зная значение Е s из (5.33) можно найти отношение с 1 /с 2 из (5.28)

Подставив значения Е s из (5.34) в последнее уравнение, получим

откуда с 1 = с 2 = с s .

Аналогично, подставив в (5.28) вместо Е значение Е as , получим второе возможное соотношение:

с 1 / с 2 = –1 или с 1 = – с 2 = с as . (5.38)

Подстановка (5.37) и (5.38) в (5.17) приводит к двум решениям уравнения Шредингера для H 2 + , к двум молекулярным орбиталям:

Для определения численного значения коэффициентов с s и с as воспользуемся условием нормировки молекулярной функции:

Подстановка вместо s его значения из (5.39) дает следующее выражение:

Первое и второе слагаемые в правой части равны единице, так как φ 1 и φ 2 нормированы. Тогда

Аналогично находится коэффициент с as :

Если интегралом перекрывания S пренебречь по сравнению с единицей (хотя для иона H 2 + и молекулы H 2 он сравним с единицей, однако ради общности им пренебрегают), то будем иметь:

Из (5.39) и (5.40) получаем две молекулярные волновые функции, соответствующие двум значениям энергии Е s и Е as ,

Обе МО являются приближенными решениями уравнения Шредингера, полученного вариационным методом. Одно из них с более низкой энергией (Ψ s ) отвечает основному, второе (Ψ аs ) – ближайшему более высокому состоянию.

По полученным волновым функциям (5.46) и (5.47) можно определить распределение электронной плотности в молекулярном ионе H 2 + , соответствующее энергиям Е s и Е as .

Как видно, симметричная функция ведет к увеличению плотности электронного заряда в области перекрывания атомных волновых функций (в межъядерном пространстве А и В ) по сравнению с плотностью зарядов, описываемых функциями φ 1 2 и φ 2 2 . Антисимметричная волновая функция ведет к уменьшению плотности заряда. На рис. 5.11 это изображено графически. Пунктирные линии изображают плотность заряда у индивидуальных атомов, удаленных один от другого на бесконечно большое расстояние, а сплошная линия – распределение электронной плотности в молекулярном ионе водорода вдоль межъядерной оси. Очевидно, что симметричная волновая функция (5.46) благоприятствует такому распределению заряда, при котором он концентрируется между ядрами. Такая МО называется связывающей. И наоборот, асимметричная МО (5.47) ведет к уменьшению плотности заряда в межъядерном пространстве и концентрации его около индивидуальных атомных ядер.

Такую МО называют антисвязывающей или разрыхляющей. Следовательно, только симметричная функция обусловливает образование устойчивой молекулы (H 2 +). На кривой зависимости потенциальной энергии от расстояния между ядрами (R АВ ) (см. рис. 5.11) на каком-то из этих расстояний окажется минимум. Получим две потенциальные кривые: одну для связывающей орбитали, а вторую для разрыхляющей (рис 5.12).

В значения энергии Е s (5.34) и Е as (5.35) входят одни и те же интегралы α, β и S , однако величины энергии неодинаковы вследствие различия знаков в правых частях.

Проанализируем более детально интегралы . Подставим оператор Гамильтона (5.34) в первый интеграл. Тогда получим:

интеграл может быть упрощен, если учесть, что – оператор Гамильтона для атома водорода с электроном около ядра А . Он дает значение энергии Е 0 в атоме водорода. оператор Гамильтона для молекулярного иона водорода может быть записан следующим образом:

где Е 0 – энергия основного состояния водородного атома.

Величина интеграла (5.50) перепишется следующим образом:

Величины Е 0 и R АВ – постоянные и их можно вынести за знак интеграла:

Так как волновая функция φ 1 нормирована, т. е. , то

где I обозначает интеграл, названный Кулоновским

вычислить который не очень просто, но тем не менее он дает существенный вклад в общую энергию системы.

Таким образом, интеграл Н 11 = Н 22 = α , как видно из (5.54), состоит из трех частей и передает классическое кулоновское взаимодействие частиц. Он включает энергию электрона в атоме водорода в основном состоянии (Е 0), кулоновское отталкивание ядер (е 2 /R АВ ) и энергию I кулоновского взаимодействия второго протона (В ) с электронным облаком, окружающим первый протон (А ). на расстояниях порядка равновесного межъядерного этот интеграл отрицателен, а на больших расстояниях, где отталкивание ядер мало, он практически равен энергии электрона на атомной орбитали, поэтому в нулевом приближении он принимается равным энергии электрона в атоме водорода (Е 0). Только на расстояниях, значительно меньших равновесного, он становится положительным и возрастает неограниченно.

Интеграл Н 12 = Н 21 = β называют обменным или резонансным. Энергия, выражаемая интегралом β, не имеет аналога в классической физике. Он описывает добавочное понижение энергии системы, которое возникает из–за возможности перехода электрона от ядра А к ядру В , как бы обменивая состояния φ 1 и φ 2 . Этот интеграл на бесконечности равен нулю, на всех других расстояниях (кроме очень коротких, меньших межъядерных) – отрицателен. Его вклад и определяет энергию химической связи (чем больше этот интеграл, тем прочнее связь). По аналогии с (5.53) этот интеграл можно записать следующим образом:

Вынося постоянные члены за знак интеграла, получим

интеграл перекрывания атомных орбиталей (обозначен S 12 = S 21 = S ), образующих молекулярную орбиталь есть величина безразмерная и равна единице при R АВ = 0 спадает до нуля при возрастании межъядерного расстояния. На расстояниях между атомами, близких или равных равновесным, обменный интеграл Н 12 тем больше по абсолютной величине, чем больше интеграл перекрывания.

Действительно, равенство (5.57) можно переписать следующим образом, если ввести обозначения S 12 и K

где K обозначает интеграл типа

называемый обменным интегралом.

Последний интеграл в (5.57) и дает основную отрицательную добавку в общий обменный интеграл Н 12 .

Если значения всех полученных интегралов подставить в уравнения для энергии (5.34) и (5.35) симметричного и асимметричного состояний, то получим

Для антисимметричного состояния получим следующее значение

Вычисления интегралов I и K довольно сложны, однако есть возможность оценить их зависимость от расстояния между ядрами атомов водорода. Результаты этой зависимости изображены кривыми потенциальной энергии на рис. 5.12.

Как видно из рис. 5.12, симметричное энергетическое состояние ведет к минимуму потенциальной энергии, поэтому образуется устойчивая частица H 2 + . Антисимметричное состояние соответствует неустойчивому энергетическому состоянию. в этом случае электрон будет на антисимметричной орбитали и молекулярный ион H 2 + не образуется. Следовательно, E s отвечает основному состоянию, а E as – первому возбужденному состоянию молекулярного иона H 2 + .

Если приближенно считать, что S 12 = 0 и сохранить обозначения для Н 11 и Н 12 соответственно через α и β, то выражения для волновых функций электрона в молекуле и его энергии приобретают простой вид:

Так как интеграл β отрицателен, то E 1 < E 2 .

Таким образом, метод МО показывает, что при соединении двух атомов в молекулу возможны два состояния электрона: – две молекулярные орбитали 1 и 2 , одна из них с более низкой энергией E 1 , другая – с более высокой энергией E 2 . Поскольку на МО возможно пребывание как двух, так и одного электрона, то метод МО позволяет оценивать вклад в химическую связь не только электронных пар, но и отдельных электронов.

Метод МО ЛКАО для иона H 2 + дает величины E 0 = 1,77 эВ и r 0 = 0,13 нм, а согласно экспериментальным данным E 0 = 2,79 эВ и r 0 = 0,106 нм, т. е. расчет качественно согласуется с экспериментальными данными.

Если при образовании молекулы из атомов электрон займет нижнюю орбиталь, то полная энергия системы понизится – образуется химическая связь.

Поэтому волновую функцию 1 (соответствует s )называют связывающей орбиталью. Переход электрона на верхнюю орбиталь 2 (соответствует as ) увеличит энергию системы. связь при этом не образуется, система станет менее устойчивой. Такую орбиталь называют разрыхляющей. Связывающее и разрыхляющее действие электронов определяется видом волновых функций 1 и 2 .

В молекуле водорода H 2 на нижней связывающей орбитали размещается два электрона, что приводит к увеличению силы связи и понижению энергии связывающей орбитали. Результаты расчета по методу МО для молекулы водорода H 2 приводят к значению Е 0 = 2,68 эВ и r 0 = 0,085 нм, а эксперимент дает значения Е 0 = 4,7866 эВ и r 0 = 0,074 нм. По порядку величины результаты согласуются, хотя энергия самого низкого состояния отличается чуть ли не в два раза от значения, полученного экспериментально. Аналогичным образом образуются молекулярные орбитали и для других двухатомных молекул, состоящих из более тяжелых атомов.

5.4. Типы химических связей
в двухатомных молекулах.
σ
-и π -связи

Наиболее распространенными видами связи в молекулах являются σ- и π-связи, которые образуются в результате перекрывания электронных облаков внешних (валентных) электронов. Имеются и другие виды химических связей, которые характерны для комплексных соединений, содержащих атомы наиболее тяжелых элементов.

На рис. 5.13 и 5.14 приведены типичные варианты перекрывания s-, р - и d- электронных облаков при образовании химических связей. Перекрывание их происходит таким образом, чтобы при данной длине связи область перекрывания оказалась наибольшей, что отвечает максимально возможной силе химической связи.

Под σ-связью в молекуле будем понимать такую связь, которая образуется за счет перекрывания внешних s - или p -электронов. при этом перекрывании электронное облако в пространстве между атомами обладает цилиндрической симметрией относительно оси, проходящей через ядра атомов (см. рис. 5.13) Область перекрывания облаков при цилиндрически расположенной электронной плотности лежит на оси связи. Волновая функция определяется величиной электронной плотности в межъядерном пространстве (см. рис. 5.13). Максимальная электронная плотность описывается σ-связывающей МО орбиталью, а минимальная – σ*‑разрыхляющей. В связывающих МО электронная плотность между ядрами наибольшая и отталкивание ядер уменьшается. Энергия молекулы меньше, чем энергия АО, молекула устойчива, интеграл перекрывания S > 0. В антисвязывающих (или разрыхляющих) МО электронная плотность между ядрами равна нулю, увеличивается отталкивание ядер, энергия МО больше, чем энергия АО. Состояние молекулы неустойчиво, интеграл перекрывания S < 0.

Каждая пара АО, образующая МО, дает две молекулярные орбитали (связывающую и антисвязывающую), что находит отражение в появлении двух энергетических уровней и соответственно потенциальных кривых (см. рис. 5.12). В нормальном состоянии связывающие орбитали заполнены электронами.

Кроме связывающей и разрыхляющих орбиталей имеются несвязывающие орбитали. Обычно это АО атома, не образующего химических связей. Интеграл перекрывания в данном случае равен нулю. Что имеет место в том случае, если АО относятся к различным типам симметрии.

Наряду с σ-связями в молекуле могут существовать и π-связи, которые образуются в результате перекрывания атомных р-орбиталей или d - и р -орбиталей (рис. 5.14).

Электронное облако π-связи не обладает аксиальной симметрией. Оно симметрично относительно плоскости, проходящей через ось молекулы. Плотность электронного облака обращается в этой плоскости в нуль. На рис. 5.15 показано образование π-связи и электронная плотность для
π св -орбитали. π-связь слабее σ-связи, и на диаграмме уровней энергия π–связи изображается выше энергии σ-связи. Электронные конфигурации молекулы и заполнение электронами различных оболочек проводится таким же образом, как и для атомов. Электроны помещаются последовательно по два с учетом принципа Паули (начиная с более низкой МО и заканчивая более высокой) с противоположными спинами на каждый энергетический уровень (без учета вырождения).

Рассмотрим химические связи в простейших двухатомных молекулах, их энергетические уровни и заполнение их электронами.

Известно, в ионе молекулы Н 2 + химическая связь осуществляется одним 1s -электроном, и находится он на связывающей орбитали σ s . Это означает, что из 1s -атомной орбитали образуется связывающая молекулярная σ-орбиталь. для молекулы водорода Н 2 уже два 1s электрона образуют аналогичную орбиталь – (σ s) 2 . Можно считать, что два связывающих электрона соответствуют одинарной химической связи. Рассмотрим электронное строение молекулы Не 2 . Атом гелия содержит два валентных (1s -электрона) электрона, поэтому при рассмотрении молекулы мы должны четыре валентных электрона разместить на молекулярных орбиталях. Согласно принципу Паули два из них разместятся на связывающей σ s -орбитали, а два других на разрыхляющей σ s *-орбитали. Электронное строение этой молекулы можно записать следующим образом:

Не 2 [(σ s) 2 (σ s *) 2 ].

Поскольку один разрыхляющий электрон уничтожает действие связывающего электрона, то такая молекула существовать не может. У нее два связывающих и два разрыхляющих электрона. Порядок химической связи равен нулю. А вот ион Не 2 + уже существует. для него электронное строение будет иметь следующий вид:

Не 2 + [(σ s) 2 (σ s *) 1 ].

Один разрыхляющий электрон не компенсирует двух связывающих.

Рассмотрим образование молекул из атомов элементов второго периода таблицы Менделеева. Для этих молекул будем считать, что электроны заполненного слоя не принимают участия в химической связи. В молекуле Li 2 имеются два связывающих (2s ) электрона – Li 2 (σ s) 2 . Молекула Ве 2 должна иметь электронную конфигурацию

Ве 2 [(σ s) 2 (σ s *) 2 ],

в которой на молекулярных орбиталях располагаются четыре электрона (по два 2s -электрона от каждого атома). Число связывающих и разрыхляющих электронов одинаково, поэтому молекулы Ве 2 не существует (здесь полная аналогия с молекулой Не 2).

В молекуле В 2 на молекулярных орбиталях приходится размещать шесть электронов (четыре 2s -электрона и два 2р -электрона). Электронная конфигурация запишется следующим образом:

В 2 [(σ s) 2 (σ s *) 2 (π x ) (π y )].

Два электрона в молекуле В 2 располагаются по одному на π x - и π y -орбиталях с одинаковой энергией. По правилу Гунда они имеют параллельные спины (на одной орбитали не могут располагаться два электрона с одинаковыми спинами). Действительно, эксперимент показывает наличие в этой молекуле двух неспаренных электронов.

В молекуле углерода С 2 на молекулярных орбиталях нужно разместить восемь валентных электронов (два 2s -электрона и два 2р электрона одного и другого атомов). Электронное строение будет выглядеть следующим образом:

С 2 [(σ s) 2 (σ s *) 2 (π x ) 2 (π y ) 2 ].

В молекуле С 2 разрыхляющих электронов два, а связывающих шесть. Избыток связывающих электронов равен четырем, поэтому связь в этой молекуле двойная. Связь в молекуле азота N 2 осуществляется электронами 2s 2 и 2р 3 . Рассмотрим только участие в связи трех неспаренных p -электронов. 2s -электрона составляют заполненную оболочку и их участие в образовании связи близко к нулю. Облака трех p x , p y , p z электронов простираются в трех взаимно перпендикулярных направлениях. Поэтому в молекуле азота возможна лишь s-связь за счет концентрации электронной плотности вдоль оси z (рис. 5.16), т. е. s образуется за счет пары p z -электронов. Остальные две химические связив молекуле N 2 будут только p-связями (за счет перекрывания p x p x , p y p y электронов. на рис. 5.16, б это перекрывание показано отдельно.

Таким образом, три общие электронные пары в молекуле азота образуют одну s-и две p-связи. В этом случае говорят о тройной химической связи. Два атома не могут быть связаны между собой более чем тремя электронными парами. Электронная конфигурация молекулы N 2 имеет следующий вид:

N 2 [(σ s) 2 (σ x *) 2 (π x ,y ) 4 (σ z ) 2 ].

Высшей занятой орбиталью считается σ z -орбиталь, образованная за счет перекрытия двух р -орбиталей, лепестки которых направлены вдоль оси связи (ось z ). Это обусловлено закономерностью изменения энергии 2s - и 2р -электронов с ростом порядкового номера элемента.

В молекуле кислорода О 2 по молекулярным орбиталям должны быть распределены двенадцать валентных электронов, два из которых, по сравнению с молекулой N 2 , должны занять разрыхляющие орбитали. Общее электронное строение запишется так:

О 2 [(σ s) 2 (σ s *) 2 (σ z) 2 (π x ) 2 , (π y ) 2 (π x *) 1 (π y *) 1 ].

Как и в молекуле B 2 , два электрона с параллельными спинами занимают две различные π-орбитали. Это обусловливает парамагнитные свойства молекулы кислорода, что соответствует опытным данным. Избыток четырех связывающих электронов обеспечивает порядок связи в молекуле, равный двум.

В следующей за кислородом молекуле F 2 надо дополнительно расположить на орбиталях 2 валентных р -электрона, поэтому молекула фтора будет иметь следующее электронное строение:

F 2 [(σ s) 2 (σ s *) 2 (σ z ) 2 (π x ) 2 (π y ) 2 (π x *) 2 (π y *) 2 ].

Избыток двух связывающих электронов характеризует одинарную химическую связь в молекуле F 2 .

Легко показать, что молекулы Ne 2 не существует, так как в ней число связывающих электронов равно числу разрыхляющих.

Рассмотрим электронное строение отдельных двухатомных молекул, состоящих из разнородных атомов, на примере молекулы СО. В молекуле СО на молекулярных орбиталях располагается десять валентных электронов. Ее электронное строение аналогично электронному строению N 2 , в которой также десять валентных электронов располагаются на тех же молекулярных орбиталях. Этим объясняется близость химических и физических свойств этих молекул. На рис. 5.17 приведена диаграмма уровней энергии МО в молекуле СО.

Из диаграммы видно, что уровни энергии 2s -электронов углерода и кислорода значительно различаются, поэтому их линейная комбинация не может соответствовать реальной МО в данной молекуле, как это могло следовать из упрощенных комбинаций. 2s -электроны кислорода остаются в молекуле на том же энергетическом уровне, что и в атоме, образуя несвязывающую молекулярную орбиталь (s H). 2s – АО углерода при линейной комбинации с соответствующей по симметрии 2р - АО кислорода (2р z ) образуют связывающую s и разрыхляющую s * молекулярную орбитали. При линейной комбинации 2р x и 2р y – АО углерода и кислорода образуются молекулярные орбитали p x (связывающая) и π x * (разрыхляющая) и аналогично p y и p y * . 2р z – АО углерода, на которую перейдет один s -электрон в результате реакции будет второй несвязывающей
p Н -орбиталью. На нее перейдет дополнительно один из р -электронов кислорода. Таким образом, десять валентных электронов в молекуле СО заполняют три связывающие и две несвязывающие МО. Электронная конфигурация внешних электронов молекулы СО будет выглядеть следующим образом:

(σ Н) 2 (σ) 2 (π x,y ) 4 (π H)].

В молекуле NО на орбиталях нужно расположить одинадцать электронов, что приведет к строению электронной оболочки типа:

NО [(σ s ) 2 (σ s *) 2 (π x ) 2 (π y ) 2 (σ z ) 2 (π x *)].

Как видно, число избыточных связывающих электронов равно пяти. С точки зрения порядка химической связи надо ввести дробное число, равное 2,5, для ее характеристики. Если в этой молекуле удалить один электрон, то получится ион NO + с более прочной межатомной связью, так как число связывающих электронов здесь будет равно шести (удален один электрон с разрыхляющей π x * -орбитали).

Если два атома могут связываться только одной общей парой электронов, то между такими атомами всегда образуется σ-связь. π-связь осуществляется в том случае, если два атома связываются двумя или тремя общими электронными парами. Типичным примером может служить молекула азота. Химическая связь в ней осуществляется за счет трех неспаренных p x , p y , и p z -электронов. Угловые лепестки их орбиталей простираются в трех взаимно перпендикулярных направлениях. Если за линию связи принять ось z , то перекрывание р z -атомных орбиталей дадут одну σ z -связь. Остальные орбитали p x и p y дадут только π-связи. Таким образом, три пары связывающих электронов дают одну σ-связь и две π-связи. Итак, все одинарные химические связи между атомами являются σ-связями. В любой кратной связи одна σ-связь, а остальные – π-связи.

5.5. Систематика электронных состояний
в двухатомной молекуле

Для систематики электронных состояний в двухатомных молекулах, аналогично как и в атомах, вводятся определенные квантовые числа, характеризующие орбитальное и спиновое движение электронов. Наличие электрических и магнитных полей как в молекулах, так и в атомах, приводит к векторному сложению орбитальных и спиновых моментов количества движения. Однако в двухатомной молекуле валентные электроны движутся не в сферически-симметричном электрическом поле, что характерно для атома, а в аксиально-симметричном, что характерно для двухатомных или линейных многоатомных молекул. Все двухатомные молекулы относятся к двум типам симметрии: D h или С ∞ u . К первому типу относятся молекулы, состоящие из одинаковых атомов, ко второму – из разноименных. Ось бесконечного порядка направлена вдоль химической связи. в том же направлении действует и электрическое поле, которое сильно влияет на полный орбитальный момент, вызывая его прецессию вокруг оси поля. В результате этого полный орбитальный момент перестает квантоваться, а сохраняется лишь квантование его проекции L z на ось молекулы:

L z = m L· ħ ,(5.65)

где m L – квантовое число, принимающее значения m L = 0, ±1, ±2и т. д. При этом энергия электронного состояния зависит только от абсолютного значения m L , что соответствует тому факту, что с наглядной точки зрения оба вращения электрона (правое и левое) вокруг оси молекулы приводят к одному и тому же значению энергии. Введем некоторую величину Λ, которая характеризует абсолютную величину проекции полного орбитального момента на ось молекулы. Тогда значения Λ будут целыми положительными числами, различающимися на одну единицу Λ = êm L ê = 0, 1,2,...

Для классификации электронных состояний двухатомной молекулы числа Λ играют ту же роль, что и орбитальное квантовое число l для классификации электронных состояний атомов. Общее суммарное квантовое число для атомов принято обозначать , где суммирование производится по всем электронам атома. Если L = 0, то такие электронные состояния обозначаются буквой s ; если L = 1, то электронные состояния обозначаются буквой р ., т. е.

Рассмотренные выше недостатки МВС способствовали развитию другого квантовомеханического метода описания химической связи, который получил название метода молекулярных орбиталей (ММО) . Основные принципы данного метода были заложены Ленардом-Джонсом, Гундом и Малликеном. В его основе лежит представление о многоатомной частице как о единой системе ядер и электронов. Каждый электрон в такой системе испытывает притяжение со стороны всех ядер и отталкивание со стороны всех других электронов. Такую систему удобно описывать при помощи молекулярных орбиталей , которые являются формальными аналогами атомных орбиталей. Отличие атомных и молекулярных орбиталей заключается в том, что одни описывают состояние электрона, находящегося в поле единственного ядра, а другие состояние электрона в поле нескольких ядер. Учитывая аналогичность подхода к описанию атомных и молекулярных систем, можно сделать вывод, что орбитали n-атомной молекулы должны обладать следующими свойствами:

а) состояние каждого электрона в молекуле описывается волновой функцией ψ, а величина ψ 2 выражает вероятность нахождения электрона в любом единичном объёме многоатомной системы; указанные волновые функции называют молекулярными орбиталями (МО) и они, по определению, являются многоцентровыми, т.е. описывают движение электрона в поле всех ядер (вероятность нахождения в любой точке пространства);

б) каждая молекулярная орбиталь характеризуется определённой энергией;

в) каждый электрон в молекуле имеет определённое значение спинового квантового числа, принцип Паули в молекуле выполняется;

г) молекулярные орбитали конструируются из атомных, путём линейной комбинации последних: ∑с n ψ n (если общее число использованных при суммировании фолновых функций равно k, то n принимает значения от 1 до k), с n – коэффициенты;

д)минимум энергии МО достигают при максимальном перекрывании АО;

е) чем ближе по энергии исходные АО, тем ниже энергия МО, сформированных на их основе.

Из последнего положения можно сделать вывод, что внутренние орбитали атомов, имеющие очень низкую энергию, практически не будут принимать участия в образовании МО и их вкладом в энергию этих орбиталей можно пренебречь.

С учётом описанных выше свойств МО рассмотрим их построение для двухатомной молекулы простого вещества, например для молекулы Н 2 . Каждый из атомов, составляющих молекулу (Н А и Н В) имеют по одному электрону на 1s орбитале, тогда МО можно представить в виде:

Ψ МО = с А ψ А (1s) + с В ψ В (1s)

Так как в рассматриваемом случае атомы, образующие молекулу идентичны, нормирующие множители (с), показывающие долю участия АО при конструировании МО, равны по абсолютному значению и, следовательно возможны два варианта Ψ МО при с А = с В и с А = - с В:

Ψ МО(1) = с А ψ А (1s) + с В ψ В (1s) и

Ψ МО(2) = с А ψ А (1s) - с В ψ В (1s)

Молекулярная орбиталь Ψ МО(1) соответствует состоянию с более высокой электронной плотностью между атомами по сравнению с изолированными атомными орбиталями, а электроны располагающиеся на ней и имеющие противоположные значения спинов в соответствии с принципом Паули – более низкую энергию по сравнению с их энергией в атоме. Такая орбиталь в ММО ЛКАО называется связывающей.

В то же время молекулярная орбиталь Ψ МО(2) представляет собой разность волновых функций исходных АО, т.е. характеризует состояние системы с пониженной электронной плотностью в межъядерном пространстве. Энергия такой орбитали выше, чем исходных АО и нахождения на ней электронов приводит к росту энергии системы. Такие орбитали носят название разрыхляющих. На рисунке 29.3 показано формирование связывающей и разрыхляющей орбиталей в молекуле водорода.

Рис.29.3. Образование σ - связывающей и σ-разрыхляющей орбиталей в молекуле водорода.

Ψ МО(1) и Ψ МО(2) имеют цилиндрическую симметрию относительно оси, проходящей через центры ядер. Орбитали такого типа называются σ – симметричными и записываются: связывающая – σ1s, разрыхляющая - σ ٭ 1s . Таким образом молекуле водорода в основном состоянии отвечает конфигурация σ1s 2 , а конфигурации иона Не 2 + , который образуется в электрическом разряде, в основном состоянии может быть записана в виде σ1s 2 σ ٭ 1s (рис. 30.3).

Рис. 30.3. Энергетическая диаграмма образования связующей и разрыхляющей орбиталей и электронное строение молекул и ионов элементов первого периода.

В молекуле Н 2 оба электрона занимают связывающую орбиталь, что приводит к снижению энергии системы по сравнению с исходной (два изолированных атома водорода). Как уже отмечалось энергия связи в этой молекуле 435 кДж/моль, а длина связи равна 74 пм. Удаление электрона со связывающей орбитали повышает энергию системы (понижает стабильность продукта реакции по сравнению с прекурсором): энергия связи в Н 2 + составляет 256 кДж/моль, а длина связи увеличивается до 106 пм. В частице Н 2 - число электронов увеличивается до трёх, поэтому один из них располагается на разрыхляющей орбитали, что приводит к дестабилизации системы по сравнению с ранее описанными: Е(Н 2 -) = 14,5 кДж/моль. Следовательно, появление электрона на разрыхляющей орбитали в большей степени влияет на энергию химической связи, чем удаление электрона со связывающей орбитали. Приведённые выше данные свидетельствуют о том, что суммарная энергия связи определяется разностью между числом электронов на связывающих и разрыхляющих орбиталях. Для бинарных частиц эта разность, делённая пополам называется порядком связи:

ПС = (ē св – ē несв.)/2

Если ПС равен нулю, то химическая связь не образуется (молекула Не 2 рис 30.3). Если в нескольких системах число электронов на разрыхляющих орбиталях одинаково, то наибольшую стабильность имеет частица с максимальным значением ПС. В то же время при одинаковом значении ПС более стабильна частица с меньшим числом электронов на разрыхляющих орбиталях (например, ионы Н 2 + и Н 2 -). Из рисунка 30.3 следует и ещё один вывод: атом гелия может образовывать химическую связь с ионом Н + . Несмотря на то, что энергия 1s орбитали Не очень низка (- 2373 кДж/моль), её линейная комбинация с 1s орбиталью атома водорода (Е =-1312 кДж/моль) приводит к образованию связывающей орбитали, энергия которой ниже АО гелия. Так как на разрыхляющих орбиталях частицы НеН + нет электронов, она более стабильна, по сравнению с системой образованной атомами гелия и ионами водорода.

Аналогичные рассуждения применимы и к линейным комбинациям атомных р-орбиталей. Если ось z совпадает с осью, проходящей через центры ядер, как показано на рисунке 31.3, то связывающая и разрыхляющая орбитали описываются уравнениями:

Ψ МО(1) = с А ψ А (2р z) + с В ψ В (2р z) и Ψ МО(2) = с А ψ А (2р z) - с В ψ В (2р z)

Когда МО конструируются из р-орбиталей, оси которых перпендикулярны линии соединяющей атомные ядра, то происходит образование π-связывающих и π-разрыхляющих молекулярных орбиталей рис.32.3. Молекулярные π у 2р и π у ٭ 2р- орбитали аналогичны представленным на рис. 32.3, но повёрнуты относительно первых на 90 о. Таким образом π2р и π ٭ 2р- орбитали дважды вырождены.

Следует отметить, что линейную комбинацию можно строить не из любых АО, а только из тех, которые обладают достаточно близкой энергией и перекрывание которых возможно с геометрической точки зрения. Парами таких орбиталей пригодными для образования σ-связывающих σ-разрыхляющих орбиталей могут s – s, s – p z , s – d z 2 , p z – p z , p z – d z 2 , d z 2 - d z 2 , тогда как при линейной комбинации p x – p x , p y – p y , p x – d xz , p y – d yz , образуются молекулярные π-связывающие и π-разрыхляющие молекулярных орбитали.

Если же строить МО из АО типа d x 2- y 2 - d x 2- y 2 или d xy - d xy то образуются δ-МО. Таким образом, как отмечалось выше, деление МО на σ,π и δ предопределяется их симметрией относительно линии соединяющей атомные ядра. Таким образом, для σ-МО число узловых плоскостей равно нулю, π-МО имеет одну такую плоскость, а δ-МО – две.

Для описания в рамках ММО ЛКАО гомоатомных молекул второго периода необходимо учесть, что линейная комбинация атомных орбиталей возможна только в том случае, когда АО орбитали близки по энергии и обладают одинаковой симметрией.

Рис.31.3. Образование σ-связывающих σ-разрыхляющих орбиталей из атомных р-орбиталей

Рис.32.3.Образование π-связывающих и π-разрыхляющих молекулярных орбиталей из атомных р-орбиталей.

Из орбиталей второго периода одинаковой симмерией относительно оси z обладают орбитали 2s и 2p z . Различие в их энергиях для атомов Li, Be, B и C относительно невелико, поэтому волновые функции 2s и 2p в данном случае могут смешиваться. Для атомов O и F различия в энергии 2s и 2p значительно больше, поэтому их смешение не происходит (таблица 4.3)

Таблица 4.3.

∆Е энергии между 2s и 2p орбиталями различных элементов

Согласно данными таблицы 4.3, а также проведённых расчётов показано, что относительная энергия МО различна для молекул Li 2 – N 2 c одной стороны и для молекул О 2 – F 2 c другой. Для молекул первой группы порядок возрастания энергии МО можно представить в виде ряда:

σ2sσ ٭ 2sπ2p x π2p y σ2p z π٭2p x π ٭ 2p y σ ٭ 2p z , а для молекул О 2 и F 2 в виде:

σ2sσ ٭ 2sσ2p z π2p x π2p y π٭2p x π ٭ 2p y σ ٭ 2p z (рис 33.3).

Орбитали типа 1s имеющих очень низкую энергию по сравнения с орбиталями второго энергетического уровня, переходят в молекулу в неизменном виде, т.е остаются атомными и на энергетической диаграмме молекулы не указываются.

На основе энергетических диаграмм молекул и молекулярных ионов можно сделать выводы о стабильности частиц и их магнитных свойствах. Так о стабильности молекул, МО которых конструируются из одинаковых АО, ориентировочно можно судить по значению порядка связи, а о магнитных свойствах – по числу неспаренных электронов на МО (рис.34.3).

Необходимо отметить, что АО орбитали не валентных, внутренних уровней с точки зрения ММО ЛКАО не принимают участия в образовании МО, но оказывают заметное влияние на энергию связи. Так, например, при переходе от Н 2 к Li 2 энергия связи понижается более чем в четыре раза (с 432 кДж/моль до 99 кДж/моль).

Рис.33.3 Распределение МО по энергии в молекулах (а) О 2 и F 2 и (б) Li 2 – N 2 .

Рис.34.3 Энергетические диаграммы бинарных молекул элементов второго периода.

Отрыв электрона от молекулы Н 2 снижает энергию связи в системе до 256 кДж/моль, что вызвано уменьшением числа электронов на связывающей орбитали и снижением ПС с 1 до 0,5. В случае же отрыва электрона от молекулы Li 2 энергия связи возрастает со 100 до 135,1 кДж/моль, хотя как видно из рисунка 6.9, электрон, также как в предыдущем случае удаляется со связывающей орбитали и ПС снижается до 0,5. Причина этого заключается в том, что при удалении электрона из молекулы Li 2 снижается отталкивание между электронами, находящимися на связывающей МО и электронами занимающими внутреннюю 1s орбиталь. Эта закономерность наблюдается для молекул всех элементов главной подгруппы первой группы Периодической системы.

По мере увеличения заряда ядра влияние электронов 1s орбиталь на энергию МО снижается, потому в молекулах В 2 , С 2 и N 2 отрыв электрона будет повышать энергию системы (снижение значения ПС, уменьшение суммарной энергии связей) из за того, что электрон удаляется со связывающей орбитали. В случае же молекул O 2 , F 2 и Ne 2 удаление электрона происходит с разрыхляющей орбитали, что ведёт к росту ПС и суммарной энергии связи в системе, например, энергия связи в молекуле F 2 равна 154,8 кДж/моль, а в ионе F 2 + практически в два раза выше (322,1 кДж/моль). Приведённые рассуждения справедливы для любых молекул, независимо от их качественного и количественного состава. Рекомендуем читателю провести сравнительный анализ стабильности бинарных молекул и их отрицательно заряженных молекулярных ионов, т.е. оценить изменение энергии системы в процессе А 2 + ē = А 2 - .

Из рисунка 34.3 также следует, что только молекулы В 2 и О 2 , имеющие неспаренные электроны, парамагнитны, тогда как остальные бинарные молекулы элементов второго периода относятся к диомагнитным частицам.

Доказательством справедливости ММО, т.е. свидетельством реального существования уровней энергии в молекулах, служит различие в значениях потенциалов ионизации атомоа и образованных из них молекул (таблица 5.3).

Таблица 5.3.

Потенциалы ионизации атомов и молекул

атом

первый потенциал ионизации

кДж/моль

молекула

первый потенциал ионизации

кДж/моль

H 2

N 2

O 2

C 2

F 2

Представленные в таблице данные свидетельствуют о том, что у одних молекул потенциалы ионизации больше, чем у атомов из которых они образованы, у других – меньше. Данный факт необъясним с точки зрения МВС. Анализ данных рисунка 34.3 приводит к выводу, что потенциал молекулы больше чем у атома в том случае, когда электрон удаляется со связывающей орбитали (молекулы Н 2 , N 2 , С 2). Если же электрон удаляется с разрыхляющей МО (молекулы О 2 и F 2), то этот потенциал будет меньше, по сравнению с атомным.

Переходя к рассмотрению гетероатомных бинарных молекул в рамках ММО ЛКАО, необходимо напомнить, что орбитали атомов различных элементов, имеющие одинаковые значения главного и побочного квантовых чисел отличаются по своей энергии. Чем выше эффективный заряд ядра атома по отношению к рассматриваемым орбиталям, тем ниже их энергия. На рисунке 35.3 приведена энергетическая диаграмма МО гетероатомных молекул типа АВ, в которой атом В более электроотрицателен. Орбитали этого атома по энергии ниже аналогичных орбиталей атома А. В связи с этим вклад орбиталей атома В в связывающие МО будет больше, чем в разрыхляющие. Наоборот, основной вклад в разрыхляющие МО будут вносить АО атома А. Энергия внутренних орбиталей обоих атомов при образовании молекулы практически не изменяется, например, в молекуле фтороводорода орбитали 1s и 2s атома фтора сосредоточены вблизи его ядра, что, в частности, обуславливает полярность данной молекулы (µ = 5,8 ∙ 10 -30). Рассмотрим с использованием рисунка 34 описание молекулы NO. Энергия АО кислорода ниже АО азота, вклад первых выше в связывающие орбитали, вторых – в разрыхляющие. Орбитали 1s и 2s обоих атомов не изменяют свою энергию (σ2s и σ ٭ 2s заняты электронными парами, σ1s и σ ٭ 1s на рисунке не показаны). На 2р орбиталях атомов, соответственно, кислорода и азота находятся четыре и три электрона. Общее число этих электронов 7, а связующих орбиталей образованных за счёт 2р орбиталей три. После их заполнения шестью электронами становится очевидным, что седьмой электрон в молекуле расположен на одной из разрыхляющих π-орбиталей и, следовательно локализован вблизи атома азота. ПС в молекуле: (8 – 3)/2 = 2,5 т.е. суммарная энергия связи в молекуле высокая. Однако электрон расположенный на разрыхляющей орбитали имеет большую энергию и его удаление из системы приведёт к её стабилизации. Указанный вывод позволяет прогнозировать, что энергия активации процессов окисления NO будет низкой, т.е. эти процессы могут протекать даже при с.у..

В то же время, термическая стабильность этих молекул будет высокой, ион NO + по суммарной энергии связи будет близок к молекулам азота и СО, при низких температурах NO будет димеризоваться.

Анализ молекулы NO в рамках данного метода приводит к ещё одному важному выводу – наиболее стабильными будут бинарные гетероатомные молекулы, в состав которых входят атомы с суммарным числом электронов на валентных s и р-орбиталях, равных 10. В этом случае ПС = 3. Увеличение или уменьшение этого числа приведёт к уменьшению значения ПС, т.е. к дестабилизации частицы.

Многоатомные молекулы в ММО ЛКАО рассматриваются исходя из тех же принципов, которые описаны выше для духатомных частиц. Молекулярные орбитали в данном случае формируют путём линейной комбинации АО всех атомов, входящих в состав молекулы. Следовательно, МО в таких частицах многоцентровые, делокализованные и описывают химическую связь в системе как единое целое. Равновесные расстояния между центрами атомов в молекуле, отвечают минимуму потенциальной энергии системы.

Рис.35.3. Энергетическая диаграмма МО бинарных гетероатомных молекул

(атом В имеет большую электроотрицательность).

Рис.36.3.Энергетические диаграммы молекул различных типов в

рамках ММО. (ось р х орбитали совпадает с осью связей)

На рисунке 36.3 представлены МО молекул различных типов. Принцип их построения рассмотрим на примере молекулы ВеН 2 (рис.37.3). В образовании трёхцентровых МО в данной частице принимают участие 1s орбитали двух атомов водорода, а также 2s и 2р орбитали атома Ве (1s орбиталь этого атома в образовании МО участия не принимает и локализована вблизи его ядра). Примем, что ось р z -орбитали Ве совпадает с линией связи в рассматриваемой частице. Линейная комбинация s орбиталей атомов водорода и бериллия приводит к образованию σ s и σ s ٭ , а такая же операция с участием s орбиталей атомов водорода и р z -орбитали Ве к образованию связывающей и разрыхляющей МО σ z и σ z ٭ , соответсвенно.

Рис.37.3. МО в молекуле ВеН 2

Валентные электроны располагаются в молекуле на связывающих орбиталях, т.е. её электронная формула может быть представлена в виде (σ s) 2 (σ z) 2 . Энергия этих связывающих орбиталей ниже энергии орбиталей атома Н, что обеспечивает относительную стабильность рассматриваемой молекулы.

В том случае, когда все системы атомы имеют подходящие для линейной комбинации р-орбитали, наряду с σ-МО, образуются многоцентровые связывающие, несвязывающие и разрыхляющие π-МО. Рассмотрим такие частицы на примере молекулы СО 2 (рис.38.3 и 39.3).

Рис.38.3 Связывающие и разрыхляющие σ-МО молекулы СО 2

Рис.39.3. Энергетическая диаграмма МО в молекуле СО 2 .

В этой молекуле σ-МО образуются при комбинации 2s и 2р х орбиталей атома углерода с 2р х орбиталями атомов кислорода. Делокализованные π-МО формируются за счёт линейной комбинации p y и p z орбиталей всех атомов,

входящих в состав молекулы. В результате этого образуется три пары π-МО с различной энергией: связывающие - π y c в π z св, несвязывающие - π y π z (по энергии соответствующие р-орбиталям атомов кислорода), и разрыхляющие - π y разр π z разр.

При рассмотрении молекул в рамках ММО ЛКАО часто используют сокращённые схемы описания частиц (рис.40.3). При формировании МО, например, в молекуле BCI 3 достаточно указать только те АО, которые принимают реальное участие в линейной комбинации (на рисунке не указаны одна из АО р-орбиталей бора и 6 из 9 р-орбиталей атомов хлора, линейная комбинация которых даёт несвязывающие МО)

Рис.40.3. МО в молекуле BCI 3

Энергетическая диаграмма МО в молекуле СН 4 представлена на рис.41.3.. Анализ электронного строения атома углерода показывает, что в связи с разнонаправленностью его 2р орбиталей образование в молекуле СН 4 пятицентровых МО с участием этих АО невозможно по геометрически соображениям. В то же время, 2s орбиталь углерода в равной степени способна перекрываться с 1s орбиталями атомов водорода, в результате чего образуется пятицентровые σ s и σ s ٭ МО. В случае комбинаций 2р и 1s орбиталей, число атомных функций в линейной комбинации равно только трём, т.е. энергия σ-МО в данном случае будет выше, чем у соответствующих σ s и σ s ٭ .

Рис.41.3.. Энергетическая диаграмма МО молекулы СН 4 .

Различную энергию пятицентровой и трёхцентровых связывающих орбиталей подтверждают экспериментальные данные по потенциалам ионизации, которые различны для электронов удаляющихся с σ s и с σ x (σ y . σ z).



Читайте также: