Напряженность электрического поля. Принцип суперпозиции полей — Гипермаркет знаний. Способы расчета электрических полей. Принцип суперпозиции Когда не выполняется принцип суперпозиции полей

Электричество и магнетизм

ЛЕКЦИЯ 11

ЭЛЕКТРОСТАТИКА

Электрический заряд

Большое количество явлений в природе связано с проявлением особого свойства эле-ментарных частиц вещества - наличия у них электриче­ского заряда. Эти явления были названы электрическими и магнитными.

Слово «электричество» происходит от греческого hlectron - электрон (янтарь). Способность натертого янтаря приобретать заряд и притягивать легкие предметы была отмечена еще в древней Греции.

Слово «магнетизм» происходит от названия города Магнезия в Малой Азии, вблизи которого были открыты свойства железной руды (магнитного железняка FеО∙Fе 2 О 3) притягивать железные предметы и сообщать им маг­нитные свойства.

Учение об электричестве и магнетизме распадается на разделы:

а) учение о неподвижных зарядах и свя-занных с ними неизменных электрических полях - электростатика;

б) учение о равномерно движущихся заря-дах – постоянный ток и маг­нетизм;

в) учение о неравномерно движущихся зарядах и создаваемых при этом переменных полях - переменный ток и электродинамика, или теория элект­ромагнитного поля.

Электризация трением

Стеклянная палочка, натертая кожей, или эбонитовая палочка, натер­тая шерстью, при-обретают при этом электрический заряд или, как говорят, электризуются.

Бузиновые шарики (рис.11.1), к которым прикоснулись стек-лянной па­лочкой, отталкиваются. Если к ним прикоснуться эбонитовой палочкой, они также отталки-ваются. Если же к одному из них прикоснуться эбонито­вой, а к другому стеклянной палочкой, то они притянутся.

Следовательно, существуют два типа электрических зарядов. Заряды, возникающие на потертом кожей стекле, условились назы-вать положи­тельными (+). Заряды, возникаю-щие на потертом шерстью эбоните, услови-лись называть отрицательными (-).

Опыты показывают, что одноименные заряды (+ и +, либо – и -) отталкиваются, разноименные (+ и -) притягиваются.

Точечным зарядом называется заряжен-ное тело, размерами которого можно прене-бречь по сравнению с расстояниями, на которых рас­сматривается воздействие этого заряда на другие заряды. Точечный заряд является абстракцией подобно материальной точке в механике.

Закон взаимодействия точечных

Зарядов (закон Кулона)

В 1785 г. французский ученый Огюст Кулон (1736-1806) на основании опытов с крутильными весами, на конце коромысла ко-торых помещались заряженные тела, а затем к ним подносились другие заряженные тела, уста­новил закон, определяющий силу взаимо-действия двух неподвижных точеч­ных зарядов Q 1 и Q 2 ,расстояние между которыми r .

Закон Кулона в вакууме гласит: сила взаимодействия F между двумя неподвиж-ными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q 1 и Q 2 и обратно пропорциональна квадрату расстоя-ния r между ними:

,

где коэффициент k зависит от выбора системы единиц и свойств среды, в которой осу­ществляется взаимодействие зарядов.

Величина, показывающая, во сколько раз сила взаимодействия между зарядами в данном диэлектрике меньше силы взаимодействия между ними в вакууме, называется относительной диэлектрической проницаемостью среды e .

Закон Кулона для взаимодействия в среде : сила взаимодействия между двумя точечными зарядами Q 1 и Q 2 прямо пропор-циональна произведению их величин и обрат-но пропорциональна произведению диэлек-трической про­ницаемости среды e . на квадрат расстояния r между зарядами:

.

В системе СИ , где e 0 –диэлект-рическая проницаемость ва­куума, или элект-рическая постоянная. Величина e 0 относится к числу фундамен­тальных физических пос-тоянных и равна e 0 =8,85∙10 -12 Кл 2 /(Н∙м 2), или e 0 =8,85∙10 -12 Ф/м, где фарад (Ф) - единица электрической емкости. Тогда .

С учетом k закон Кулона запишется в окончательном виде:

,

где ee 0 =e а - абсолютная диэлектрическая прони­цаемость среды.

Закон Кулона в векторной форме .

,

где F 12 - сила, действующая на заряд Q 1 со стороны заряда Q 2 , r 12 - радиус-вектор, соединяющий заряд Q 2 с зарядом Q 1, r =|r 12 | (рис.11.1).

На заряд Q 2 со стороны заряда Q 1 действует сила F 21 =-F 12 , т.е. справедлив 3-й закон Ньютона.

11.4. Закон сохранения электрического

Заряда

Из обобщения опытных данных был установлен фундаментальный закон природы, экспериментально подтвержденный в 1843 г. английским физиком Майклом Фарадеем (1791-1867), - закон сохранения заряда .

Закон гласит: алгебраическая сумма электрических зарядов любой замкнутой сис-темы (системы, не обменивающейся зарядами с внешними тела­ми) остается неизменной, какие бы процессы ни происходили внутри этой системы:

.

Закон сохранения электрического заряда выполняется строго как в мак­роскопических взаимодействиях, например при электри-зации тел трением, когда оба тела заряжаются численно равными зарядами противополож-ных знаков, так и в микроскопических взаимодействиях, в ядерных реакциях.

Электризация тела через влияние (электростатическая индукция ). При поднесении к изолированному проводнику заряженного тела происхо­дит разделение зарядов на проводнике (рис. 79).

Если индуцированный на удаленном конце проводника заряд отвести в землю, а затем, сняв предварительно заземление, убрать заряженное тело, то оставшийся на проводнике заряд распределится по провод-нику.

Опытным путем (1910-1914) американс-кий физик Р. Милликен (1868-1953) пока­зал, что электрический заряд дискретен, т.е. заряд любого тела составляет целое кратное от элементарного электрического заряда е (е =1,6∙10 -19 Кл). Электрон (т е = 9,11∙10 -31 кг) и протон (m p =1,67∙10 -27 кг) являются соответст-венно носителями элементарных отрицатель-ного и положительного зарядов.

Электростатическое поле.

Напряженность

Неподвижный заряд Q неразрывно свя-зан с электрическим полем в ок­ружающем его пространстве. Электрическое поле представляет собой особый вид материи и является материальным носителем взаимо-дей­ствия между зарядами даже в случае отсутствия вещества между ними.

Электрическое поле заряда Q действует с силой F на помещаемый в ка­кую-либо из точек поля пробный заряд Q 0 .

Напряженность электрического поля. Вектор напряженности электрического поля в данной точке - физическая величина, определяемая силой, действующей на проб-ный единичный положительный заряд, поме-щенный в эту точку поля:

.

Напряженность поля точечного заряда в вакууме

.

Направление вектора Е совпадает с напра-влением силы, действующей на положитель­ный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положи­тельного заря-да); если поле создается отрицательным заря-дом, то вектор Е направлен к заряду (рис. 11.3).

Единица напряжен-ности электрического по­ля - ньютон на кулон (Н/Кл): 1 Н/Кл – напря-женность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл=1 В/м, где В (вольт) - еди­ница потенциала электростатического поля.

Линии напряженности .

Линии, касательные к которым в каждой их точке совпадают по направлению с вектором напряженности в этой точке, называ­ются линиями напряженности (рис.11.4).

Напряженность поля точечного заряда q на расстоянии r от него в системе СИ:

.

Линии напряженности поля точечного заряда представляют собой лучи, выходящие из точки, где помещен заряд (для положите-льного заряда), или входящие в нее (для отрицательного заряда) (рис.11.5,а, б).

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности электростатического поля, условились про­водить их с определенной густотой (см. рис.11.4): число линий напряженности, прони­зывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектора Е . Тогда число линий напряженности, пронизыва­ющих элементарную площадку dS, нормаль n кото-рой образует угол a с векто-ром Е , равно E dScos a=E n dS, где Е n - проекция вектора Е на нормаль n к площадке dS (рис.11.6). Величина

называется потоком вектора напряжен-ности через площадку dS. Единица потока вектора напряженности электростатического поля - 1 В∙м.

Для произвольной замкнутой поверхности S поток вектора Е сквозь эту поверх­ность

, (11.5)

где интеграл берется по замкнутой поверх-ности S. Поток вектора Е является алгебра­и-ческой величиной: зависит не только от конфигурации поля Е , но и от выбора направления n .

Принцип суперпозиции электрических

Полей

Если электрическое поле создается заря-дами Q 1 , Q 2 , … , Q n , то на пробный заряд Q 0 действует сила F равная векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q i :

.

Вектор напряженности электрического поля системы зарядов равен геометрической сумме напряженностей полей, создаваемых каждым из заря­дов в отдельности:

.

Эта принцип суперпозиции (наложения) электростатических полей .

Принцип гласит : напряженность Е результирующего поля, создаваемого систе-мой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции позволяет рассчи-тать электростатические поля любой си­стемы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.

Основная задача электростатики формулируется следующим образом: по заданному распределению в пространстве источников поля - электрических зарядов - найти значение вектора напряжённости во всех точках поля. Эта задача может быть решена на основе принципа суперпозиции электрических полей.

Напряжённость электрического поля системы зарядов равна геометрической сумме напряжённостей полей каждого из зарядов в отдельности.

Заряды могут быть распределены в пространстве либо дискретно, либо непрерывно. В первом случае напряжённость поля для системы точечных зарядов

где - напряжённость поля i -го заряда системы в рассматриваемой точке пространства, n - общее число дискретных зарядов системы.

Если электрические заряды непрерывно распределены вдоль линии, то вводится линейная плотность зарядов t , Кл/м.

t = (dq/dl),

где dq - заряд малого участка длиной dl .

Если электрические заряды непрерывно распределены по поверхности, то вводится поверхностная плотность зарядов s , Кл/м 2 .

s = (dq/dS ),

где dq - заряд, расположенный на малом участке поверхности площадью dS .

При непрерывном распределении зарядов в каком-либо объёме вводится объёмная плотность зарядов r , Кл/м 3 .

r = (dq/dV),

где dq - заряд, находящийся в малом элементе объёма dV .

Согласно принципу суперпозиции напряжённость электростатического поля, создаваемого в вакууме непрерывно распределёнными зарядами:

где - напряжённость электростатического поля, создаваемого в вакууме малым зарядом dq , а интегрирование проводится по всем непрерывно распределённым зарядам.

Рассмотрим применение принципа суперпозиции к электрическому диполю.

Электрическим диполем называется система из двух равных по абсолютной величине и противоположных по знаку электрических зарядов (q и –q ), расстояние l между которыми мало по сравнению с расстоянием до рассматриваемых точек поля. Вектор , направленный по оси диполя от отрицательного заряда к положительному, называется плечом диполя. Вектор называется электрическим моментом диполя (дипольным электрическим моментом). Напряжённость поля диполя в произвольной точке , где и - напряжённости полей зарядов q и -q (рис. 1.2).

В точке А, расположенной на оси диполя на расстоянии r от его центра (r>>l ), напряжённость поля диполя в вакууме:

В точке В, расположенной на перпендикуляре, восстановленном к оси диполя из его середины, на расстоянии r от центра (r>>l ):

В произвольной точке С модуль вектора напряженности

где r - величина радиуса-вектора, проведенного от центра диполя к точке С; a - угол между радиусом-вектором и дипольным моментом(рис. 1.2).



1.3. Поток напряжённости. Теорема Гаусса для электростатического поля в вакууме

Элементарным потоком напряжённости электрического поля сквозь малый участок площадью dS поверхности, проведённой в поле, называется скалярная физическая величина

dN = = EdScos() = E n dS = EdS ^ ,

где - вектор напряжённости электрического поля на площадке dS , - единичный вектор, нормальный к площадке dS , -вектор площадки, Е n = Ecos() - проекция вектора на направление вектора , dS ^ = dScos() - площадь проекции элемента dS поверхности на плоскость, перпендикулярную вектору (рис. 1.3).

Теорема Гаусса

Поток напряжённости электростатического поля в вакууме сквозь произвольную замкнутую поверхность пропорционален алгебраической сумме электрических зарядов, охватываемых этой поверхностью:

где все векторы направлены вдоль внешнихнормалей к замкнутой поверхности интегрирования S , которую часто называют гауссовой поверхностью.

1.4. Потенциал электростатического поля. Работа, совершаемая силами электростатического поля при перемещении в нём электрического заряда

Работа , совершаемая кулоновскими силами при малом перемещении точечного заряда q в электростатическом поле:

где - напряжённость поля в месте нахождения заряда q . Работа кулоновской силы при перемещении заряда q из точки 1 в точку 2 не зависит от формы траектории движения заряда (т.е. кулоновские силы являются консервативными силами). Работа сил электростатического поля при перемещении заряда q вдоль любого замкнутого контура L равна нулю. Это можно записать в виде теоремы о циркуляции вектора напряженности электростатического поля.

Циркуляция вектора напряженности электростатического поля равна нулю:

Это соотношение, выражающее потенциальный характер электростатического поля, справедливо как в вакууме, так и в веществе.

Работа , совершаемая силами электростатического поля при малом перемещении точечного заряда q в электростатическом поле, равна убыли потенциальной энергии этого заряда в поле:

dА= - dW П и А 12 = - DW П = W П1 - W П2 ,

где W П1 и W П2 - значения потенциальной энергии заряда q в точках 1 и 2 поля. Энергетической характеристикой электростатического поля служит его потенциал.

Потенциалом электростатического поля называется скалярная физическая величина j , равная потенциальной энергии W П положительного единичного точечного заряда, помещённого в рассматриваемую точку поля, В.

Потенциал поля точечного заряда q в вакууме

Принцип суперпозиции для потенциала

т.е. при наложении электростатических полей их потенциалы складываются алгебраически.

Потенциал поля электрического диполя в точке С (рис. 1.2)

Если заряды распределены в пространстве непрерывно, то потенциал j их поля в вакууме:

Интегрирование проводится по всем зарядам, образующим рассматриваемую систему.

Работа А 12 , совершаемая силами электростатического поля при перемещении точечного заряда q из точки 1 поля (потенциал j 1 ) в точку 2 (потенциал j 2 ):

А 12 = q (j 1 - j 2).

Если j 2 = 0, то .

Потенциал какой-либо точки электростатического поля численно равен работе, совершаемой силами поля при перемещении положительного единичного заряда из данной точки в точку поля, где потенциал принят равным нулю.

При изучении электростатических полей в каких-либо точках важны разности, а не абсолютные значения потенциалов в этих точках. Поэтому выбор точки с нулевым потенциалом определяется только удобством решения данной задачи. Связь между потенциалом и напряжённостью имеет вид

Е х = , Е у = , Е z = и ,

т.е. напряжённость электростатического поля равна по модулю и противоположна по направлению градиенту потенциала.

Геометрическое место точек электростатического поля, в которых значения потенциалов одинаковы, называется эквипотенциальной поверхностью. Если вектор направлен по касательной к эквипотенциальной поверхности, то и . Это означает, что вектор напряженности перпендикулярен эквипотенциальной поверхности в каждой точке, т.е. E = E n .

1.5. Примеры применения теоремы Гаусса к расчёту электростатических полей s >0) или к ней (если s < 0).

Для всех точек поля

Так как , и полагая потенциал поля равным нулю в точках заряженной плоскости (х = 0), получим

Графики зависимостей Е и j от x приведены на рис. 1.6.

Пусть имеются два заряженных макроскопических тела, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. В этом случае каждое тело можно считать материальной точкой или «точечным зарядом».

Французский физик Ш. Кулон (1736–1806) экспериментально установил закон, носящий его имя (закон Кулона ) (рис. 1.5):

Рис. 1.5. Ш. Куло́н (1736–1806) - французский инженер и физик

В вакууме сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей эти заряды:

На рис. 1.6 показаны электрические силы отталкивания, возникающие между двумя одноименными точечными зарядами.

Рис. 1.6. Электрические силы отталкивания между двумя одноименными точечными зарядами

Напомним, что , где и - радиус-векторы первого и второго зарядов, поэтому силу, действующую на второй заряд в результате его электростатического - «кулоновского» взаимодействия с первым зарядом можно переписать в следующем «развернутом» виде

Отметим следующее, удобное при решении задач, правило: если первым индексом у силы ставить номер того заряда, на который действует эта сила, а вторым – номер того заряда, который создает эту силу, то соблюдение того же порядка индексов в правой части формулы автоматически обеспечивает правильное направление силы - соответствующее знаку произведения зарядов: - отталкивание и - притяжение, при этом коэффициент всегда.

Для измерения сил, действующих между точечными зарядами, был использован созданный Кулоном прибор, называемый крутильными весами (рис. 1.7, 1.8).

Рис. 1.7. Крутильные весы Ш. Кулона (рисунок из работы 1785 г.). Измерялась сила, действующая между заряженными шарами a и b

Рис. 1.8. Крутильные весы Ш. Кулона (точка подвеса)

На тонкой упругой нити подвешено легкое коромысло, на одном конце которого укреплен металлический шарик, а на другом - противовес. Рядом с первым шариком можно расположить другой такой же неподвижный шарик. Стеклянный цилиндр защищает чувствительные части прибора от движения воздуха.

Чтобы установить зависимость силы электростатического взаимодействия от расстояния между зарядами, шарикам сообщают произвольные заряды, прикасаясь к ним третьим заряженным шариком, укрепленным на ручке из диэлектрика. По углу закручивания упругой нити можно измерить силу отталкивания одноименно заряженных шариков, а по шкале прибора - расстояние между ними.

Надо сказать, что Кулон не был первым ученым, установившим закон взаимодействия зарядов, носящий теперь его имя: за 30 лет до него к такому же выводу пришел Б. Франклин. Более того, точность измерений Кулона уступала точности ранее проведенных экспериментов (Г. Кавендиш).

Чтобы ввести количественную меру для определения точности измерений, предположим, что на самом деле сила взаимодействия зарядов обратна не квадрату расстояния между ними, а какой-то другой степени:

Никто из ученых не возьмется утверждать, что d = 0 точно. Правильное заключение должно звучать так: эксперименты показали, что d не превышает...

Результаты некоторых из этих экспериментов приведены в таблице 1.

Таблица 1.

Результаты прямых экспериментов по проверке закона Кулона

Сам Шарль Кулон проверил закон обратных квадратов с точностью до нескольких процентов. В таблице приведены результаты прямых лабораторных экспериментов. Косвенные данные, основанные на наблюдениях магнитных полей в космическом пространстве, приводят к еще более сильным ограничениям на величину d . Таким образом, закон Кулона можно считать надежно установленным фактом.

В СИ единица силы тока (ампер ) является основной, следовательно, единица заряда q оказывается производной. Как мы увидим в дальнейшем, сила тока I определяется как отношение заряда , протекающего через поперечное сечение проводника за время , к этому времени:

Отсюда видно, что сила постоянного тока численно равна заряду, протекающему через поперечное сечение проводника за единицу времени, соответственно этому:

Коэффициент пропорциональности в законе Кулона записывается в виде:

При такой форме записи из эксперимента следует значение величины , которую принято называть электрической постоянной . Приближенное численное значение электрической постоянной следующее:

Поскольку чаще всего входит в уравнения в виде комбинации

приведём численное значение самого коэффициента

Как и в случае элементарного заряда, численное значение электрической постоянной определено экспериментально с высокой точностью:

Кулон - слишком большая единица для использования на практике. Например, два заряда в 1 Кл каждый, расположенные в вакууме на расстоянии 100 м друг от друга, отталкиваются с силой

Для сравнения: с такой силой давит на землю тело массой

Это примерно масса грузового железнодорожного вагона, например, с углем.

Принцип суперпозиции полей

Принцип суперпозиции представляет собой утверждение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга (Физический энциклопедический словарь, Москва, «Советская энциклопедия», 1983, стр. 731). Экспериментально установлено, что принцип суперпозиции справедлив для рассматриваемого здесь электромагнитного взаимодействия.

В случае взаимодействия заряженных тел принцип суперпозиции проявляет себя следующим образом: сила, с которой данная система зарядов действует на некоторый точеч­ный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы.

Поясним это на простом примере. Пусть имеются два заряженных тела, действующие на третье с силами и соответственно. Тогда система из этих двух тел - первого и второго - действует на третье тело с силой

Это правило справедливо для любых заряженных тел, не только для точечных зарядов. Силы взаимодействия двух произвольных систем точечных зарядов вычисляются в Дополнении 1 в конце этой главы.

Отсюда следует, что электрическое поле системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы, т. е.

Сложение напряженностей электрических полей по правилу сложения векторов выражает так называемый принцип суперпозиции (независимого наложения) электрических полей. Физический смысл этого свойства заключается в том, что электростатическое поле создается только покоящимися зарядами. Значит, поля различных зарядов «не мешают» друг другу, и поэтому суммарное поле системы зарядов можно подсчитать как вектор­ную сумму полей от каждого из них в отдельности.

Так как элементарный заряд весьма мал, а макроскопические тела содержат очень большое количество элементарных зарядов, то распределение зарядов по таким телам в большинстве случаев можно считать непрерывным. Для того чтобы описать как именно распределен (однородно, неоднородно, где зарядов больше, где их меньше и т. п.) заряд по телу введем плотности заряда следующих трех видов:

· объемная плотность заряда :

где dV - физически бесконечно малый элемент объема;

· поверхностная плотность заряда :

где dS - физически бесконечно малый элемент поверхности;

· линейная плотность заряда :

где - физически бесконечно малый элемент длины линии.

Здесь всюду - заряд рассматриваемого физически бесконечно малого элемента (объема, участка поверхности, отрезка линии). Под физически бесконечно малым участком тела здесь и ниже понимается такой его участок, который, с одной стороны, настолько мал, что в условиях данной задачи, его можно считать материальной точкой, а, с другой стороны, он настолько велик, что дискретностью заряда (см. соотношение) этого участка можно пренебречь.

Общие выражения для сил взаимодействия систем непрерывно распределенных зарядов приведены в Дополнении 2 в конце главы.

Пример 1. Электрический заряд 50 нКл равномерно распределен по тонкому стержню длиной 15 см. На продолжении оси стержня на расстоянии 10 см от ближайшего его конца находится точечный заряд 100 нКл (рис. 1.9). Определить силу взаимодействия заряженного стержня и точечного заряда.

Рис. 1.9. Взаимодействие заряженного стержня с точечным зарядом

Решение. В этой задаче силу F нельзя определить, написав закон Кулона в форме или (1.3). В самом деле, чему равно расстояние между стержнем и зарядом: r , r + a /2, r + a ? Поскольку по условиям задачи мы не имеем права считать, что a << r , применение закона Кулона в его исходной формулировке, справедливой только для точечных зарядов невозможно, необходимо использовать стандартный для таких ситуаций приём, который состоит в следующем.

Если известна сила взаимодействия точечных тел (например, закон Кулона) и необходимо найти силу взаимодействия протяженных тел (например, вычислить силу взаимодействия двух заряженных тел конечных размеров), то необходимо разбить эти тела на физически бесконечно малые участки, написать для каждой пары таких «точечных» участков известное для них соотношение и, воспользовавшись принципом суперпозиции, просуммировать (проинтегрировать) по всем парам этих участком.

Всегда полезно, если не сказать - необходимо, прежде чем приступать к конкретизации и выполнению расчета, проанализировать симметрию задачи. С практической точки зрения такой анализ полезен тем, что, как правило, при достаточно высокой симметрии задачи, резко сокращает число величин, которые надо вычислять, поскольку выясняется, что многие из них равны нулю.

Разобьём стержень на бесконечно малые отрезки длиной , расстояние от левого конца такого отрезка до точечного заряда равно .

Равномерность распределения заряда по стержню означает, что линейная плотность заряда постоянна и равна

Следовательно, заряд отрезка равен , откуда, в соответствии с законом Кулона, сила, действующая на точечный заряд q в результате его взаимодействия с точечным зарядом , равна

В результате взаимодействия точечного заряда q со всем стержнем , на него будет действовать сила

Подставляя сюда численные значения, для модуля силы получаем:

Из (1.5) видно, что при , когда стержень можно считать материальной точкой, выражение для силы взаимодействия заряда и стержня, как и должно быть, принимает обычную форму закона Кулона для силы взаимодействия двух точечных зарядов:

Пример 2. Кольцо радиусом несет равномерно распределенный заряд . Какова сила взаимодействия кольца с точечным зарядом q , расположенным на оси кольца на расстоянии от его центра (рис. 1.10).

Решение. По условию, заряд равномерно распределен на кольце радиусом . Разделив на длину окружности, получим линейную плотность заряда на кольце Выделим на кольце элемент длиной . Его заряд равен .

Рис. 1.10. Взаимодействия кольца с точечным зарядом

В точке q этот элемент создает электрическое поле

Нас интересует лишь продольная компонента поля, ибо при суммирова­нии вклада от всех элементов кольца только она отлична от нуля:

Интегрируя по находим электрическое поле на оси кольца на расстоянии от его центра:

Отсюда находим искомую силу взаимодействия кольца с зарядом q :

Обсудим полученный результат. При больших расстояниях до кольца величиной радиуса кольца под знаком радикала можно пренебречь, и мы получаем приближенное выражение

Это не удивительно, так как на больших расстояниях кольцо выглядит точечным зарядом и сила взаимодействия дается обычным законом Кулона. На малых расстояниях ситуация резко меняется. Так, при помещении пробного заряда q в центр кольца сила взаимодействия равна нулю. Это тоже не удивительно: в этом случае заряд q притягивается с равной силой всеми элементами кольца, и действие всех этих сил взаимно компенсируется.

Поскольку при и при электрическое поле равно нулю, где-то при промежуточном значении электрическое поле кольца максимально. Найдем эту точку, дифференцируя выражение для напряженности Е по расстоянию

Приравнивая производную нулю, находим точку где поле максимально. Оно равно в этой точке

Пример 3. Две взаимно перпендикулярные бесконечно длинные нити, несущие равномерно распределенные заряды с линейными плотностями и находятся на расстоянии а друг от друга (рис. 1.11). Как зависит сила взаимодействия между нитями от расстояния а ?

Решение. Сначала обсудим решение этой задачи методом анализа размерностей. Сила взаимодействия между нитями может зависеть от плотностей заряда на них, расстояния между нитями и электрической постоянной, то есть искомая формула имеет вид:

где - безразмерная постоянная (число). Заметим, что вследствие сим­метричного расположения нитей плотности заряда на них могут входить только симметричным же образом, в одинаковых степенях. Размерности входящих сюда величин в СИ известны:

Рис. 1.11. Взаимодействие двух взаимно перпендикулярных бесконечно длинных нитей

По сравнению с механикой здесь появилась новая величина - размерность электрического заряда. Объединяя две предыдущие формулы, получаем уравнение для размерностей:

Взаимодействие между зарядами осуществляется через электрическое поле. Электрическое поле покоящихся зарядов называется электростатическим.

Электростатическое поле - поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов). Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга. Электростатическое поле отдельного заряда можно обнаружить, если внести в это поле другой заряд, на который в соответствии с законом Кулона будет действовать определенная сила.

Напряженность поля есть векторная величина, численно равная силе, действующей на единичный положительный точечный заряд, помещенный в данную точку поля . [E]=Н/Кл=(м*кг)/(см3*A1)=В/м. Направление вектора напряженности совпадает с направлением действия силы. Определим напряженность поля, создаваемого точечным зарядом q на некотором расстоянии r от него в вакууме ; .

Если в одну и туже точку помещать разные пробные заряды q1 , q2 и т.д., то на них будут действовать различные силы, пропорциональные этим зарядам. Отношение для всех зарядов, вносимых в поле, будет одинаковым и будет зависеть лишь от q и r, определяющих электрическое поле в данной точке. Напряженность данной точки электрического поля это сила действующая на единичный положительный заряд, помещенный в эту точку.

За единицу напряженности принимается напряженность в такой точке поля, в которой на единицу заряда действует единица силы.

Принцип суперпозиции полей.

Результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Принцип суперпозиции полей, или принцип наложения, является условностью, согласно которой некоторый сложный процесс взаимодействия между определённым числом объектов можно представить в виде суммы взаимодействий между отдельными объектами. Принцип суперпозиции применим лишь к тем системам, которые описываются линейными уравнениями. Графически принцип суперпозиции полей можно представить в виде геометрической суммы векторов силы, которые действуют на пробный заряд, помещённый в поле точечных электрических зарядов.

Если поле создано простейшей совокупностью зарядов, которая состоит из положительного и отрицательного зарядов, находящихся на некотором расстоянии друг от друга, то результирующее поле в точке наблюдения находится с помощью правила параллелограмма.

Нельзя применять принцип суперпозиции к взаимодействию атомов и молекул между собой. Например, если взять два атома, у которых электроны находятся во взаимодействии, и поднести к ним третий такой же атом. Часть электронов от первых двух атомов притянется и вступит во взаимодействие с третьим атомом. Т.е. первоначальное распределение энергии в системе изменится. Изначальная сила взаимодействия между электронами и ядрами первых двух атомов уменьшится. Т.е. третий атом влияет не только на электроны, но и на ядра атомов. Также принцип суперпозиции нельзя применять для нелинейный систем.

Электростатическое поле - поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный заряд, помещённый в это поле. Пробный заряд должен быть малым, чтобы не повлиять на характеристику электростатического поля.

Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующаяэлектрическое поле в данной точке и численно равная отношению силы действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда :

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря - разное в разных точках пространства), таким образом, - это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле , и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности N E .

Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).

Поток напряженности через такую элементарную площадку будет равен по определению(рис.13.5).

где - угол между силовой линией и нормалью к площадке dS; - проекция площадки dS на плоскость, перпендикулярную силовым линиям. Тогда поток напряженности поля через всю поверхность площадки S будет равен

Так как , то

где - проекция вектора на нормаль и к поверхности dS.

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

    результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов .

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

    Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

    Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий .

    Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.



Читайте также: