Ослабление индукции апоптоза опухолевых клеток. Апоптоз клеток: определение, механизм и биологическая роль Причины апоптоза

Или уклонение от программированной клеточной смерти опухолевых клеток - важнейшее свойство злокачественного фенотипа.

В норме апоптозная программа присутствует в латентной форме во всех клетках организма, поскольку вполне очевидно, что в организме под влиянием различных факторов при прохождении клеткой клеточного цикла постоянно происходят повреждения ДНК, т.е. возникают мутации.

Известно, что в течение жизни в организме человека происходит 10 16 клеточных делений. Спонтанные мутации происходят с частотой - 10 6 на ген за клеточный цикл.

Таким образом, в течение жизни человека каждый ген вполне может подвергнуться мутированию около 10 миллиардов раз (10 16 х10 6 = 10 10), а ежедневно в организме происходит до 1 млн соматических мутаций.

И среди них, несомненно, возможны, ведущие к раку. С этих позиций проблема рака не столько в том, почему он возникает, а в том, почему он возникает так редко.

А возникает рак, несмотря на постоянное воздействие канцерогенных факторов, относительно редко потому, что в организме существуют механизмы защиты, направленные на сохранение нормального генотипа клетки. Необходимо отметить, что судьба клеток с теми или иными генетическими повреждениями может быть различной.

Часть мутированных клеток гибнет из-за витальных повреждений их генома, часть восстанавливается, часть организм уничтожает сам посредством апоптоза и, наконец, часть мутированных клеток выживет и в процессе размножения может стать источником накопления потенциально онкогенных мутаций и развития рака.

В норме генетический фонд клетки, несмотря на его хрупкость, защищен мощным ферментным аппаратом, часто обеспечивающим распознавании мутированных и измененных участков ДНК и их восстановление.

Репарация ДНК заключается в «вырезании» мутированных нуклеотидов с помощью эндо- и экзонуклеаз, синтеза нормального участка ДНК при участии ДНК-полимеразы и встраивании восстановленного участка в цепь ДНК под действием фермента лигазы. Тем самым воссоздается исходная генетически запрограммированная нуклеотидная последовательность поврежденной нити (рис. 3.12).

Рис 3.12. Схема репарации при повреждении ДНК и формирование мутации [Новик А.Л., 2004].

Если же активность репарационно-восстановительных систем недостаточна и повреждения в ДНК сохраняются, то в таких клетках индуцируется программируемая клеточная гибель, что приводит к уничтожению, в том числе и мутантных клеток, способных к злокачественной трансформации.

Апоптоз (от греч. apoptosis - опадание) - запрограммированная гибель клетки или «смерть клетки в результате самоуничтожения» - активный, генетически контролируемый процесс. Термин был предложен Kerr J. и соавт. (1972) для обозначения происходящих изменений в клетке во время ее физиологической гибели и ведущих к уменьшению числа клеток в противоположность митозу, обеспечивающему увеличение их числа.

Биологическое значение апоптоза

Биологическое значение апоптоза состоит в том, что это ключевой механизм поддержки генетического гомеостаза, который организм использует для удаления клеток, чье выживание нежелательно: чужеродных, дефектных с поломками в геноме; мутантных или зараженных вирусом; с неадекватной специфичностью рецепторов к различным регуляторам жизнедеятельности и т.д.

В организме в каждую единицу времени миллионы клеток завершают свой цикл, отрабатывают «свой век». Для предотвращения «засорения» организма от успевших выполнить свою функцию «отработанных», «изношенных» клеток в ходе эволюции выработался специальный механизм их ликвидации - апоптоз.

Способность запускать самоликвидацию (апоптоз), является неотъемлемым свойством клеток для поддержания тканевого гомеостаза путем сохранения определенного баланса между пролиферацией (митозом) и гибелью.

Апоптоз играет исключительно важную роль в эмбриогенезе, в частности в регуляции количества мезодермальной ткани при формировании органов и скелета. В основе уничтожения иммунными клетками чужеродных также лежит апоптотический механизм.

Гибель клеток по типу апоптоза происходит при многих физиологических процессах: возрастной инволюции органов (тимус), атрофии (предстательной железы после кастрации), регрессии гиперплазии нормапьном функционировании яичников и семенников и, наконец, в уничтожении мутантных клеток.

Механизм активации апоптоза

Зрелые дифференцированные клетки в обычном состоянии устойчивы к индукции апоптоза, но становятся чувствительными к нему после своей активации. Такую активацию вызывают различные внешние воздействия через специфические рецепторы и внутриклеточные сигналы, вызванные экспрессией некоторых протоонкогенов.

Они могут быть физиологическими - активация специальных киллерных цитокинов, изменения гормонального статуса (цикличное изменение эндометрия и др.), и нефизиологическими - внутриклеточные повреждения или неблагоприятные условия (нехватка факторов роста, повреждения ДНК, гипоксия и т.д.).

В механизмах активации апоптоза выделяют два основных этапа: фазу индукции (принятия решения) и фазу экзекуции (исполнения приговора). В первую фазу система сенсоров апоптоза отслеживает отклонения от нормы внутри- и внеклеточной среды и определяет дальнейшую судьбу клетки: жить ей или умереть.

Класс сенсоров представляет собой рецепторы клеточной поверхности, которые связывают сигналы выживания или смерти. В качестве таких сигналов выступают различные, цитокины.

При выявлении аномалий (например, повреждение ДНК, нехватка факторов роста, гипоксия и др.) посредством сенсорных регуляторов запускается вторая фаза апоптоза - исполнения приговора. Начинается она с активации каспаз + ферментов семейства цистеиновых протеиназ (так называемые казнящие каспазы).

Существует два принципиально разных пути активации каспаз. Один из них запускается в ответ на активный сигнал смерти, передаваемый специфическими киллерными цитокинами группы ФНО (фактор некроза опухолей) на соответствующие рецепторы (наиболее изучены Fas), называемые рецепторами смерти.

Апоптоз, вызванный активированными рецепторами смерти, называется инструктивным апоптозом. При втором пути активации каспаз ключевую роль играют митохондрии - митохондриальный апоптоз.

При этом различные повреждающие воздействия вызывают увеличение проницаемости мембраны митохондрий и выход в цитоплазму митохондриальны белков (в основном цитохрома С), которые через соответствующий каскад реакций и активируют каспазы.

Ключевую роль в регуляции проницаемости митохондриальной мембраны для цитохрома С играют белки семейства bcl-2, обладающие либо проапоптотическими, либо антиапоптотическими активностями.

Таким образом, в клетках человека в ответ на повреждения существует два механизма, запускающих апоптоз: инструктивный, вызываемый рецепторами смерти, и митохондриальный, обусловленный повышенной проницаемостью мембран. Между ними существует взаиморегуляция, что позволяет надежнее достигать конечного эффекта.

В итоге активированные тем или иным путем каспазы протеолитически расщепляют ключевые структурные компоненты клетки, что приводит к фрагментации ДНК и деструкции клетки. При этом цитоппазматический и ядерный скелеты разрушаются, хромосомы деградируют, ядро фрагментируется, но без разрыва клеточной мембраны.

Поэтому такая клетка может быть утилизирована фагоцитами и соседними клетками, и даже массовая их гибель не приводит к каким-либо патологическим процессам. Процесс протеолиза продолжается 30-120 минут, затем сморщенная клетка поглощается макрофагами и исчезает обычно в течение 24 часов (рис. 3.13).


Рис. 3.13. Фагоцитоз апоптотической клетки макрофагом [Фильченков А.А., Стойка Р.С., 1999]. 1 - фрагментированное ядро; 2 - фрагменты цитоплазмы (апоптотические тельца): 3 - фрагменты апоптотической клетки захвачены макрофагом.

Задачей апоптоза является утилизация фрагментов клетки пока ее содержимое не попало во внеклеточную среду и не вызвало воспалительного процесса. Внешние морфологические проявления апоптотической гибели клеток в виде кариопикноза (сморщивание ядра), кариорексиса (распад ядра на части), конденсации (сжатия) клетки и др. были известны давно и только в последнее время показано, что это частные проявления апоптоза. Вокруг клеток, подвергшихся апоптозу, воспалительный процесс не возникает.

Гибель клеток по типу апоптоза следует отличать от некроза - другой формы гибели клеток организма. Некроз инициируется нефизиологическими агентами, а апоптоз - и физиологическими, и нефизиологическими. В отличие от некроза, апоптоз встречается не только в патологически измененных, но и нормальных тканях.

Некроз происходит в случае, когда клетки подвергаются действию экстремальных факторов и поэтому его можно назвать патологической гибелью. При некрозе морфологические изменения как реакция на летальное повреждение клетки, почти всегда начинается с повреждения плазматической мембраны, что не бывает при апоптозе.

Из-за разрыва мембраны в клетку из внеклеточного пространства поступают молекулы воды и ионов и вызывают набухание структур. Одновременно попадание содержимого цитоплазмы (в том числе лизосомальных ферментов) во внеклеточное пространство вызывает повреждения тканей и развитие выраженного воспалительного процесса, что не происходит при апоптозе.

Кроме того, при апоптозе отмирают одиночные клетки, а при некрозе - их группы. Уничтожение клеток путем апоптоза по сравнению с некрозом обеспечивает минимальное повреждение тканей. Между этими процессами имеются и другие различия. На рисунке 3.14 схематически представлены две формы гибели клеток.


Рис. 3.14. Схематическое представление о двух формах гибели клеток [по Wyllle А. и соавт., 1998].

Как и другие физиологические процессы, апоптоз регулируется большим числом генов. Ключевая роль в запуске программы апоптоза принадлежит гену-cупpeccopy р53. Вследствие особой значимости р53 был назван геном XX века. р53 поддерживает стабильность генетического аппарата и осуществляет контроль над клеточным циклом.

В норме, при повреждениях структуры ДНК или других формах генотоксического стресса отмечается быстрая активация р53. Его белок блокирует клеточный цикл в фазе G1 до удвоения ДНК и митоза, инициирует и участвует в процессах репарации ДНК. Это позволяет клетке восстанавливать поврежденный участок ДНК, что предотвращает появление мутантных клеток.

При тяжелых неустранимых повреждениях р53 запускает программу апоптоза и тем самым предупреждает патологическую пролиферацию. Важно подчеркнуть, что р53-зависимый апоптоз элиминирует из организма не только поврежденные, но и те клетки, в которых наблюдается нерегулируемая стимуляция пролиферации.

Если р53 мутирует, он инактивируется и перестает запускать апоптозный каскад, что дает возможность сохраняться клеткам с поврежденной ДНК во время митоза, а это в свою очередь приводит к выживанию клеток, подвергшихся опухолевой трансформации (рис 3.15).


Рис. 3.15. Регулирующее влияние антионкогена р53 . Повреждение гена создает условия для патологической клеточной пролиферации.

Предполагается, что увеличение частоты неоплазии с возрастом связано не с накоплением мутаций в геноме клеток, а с возрастными нарушениями системы репарации ДНК.

Естественно, апоптоз рассматривается как мощная противоопухолевая защита. Угнетение процесса резко облегчает превращение нормальной клетки в раковую, так как в неспособных к апоптозу клетках легко будут накапливаться различные мутации.

Такие клетки-мутанты, несмотря на повреждения ДНК, будут продолжать активно размножаться. Накопление критического количества мутаций неизбежно приведет к появлению неоппастической клетки и формированию злокачественной опухоли (рис. 3.16).


Рис. 3.16. Нарушение процессов пролиферации (П) и апоптоза (А) клеток при онкогенезе [Фильченков А.А., Стойка Р.С., 1999].

Приобретенная резистентность к апоптозу является признаком большинства, если не всех опухолевых клонов. Уход от апоптоза резко повышает жизнеспособность неопластической клетки, делает ее менее чувствительной к факторам противоопухолевого иммунитета и терапевтическим воздействиям. Опухолевые клетки приобретают резистентность к апоптозу различными путями.

На сегодня установлено, что к ослаблению индукции апоптоза могут привести потеря экспрессии на поверхности клетки рецептора смерти Fas; нарушения проведения апоптогенного сигнала к митохондриям и ингибирование проницаемости митохондриальной мембраны для цитохрома С; блокирование активации и/или резкое уменьшение времени жизни казнящих каспаз.

Очевидно, наряду с белками, включающими апоптоз, есть белки, препятствующие ему, и между теми и другими существует тонкий баланс. Гены, способствующие апоптозу, относятся к генам-супрессорам (кроме р53, ВАХ, PML и др.). Гены, блокирующие работу этого защитного механизма - к протоонкогенам (BCL1, BCL2 и др.).

Последние при их активации нейтрализуют апоптозную активность и будут резко увеличивать появление постоянно пролиферирующих мутантных клеточных клонов, а, следовательно, и вероятность последующего развития из них злокачественных опухолей.

Считается, что соотношение количества различных форм онкобелков группы BCL и р53 определяет реостат жизни и смерти клетки. В связи с этим следует заметить, что вследствие существования механизма апоптоза принципиально невозможно достигнуть бессмертия организма.

С течением времени наступает атрофия клеток органов, регуляторов жизнедеятельности организма и развивается ряд заболеваний, которые объединяют общим названием -

В процессе появления многоклеточных живых организмов понадобились механизмы регуляции правильного роста и развития, одним из таких регуляторов является апоптоз.

Апоптоз – это форма запрограммированной гибели клетки, которая проявляется в уменьшении размера клетки, фрагментации и конденсации хроматина, уплотнении мембран (наружной и цитоплазматической) без вытекания содержимого клетки в окружающую ее среду.

Процесс является двухфазным:

1. Первая фаза получила название латентной и основана на проведении сигналов апоптоза. Другими словами - «фаза решения проблем». В зависимости от характера действия раздражителей ее можно разделить на 2 типа:

а) повреждение ДНК посредством воздействий токсинов, радиации и других факторов;

б) активация рецепторов "регион клеточной смерти" (РКС).

«Регион клеточной смерти» - это рецепторы на мембранах всех клеток, которые воспринимают стимулы для активации апоптоза. Если количество активированных рецепторов увеличивается, то возрастает и количество физиологически гибнущих клеток. К наиболее изученным РКС относят CD95 (Fas, Apo1), TNFR1 (p55, CD120a), а также CAR1, D3, DR4, DR5 и др. Этот процесс не сопровождается повреждением ДНК.

2. Вторая фаза получила название «эффекторная», потому что в ней происходит разрушение клеточных ультраструктур. Основными исполнителями эффекторной фазы являются эндонуклеазы, цистеиновые протеазы (каспазы), лизосомальные и сериновые протеазы .

Farber E. (1994) предложил классификацию запрограммированной клеточной гибели (ЗКГ):

Запрограммированная онтогенетическая гибель клеток - это гибель, которая происходит в ходе нормального развития и/или метаморфоза клеток.

Запрограммированная физиологическая гибель дифференцированных клеток зрелых организмов в ходе деструкции гиперплазированных тканей в результате экзогенных и эндогенных повреждений органов и тканей. Она проявляет себя тогда, когда необходимо восстановление клеточного состава.

Запрограммированная биохимическая клеточная гибель после действия патоагентов разного происхождения. Этот тип смерти не физиологический, так как он представляет собой ответную реакцию организма (активную или пассивную) на повреждающий агент.

В основе всех форм ЗКГ лежит генетически определенная программа клеточной гибели. Это подтверждается участием многих генов в основе этой программы на уровне клетки и наличием специфических генов, которые контролируют этот процесс.

Существует несколько регуляторов апоптоза, одним из них происходит при участии цитокинов. Цитокины – это белки посредством которых происходит связь со специфическими рецепторами на клетках-мишенях и происходит регуляция их дифференцировки и пролиферации. Процесс апоптоза запускается в момент приближения специфического рецептора к его лиганду – экстрацеллюлярному белку смерти (TNF-a, FasL, TRAIL, Apo-3L). Наиболее изучен FasL лиганд, который обычно прикрепляется на активированные Т-лимфоциты и NK-клетки при взаимодействии со специфическими рецепторами APO1/CD95/Fas клетки. В тестикулах и тканях глаза FasL обеспечивает защиту от аутоиммунного повреждения собственных клеток. Принцип действия сводится к тому, чтобы активировать специфическую протеазу – каспазу 8, которая в свою очередь запускает процесс ЗКГ . Альтернативным путем является митохондриальный путь активации апоптоза при участии белков семейства Bcl-2. Этот путь апоптоза начинается с повреждения ДНК или действия на клетку токсических агентов. Ключевым событием это пути является повышение проницаемости наружной мембраны митохондрий, которое характеризуется выходом апоптогенных белков (цитохром С, прокаспаза -2,-3, и -9, AIF (фактор индуцирующий апоптоз) из межмембранного пространства в цитоплазму клетки за счёт разрыва митохондриальной мембраны или открытия высокопроницаемых каналов на внешней мембране митохондрий.

Важнейшим “рецептором” повреждения ДНК является так называемый «страж генома» - белок p53. Обычно этот белок находится в неактивном состоянии и активируется вследствие гипоксии, активации онкогенов, повреждения ДНК или воздействия других цитотоксических агентов. Роль гена в процессе ЗКГ очень важна, так как причиной развития 50 % опухолей является мутация гена p53. Регуляция апоптоза белком p53 происходит несколькими способами: активация генов Bax или Bid; активация образования свободных форм кислорода, что приводит к перекисному окислению, которое приводит к высвобождению цитохрома С из митохондрий; индуция мРНК Fas, а также выход Fas на поверхность клетки из аппарата Гольджи; стимуляция образования APAF-1; стимуляция экспрессии каспазы 6; переход части молекул самого гена p53 в митохондрии с последующим выходом цитохрома C .

Существенным механизмом апоптоза является синтез и активация проапоптических соединений семейства Bcl-2. Впервые белок семейства Bcl-2 описанные как онкоген при В-клеточной лимфоме, который привел к образованию опухолевого клона за счет увеличения выживаемости опухолевых клеток. . В настоящее время семейство Bcl-2 включает в себя группу белков со сходными морфологическими составами и делится на две группы: индукторы апоптоза и ингибиторы апоптоза. Решение о гибели клетки принимается на основании относительного преобладания активных супрессоров или промоторов апоптоза. Механизм действия основывается на действии проапоптических белков семейства Bcl-2, которые образуют временные мегаканалы на месте физиологических (для Ca2+, O2, Na+/К+), через которые начинает поступать цитохром С и другие факторы апоптоза. Цитохром С необходим для образования апоптосомы, в которой активируется каспаза 9.

Существует еще другой, стрессовый, путь апоптоза, который активирует каспазу 9 через комплекс Apaf-1 (апоптический протеаза-активирующий фактор). Конформационные изменения Apaf-1, индуцированные цитохромом С из поврежденных митохондрий и АТФ, позволяют привлечь профактор каспазы 9 через их общий домен. Каспаза 9 апоптосомы, в свою очередь, вызывает активацию эффекторных К(3,7), которые инициируют интенсивный протеолиз и высвобождают связанную ДНКазу, разрушающую хроматин. Особо следует отметить роль белка Bid, который является связующим звеном между двумя путями апоптоза – митохондриальный и путем «рецепторов смерти» (воздействие К8) .

В настоящее время изучение процесса апоптической гибели клетки имеет огромный интерес в медицине. Нарушение процессов физиологической смерти играет немаловажную роль в развитии патологических состояний, в том числе онкологических и аутоиммунных заболеваниях .

В настоящее время известно множество заболеваний, связанных с усилением апоптоза: фолликулярная лимфома, рак половой системы у женщин и мужчин (яичники, предстательная железа), гломерулонефрит, вирусные инфекции (аденовирус, вирус герпеса, поксвирус). А так же заболевания связанные с ингибированием процессов апоптоза: СПИД, нейродегенеративные заболевания (Альцгеймера, Паркинсона), токсические заболевания печени, мозжечковые дегенерации и т.д

Изучение механизмов апоптоза дает нам представления о развитии некоторых заболеваниях, их течении. Уже сейчас мы можем использовать эти знания для предотвращения заболеваний на различных стадиях патогенеза (коррекция и регуляция).

Апоптоз является очень важным процессом в онтогенезе каждого живого организма. Этот процесс позволяет поддерживать внутренний гомеостаз, контролировать правильный рост и развитие организма, без механизма апоптоза в нашем организме был бы хаос, многочисленность генетических изменений, беспорядочное деление клеток.

Список литературы:

1. Владимирская Е.Б. Механизмы апоптической смерти клеток / Е.Б. Владимирская// Гематология и трансфузиология. – 2002. – Т.47, №2, - С. 35 - 40.

2. Робинсон М.В. Апоптоз клеток иммунной системы / М.В.Робинсон, М.А. Труфакин// Успехи современной биологии. – 1991. –Т.3 вып. 2. – С. 246 – 259.

3. Adams J.M. Ways of dying: multiple pathways to apoptosis / J.M. Adams // Genes and Development/ - 2003. – N 17. – P. 2481 – 2495.

4. Itoh K. Central role of mitochondria and p53 in Fas-mediated apoptosis of rheumatoid synovial fibroblasts / K. Itoh, H. Hase, H. Kojima et al. // Reumatology. – 2004. – N 43. – P.277-285.

5.& Newton K. Caspases signal not only apoptosis but also antigen-induced activation in cells of the immune system / K. Newton, A. Strasser// Genes and Development. – 2003. – Vol.17, N7. – P.819 – 825.

Под термином «апоптоз» следует понимать физиологический процесс гибели клеток, который запускается в ответ на действие физиологических сигналов или обеспечивается включением особой генетической программы. Морфологически этот процесс характеризуется уплотнением хроматина, разделением ДНК на фрагменты и изменением структуры клеточной мембраны. В итоге клетка разрушается и фагоцитируется без признаков воспаления, что практически не влияет на окружающие ткани.

Биологическая роль

Запрограммированная гибель клетки чрезвычайно важна для нормального функционирования организма.

Запрограммированная гибель клетки играет важную роль в нормальной жизнедеятельности живых организмов, она обеспечивает:

  • развитие в период эмбриогенеза;
  • регуляцию численности клеток и их состава в зрелом организме;
  • дифференцировку клеток;
  • уничтожение старых клеток, прекращающих выполнять свои функции;
  • гормональные перестройки;
  • подавление опухолевого роста;
  • выбраковку клеток с генетическими дефектами;
  • элиминацию чужеродных агентов (вирусов, бактерий, грибов и др.).

Нарушение регуляции гибели клеток приводит к развитию:

  • вирусных инфекций;
  • нейродегенеративных заболеваний ( , );
  • патологии крови ( , ).

Следует отметить, что при некоторых из них функция апоптоза снижена, а при других, наоборот, повышена.

  • Считается, что подавление апоптоза имеет большое значение для прогрессирования опухолей. Раковые клетки могут приобретать устойчивость к нему за счет усиленной экспрессии антиапоптотических факторов или в результате мутаций в генах.
  • Снижение апоптоза наблюдается при аутоиммунных процессах, когда аутоагрессивные Т-клетки не уничтожаются иммунной системой. Это приводит к повреждению собственных тканей организма.
  • Усиление апоптоза также негативно сказывается на состоянии здоровья человека. С этим может быть связана усиленная гибель костномозговых клеток-предшественниц красного и белого кроветворного ростка, следствием которой является апластическая анемия.

Таким образом апоптоз выступает общим механизмом гибели клеток, как при физиологических, так и при патологических процессах.

Механизмы развития

Запрограммированная гибель клеток проходит с последовательной сменой 3 стадий:

  1. Индукторная.
  2. Эффекторная.
  3. Деградация.

На первой стадии происходит рецепция сигнала и начальные этапы его передачи. Это осуществляется с помощью рецепторного механизма под действием внешних факторов или путем внутренней активации.

Рецепторы, запускающие апоптоз, получили название рецепторов смерти. Они имеют внутри себя специальные домены, взаимодействие с которыми индуцирует особые внутриклеточные сигналы.

Внутренний путь активации этого процесса связан с изменениями, происходящими в митохондриях. Он чувствителен к недостатку факторов роста, гормонов или цитокинов. Также влиять на него может:

  • гипоксия;
  • переохлаждение;
  • инвазия вирусов;
  • облучение;
  • свободные радикалы.

Все эти факторы способны вызывать перестройку внутренней мембраны митохондрий, в результате которой открываются поры и высвобождаются проапоптотические вещества. По своей структуре это белки, которые запускают каспазозависимый путь апоптоза и индуцируют разделение ДНК на фрагменты с конденсацией периферических участков хроматина.

В эффекторную стадию происходит активация главных ферментов апоптоза – каспаз. Они обладают протеолитической активностью и расщепляют белки по аспарагиновому остатку. В результате их деятельности в клетке происходит массивное разрушение белка и развиваются необратимые изменения.

На последней стадии реализуются основные механизмы гибели клетки. При этом активируется эндонуклеазы, деятельность которых приводит к деградации ДНК. После этого происходит реорганизация цитоскелета и преобразование клетки в апоптотические тельца, на поверхности которых появляются маркеры для фагоцитоза. На последнем этапе такие клетки поглощаются макрофагами.

Регуляция апоптоза


Нарушение апоптоза - один из факторов, повышающих риск развития СПИДа.

Каждый из механизмов апоптоза имеет свою регуляцию:

  • Митохондриальный путь регулируется белками из семейства Bcl-2. Они влияют на проницаемость мембраны митохондрий и могут ослаблять или стимулировать апоптоз. Это осуществляется путем контроля высвобождения цитохрома С.
  • Регуляция рецепторного механизма гибели клетки происходит путем контроля активности каспаз.

Апоптоз позволяет организму поддерживать физиологическое равновесие и противостоять различным внешним воздействиям. Так, каждый день в организме человека в результате запрограммированной гибели отмирают десятки миллиардов клеток, однако эти потери быстро компенсируются за счет клеточной пролиферации. Суммарная масса клеток, которые ежегодно подвергаются разрушению при апоптозе, равна массе тела человека.

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Что такое апоптоз?

Апоптоз – физиологическая смерть клетки, представляющая собой своеобразную генетически запрограммированную самоликвидацию.

Термин "апоптоз" в переводе с греческого означает "опадающий". Авторы термина дали такое название процессу запрограммированной смерти клеток потому, что именно с ним связано осеннее опадание увядших листьев. Кроме того, само название характеризует процесс как физиологический, постепенный и абсолютно безболезненный.

У животных в качестве наиболее яркого примера апоптоза, как правило, приводят исчезновение хвоста у лягушки во время метаморфозы из головастика во взрослую особь.

По мере взросления лягушонка хвост полностью исчезает, поскольку его клетки подвергаются постепенному апоптозу – запрограммированной смерти, и поглощению деструктированных элементов другими клетками.

Явление генетически запрограммированной гибели клеток встречается у всех эукариотов (организмов, клетки которых имеют ядро). Прокариоты же (бактерии) имеют своеобразный аналог апоптоза. Можно сказать, что данный феномен характерен для всего живого, за исключением таких особых доклеточных форм жизни, как вирусы .

Апоптозу могут подвергаться как отдельные клетки (как правило, дефектные), так и целые конгломераты. Последнее особенно характерно для эмбриогенеза. К примеру, опыты исследователей доказали, что благодаря апоптозу во время эмбриогенеза исчезают перепонки между пальцами на лапках у цыплят.

Ученые утверждают, что у человека такие врожденные аномалии, как сросшиеся пальцы на руках и ногах, также возникают вследствие нарушения нормального апоптоза на ранних стадиях эмбриогенеза.

История открытия теории апоптоза

Изучение механизмов и значения генетически программируемой клеточной смерти началось еще в шестидесятых годах прошлого века. Ученых заинтересовал тот факт, что клеточный состав большинства органов на протяжении жизни организма практически одинаков, а вот жизненный цикл различных типов клеток значительно отличается. При этом происходит постоянная замена многих клеток.

Таким образом, относительное постоянство клеточного состава всех организмов поддерживается динамическим равновесием двух противоположных процессов – клеточной пролиферации (деление и рост) и физиологического отмирания отживших клеток.

Авторство термина принадлежит британским ученым – Дж. Керру, Э. Уайли и А. Керри, которые впервые выдвинули и обосновали концепцию о принципиальном различии физиологической смерти клеток (апоптоз), и их патологической гибели (некроз).

В 2002 году ученые из кембриджской лаборатории, биологи С. Бреннер, Дж. Салстон и Р. Хорвиц, получили Нобелевскую Премию по физиологии и медицине за раскрытие основных механизмов генетической регуляции развития органов и исследования программируемой клеточной смерти.

Сегодня теории апоптоза посвящены десятки тысяч научных работ, раскрывающие основные механизмы его развития на физиологическом, генетическом и биохимическом уровнях. Ведется активный поиск его регуляторов.

Особенно большой интерес представляют исследования, дающие возможность практического применения регуляции апоптоза при лечении онкологических, аутоиммунных и нейродистрофических заболеваний.

Механизм

Механизм развития апоптоза на сегодняшний день до конца не изучен. Доказано, что процесс может индуцироваться малыми концентрациями большинства веществ, вызывающих некроз.

Однако в большинстве случаев генетически запрограммированная гибель клеток происходит при поступлении сигналов от молекул – клеточных регуляторов, таких как:

  • гормоны;
  • антигены;
  • моноклональные антитела и др.
Сигналы к апоптозу воспринимаются специализированными клеточными рецепторами, которые запускают последовательные этапы внутриклеточных сложных биохимических процессов.

Характерно, что сигналом к развитию апоптоза может быть как наличие активирующих веществ, так и отсутствие некоторых соединений, препятствующих развитию запрограммированной смерти клетки.

Ответ клетки на сигнал зависит не только от его силы, но и от общего исходного состояния клетки, морфологических особенностей ее дифференцировки, стадии жизненного цикла.

Одним из базовых механизмов апоптоза на стадии его реализации является деградация ДНК, в результате чего происходит фрагментация ядра. В ответ на повреждение ДНК запускаются защитные реакции, направленные на ее восстановление.

Неудачные попытки восстановить ДНК приводят к полному энергетическому истощению клетки, что и становится непосредственной причинной ее гибели.

Механизм апоптоза - видео

Фазы и стадии

Различают три физиологические фазы апоптоза:
1. Сигнальная (активация специализированных рецепторов).
2. Эффекторная (формирование из разнородных эффекторных сигналов единого пути апоптоза, и запуск каскада сложных биохимических реакций).
3. Дегидратационная (букв. обезвоживание – гибель клетки).

Кроме того, морфологически выделяют две стадии процесса:
1. Первая стадия – преапоптоз . На этой стадии происходит уменьшение размеров клетки за счет ее сморщивания, возникают обратимые изменения в ядре (уплотнение хроматина и скопление его по периферии ядра). В случае воздействия некоторых специфических регуляторов апоптоз может быть остановлен, и клетка возобновит свою нормальную жизнедеятельность.


2. Вторая стадия – собственно апоптоз. Внутри клетки происходят грубые изменения во всех ее органеллах, однако наиболее значимые превращения развиваются в ядре и на поверхности ее внешней мембраны. Клеточная мембрана теряет ворсинки и обычную складчатость, на ее поверхности формируются пузырьки – клетка как бы кипит, и в результате распадается на так называемые апоптические тельца, поглощаемые тканевыми макрофагами и/или соседними клетками.

Морфологически определяемый процесс апоптоза занимает, как правило, от одного до трех часов.

Некроз и апоптоз клетки. Сходство и различие

Терминами некроз и апоптоз обозначают полное прекращение жизнедеятельности клетки. Однако апоптозом обозначают физиологическое отмирание, а некрозом – ее патологическую гибель.

Апоптоз является генетически запрограммированным прекращением существования, то есть по определению имеет внутреннюю причину развития, в то время как некроз происходит в результате воздействия сверхсильных внешних, по отношению к клетке, факторов:

  • недостаток питательных веществ;
  • отравление токсинами и т.п.
Для апоптоза характерна постепенность и стадийность процесса, в то время как некроз наступает более остро, и четко различить стадии практически невозможно.

Кроме того, гибель клетки при процессах некроза и апоптоза отличается морфологически – первый характеризуется её набуханием, а при втором происходит сморщивание клетки, и уплотнение ее мембран.

Во время апоптоза происходит гибель клеточных органелл, однако мембрана сохраняется в целостности, так что образуются, так называемые, апоптические тельца, которые впоследствии поглощаются специализированными клетками – макрофагами или клетками-соседями.

При некрозе происходит разрыв клеточной мембраны, и содержимое клетки выходит наружу. Начинается воспалительная реакция.

Если некрозу подверглось достаточно большое количество клеток, воспаление проявляется известными с древности характерными клиническими симптомами , такими как:

  • боль;
  • покраснение (расширение сосудов в области поражения);
  • припухлость (воспалительный отек);
  • местное, а иногда и общее повышение температуры ;
  • более или менее выраженное нарушение функции органа, в котором произошел некроз.

Биологическое значение

Биологическое значение апоптоза заключается в следующем:
1. Осуществление нормального развития организма в период эмбриогенеза.
2. Предотвращение размножения мутировавших клеток.

3. Регуляция деятельности иммунной системы.
4. Предотвращение преждевременного старения организма.

Данный процесс играет ведущую роль в эмбриогенезе, поскольку многие органы и ткани претерпевают значительные трансформации во время эмбрионального развития. Многие врожденные дефекты возникают вследствие недостаточной активности апоптоза.

Как запрограммированная самоликвидация дефектных клеток, данный процесс является мощной природной защитой против онкологических заболеваний. Так, к примеру, вирус папилломы человека блокирует клеточные рецепторы, ответственные за апоптоз и, таким образом, приводит к развитию рака шейки матки и некоторых других органов.

Благодаря данному процессу происходит физиологическая регуляция клонов Т-лимфоцитов , ответственных за клеточный иммунитет организма. Клетки, неспособные распознавать белки собственного организма (а таких в общей сложности созревает около 97%), подвергаются апоптозу.

Недостаточность апоптоза приводит к тяжелым аутоиммунным заболеваниям, в то время как его усиление возможно при иммунодефицитных состояниях. К примеру, тяжесть течения СПИДа коррелирует с усилением данного процесса у Т-лимфоцитов.

Кроме того, этот механизм имеет большое значение для функционирования нервной системы: он ответственен за нормальное формирование нейронов, и он же может вызывать раннее разрушение нервных клеток при болезни Альцгеймера .

Одна из теорий старения организма – теория апоптоза. Уже доказано, что именно он лежит в основе преждевременного старения тканей, где гибель клеток остается невосполнимой (нервная ткань, клетки миокарда). С другой стороны, недостаточный апоптоз может способствовать накоплению в организме стареющих клеток, которые в норме физиологически отмирают, и заменяются новыми (раннее старение соединительной ткани).

Роль теории апоптоза в медицине

Роль теории апоптоза в медицине заключается в возможности поиска путей регуляции этого процесса для лечения и профилактики многих патологических состояний, вызванных ослаблением или, наоборот, усилением апопоптоза.

Исследования ведутся одновременно во многих направлениях. Прежде всего, следует отметить научные изыскания в такой значимой области медицины, как онкология . Поскольку опухолевый рост вызван дефектом генетически запрограммированной гибели мутировавших клеток, изучается возможность специфической регуляции апоптоза, с повышением его активности в опухолевых клетках.

Действие некоторых химиотерапевтических препаратов, широко применяемых в онкологии, основано на усилении процессов апоптоза. Так как опухолевые клетки более склонны к данному процессу, подбирается доза вещества, достаточная для гибели патологических клеток, но относительно безвредная для нормальных.

Также чрезвычайно важны для медицины исследования, изучающие роль апоптоза в дегенерации ткани сердечной мышцы под влиянием недостаточности кровообращения. Группа китайских ученых (Lv X, Wan J, Yang J, Cheng H, Li Y, Ao Y, Peng R) опубликовала новые экспериментальные данные, которые доказывают возможность искусственного снижения апоптоза в кардиомиоцитах при введении определенных веществ-ингибиторов.

Если теоретические исследования на лабораторных объектах удастся применить в клинической практике – это будет большой шаг вперед в борьбе с ишемической болезнью сердца . Данная патология занимает первые позиции среди причин смерти во всех высокоразвитых странах, так что переход от теории к практике трудно было бы переоценить.

Еще одно весьма перспективное направление – разработка методов регуляции данного процесса для замедления старения организма. Теоретические исследования ведутся в направлении создания программы, сочетающей повышение активности апоптоза стареющих клеток, и одновременного усиления пролиферации молодых клеточных элементов. Здесь достигнуты определенные успехи на теоретическом уровне, однако до перехода от теории к практическим решениям еще далеко.

Кроме того, масштабные научные исследования проводятся в следующих направлениях:

  • аллергология;
  • иммунология;
  • терапия инфекционных заболеваний;
  • трансплантология;
Таким образом, в недалеком будущем мы станем свидетелями внедрения в практику принципиально новых медицинских препаратов, побеждающих многие заболевания.

Апоптоз – это программированная клеточная смерть (инициирующаяся под действием вне- или внутриклеточных факторов) в развитии которой активную роль принимают специальные и генетически запрограммированные внутриклеточные механизмы . Он, в отличие от некроза активный процесс, требующий определенных энергозатрат . Первоначально пытались разграничить понятия «программированная клеточная гибель » и «апоптоз »: к первому термину относили устранение клеток в эмбриогенезе, а ко второму – программированную смерть только зрелых дифференцированных клеток. В настоящее время выяснилось, что никакой целесообразности в этом нет (механизмы развития клеточной гибели одинаковы) и два понятия превратились в синонимы, хотя это объединение и не бесспорно.

Прежде чем приступить к изложению материала о роли апоптоза для жизнедеятельности клетки (и организма) в норме и патологии, мы рассмотрим механизм апоптоза. Их реализацию можно представить в виде поэтапного развития следующих стадий:

1 стадия стадия инициации (индукции) .

В зависимости от происхождения сигнала, стимулирующего апоптоз, различают:

    внутриклеточные стимулы апоптоза . Среди них к наиболее известным относят – разные виды облучения, избыток Н + , оксид азота, свободные радикалы кислорода и липидов, гипертермия и др. Все они могут вызывать различные повреждения хромосом (разрывы ДНК, нарушения ее конформации др.) и внутриклеточных мембран (особенно митохондрий). То есть в данном случае поводом для апоптоза служит «неудовлетворительное состояние самой клетки» (Мушкамбиров Н.П., Кузнецов С.Л., 2003). Причем, повреждение структур клеток должно быть достаточно сильным, но не разрушительным. У клетки должны сохраниться энергетические и материальные ресурсы для активации генов апоптоза и его эффекторных механизмов. Внутриклеточный путь стимуляции программированной смерти клетки можно обозначить как «апоптоз изнутри »;

    трансмембранные стимулы апоптоза , т.е., в этом случае он активируется внешней «сигнализацией», которая передается через мембранные или (реже) внутриклеточные рецепторы. Клетка может быть вполне жизнеспособной, но, с позиции целостного организма или «ошибочной» стимуляции апоптоза, она должна погибнуть. Этот вариант апоптоза получил название «апоптоз по команде ».

Трансмембранные стимулы подразделяются на:

    «отрицательные » сигналы. Для нормальной жизнедеятельности клетки, регуляции ее деления и размножения необходимо воздействие на нее через рецепторы различных БАВ: факторов роста, цитокинов, гормонов. Среди прочих эффектов, они подавляют механизмы клеточной гибели. И естественно, дефицит или отсутствие данных БАВ активирует механизмы программированной смерти клетки;

    «положительные » сигналы. Сигнальные молекулы, такие как ФНОα, глюкокортикоиды, некоторые антигены, адгезивные белки и др., после взаимодействия с клеточными рецепторами могут запускать программу апоптоза.

На клеточных мембранах находится группа рецепторов, в задачу которых передача сигнала к развитию апоптоза является основной, возможно даже единственной функцией. Это, например, белки группы DR (death receptos – «рецепторы смерти »): DR 3 , DR 4 , DR 5 . Наиболее хорошо изучен Fas-рецептор, появляющийся на поверхности клеток (гепатоцитах) спонтанно или под влиянием активации (зрелые лимфоциты). Fas-рецептор при взаимодействии с Fas-рецептором (лигандом) Т-киллера запускает программу смерти клетки мишени. Однако, взаимодействие Fas-рецептора с Fas-лигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера (см. нижеигандом в областях, изолированных от иммунной системы, заканчивается гибелью самого Т-киллера ()ожно000000000000000000000000000).

Следует помнить, что некоторые сигнальные молекулы апоптоза, в зависимости от ситуации могут наоборот, блокировать развитие программированной смерти клеток. Амбивалентность (двойственное проявление противоположных качеств) характерна для ФНО, ИЛ-2, интерферона γ и др.

На мембранах эритроцитов, тромбоцитов, лейкоцитов, а так же клеток легкого и кожи обнаружены особые антигены-маркеры . На них синтезируются физиологические аутоантитела , и они, выполняя роль опсонинов , способствуют фагоцитозу этих клеток, т.е. гибель клеток происходит путемаутофагоцитоза . Выяснилось, что антигены-маркеры появляются на поверхности «старых» (прошедших свой путь онтогенетического развития) и поврежденных клетках, молодые и неповрежденные клетки их не имеют. Данные антигены получили название «антигены-маркеры стареющих и поврежденных клеток» или «белок третьей полосы». Появление белка третьей полосы контролируется геномом клетки. Следовательно, аутофагоцитоз можно рассматривать, как вариант запрограммированной гибели клеток .

    Смешанные сигналы. Это сочетанное воздействие сигналов первой и второй группы. Например, апоптоз происходит с лимфоцитами, активированных митогоном (положительный сигнал), но не вступивших в контакт с АГ (отрицательный сигнал).

2 стадия стадия программирования (контроля и интеграции механизмов апоптоза).

Для этой стадии характерно два, диаметрально противоположных процесса, наблюдающихся после инициации. Происходит либо:

    реализация пускового сигнала к апоптозу через активацию его программы (эффекторами являются каспазы и эндонуклеазы);

    блокируется эффект пускового сигнала апоптоза.

Различают два основных, но не исключающих друг друга, варианта исполнения стадии программирования (рис. 14):

Рис. 14. Каспазный каскад и его мишени

R– мембранный рецептор; К – каспазы;AIF– митохондриальная протеаза; Цит. С – цитохром с;Apaf-1 – цитоплазматический белок;IAPs– ингибиторы каспаз

1. Прямая передача сигнала (прямой путь активации эффекторных механизмов апоптоза минуя геном клетки) реализуется через:

    адапторные белки. Например, так осуществляется запуск апоптоза Т-киллером. Он активирует каспазу-8 (адапторный белок). Аналогично может действовать и ФНО;

    цитохром С и протеазу ΑIF (митохондриальная протеаза). Они выходят из поврежденной митохондрии и активируют каспазу-9;

    гранзимы. Т-киллеры синтезируют белок перфорин, который образует каналы в плазмолемме клетки-мишени. Через эти каналы в клетку проникают протеолитические ферменты гранзимы , выделяемые все тем же Т-киллером и они запускают каскад каспазной сети.

2. Опосредованная передача сигнала. Она реализуется с помощью генома клетки путем:

    репрессии генов, контролирующих синтез белков-ингибиторов апоптоза (гены Bcl-2, Bcl-XL и др). Белки Bcl-2 в нормальных клетках входят в состав мембраны митохондрий и закрывают каналы по которым из этих органоидов выходят цитохром С и протеаза AIF;

    экспрессии, активации генов, контролирующих синтез белков-активаторов апоптоза (гены Bax, Bad, Bak, Rb, P 53 и др.). Они, в свою очередь активируют каспазы (к-8, к-9).

На рис. 14 представлена примерная схема каспазного принципа активации каспаз. Видно, что откуда бы не запускался каскад, его узловым моментом является каспаза 3. Она активируется и каспазой 8 и 9. Всего в семействе каспаз – более 10 ферментов. Локализуются в цитоплазме клетки в неактивном состоянии (прокаспазы). Положение всех каспаз в данном каскаде до конца не выяснено, поэтому на схеме ряд из них отсутствует. Как только активируются каспазы 3,7,6 (возможно и их другие типы) наступает 3 стадия апоптоза.

3 стадия стадия реализация программы (исполнительная, эффекторная).

Непосредственными исполнителями («палачами» клетки) являются выше указанные каспазы и эндонуклеазы. Местом приложения их действия (протеолиза) служат (рис. 14):

    цитоплазматические белки – белки цитоскелета (фодрин и актин). Гидролизом фодрина объясняют изменение поверхности клетки – «гофрирование» плазмолеммы (появление на ней впячиваний и выступов);

    белки некоторых цитоплазматических регуляторных ферментов: фосфолипазы А 2 , протеинкиназы С и др.;

    ядерные белки. Протеолиз ядерных белков занимает основное место в развитии апоптоза. Разрушаются структурные белки, белки ферментов репликации и репарации (ДНК-протеинкиназы и др.), регуляторные белки (рRb и др.), белки-ингибиторов эндонуклеаз.

Иннактивация последней группы – белков ингибиторов эндонуклеаз приводит к активации эндонуклеаз, второму « орудию » апоптоза . В настоящее время эндонуклеазы и в частности, Са 2+ , Мg 2+ -зависимая эндонуклеаза , рассматривается как центральный фермент программируемой смерти клетки. Она расщепляет ДНК не в случайных местах, а только в линкерных участках (соединительные участки между нуклеосомами). Поэтому хроматин не лизируется, а только фрагментируется, что определяет отличительную, структурную черту апоптоза.

Вследствие разрушения белка и хроматина в клетке формируются и от нее отпочковываются различные фрагменты – апоптозные тельца. В них находятся остатки цитоплазмы, органелл, хроматина и др.

4 стадия стадия удаления апоптозных телец (фрагментов клетки).

На поверхности апоптозных телец экспрессируются лиганды, они распознаются рецепторами фагоцитов. Процесс обнаружения, поглощения и метаболизирования фрагментов погибшей клетки происходит сравнительно быстро. Это способствует избежать попадания содержания погибшей клетки в окружающую среду и тем самым, как отмечено выше, воспалительный процесс не развивается. Клетка уходит из жизни «спокойно», не беспокоя «соседей» («тихий суицид»).

Программированная клеточная гибель имеет важное значение для многих физиологических процессов . С апоптозом связаны:

    поддержание нормальных процессов морфогенеза – запрограммированная смерть клеток в процессе эмбриогенеза (имплантации, органогенеза) и метаморфоза;

    поддержание клеточного гомеостаза (в том числе ликвидация клеток с генетическими нарушениями и инфицированных вирусами). Апоптозом объясняется физиологическая инволюция и уравновешивание митозов в зрелых тканях и органах. Например, гибель клеток в активно пролиферирующих и самообновляющихся популяциях – эпителиоцитов кишечника, зрелых лейкоцитов, эритроцитов. Гормонально-зависимая инволюция – гибель эндометрия в конце менструального цикла;

    селекция разновидностей клеток внутри популяции. Например, формирование антигенспецифической составляющей иммунной системы и управление реализацией ее эффекторных механизмов. С помощью апоптоза происходит выбраковка ненужных и опасных для организма клонов лимфоцитов (аутоагрессивных). Сравнительно недавно (Griffith T.S., 1997) показали значение программированной гибели клеток в защите «иммунологически привилегированных» зон (внутренние среды глаза и семенников). При прохождении гисто-гематических барьеров данных зон (что случается редко), эффекторные Т-лимфоциты гибнут (см. выше). Включение механизмов их смерти обеспечивается при взаимодействии Fas-лиганда барьерных клеток с Fas-рецепторами Т-лимфоцита, тем самым предотвращается развитие аутоагрессии.

Роль апоптоза в патологии и виды различных заболеваний связанных с нарушением апоптоза представлены в виде схемы (рис. 15) и таблицы 1.

Конечно, значение апоптоза в патологии меньше чем некроза (возможно, это связано с недостаточностью таких знаний). Однако, проблема его в патологии имеет и несколько иной характер: она оценивается по степени выраженности апоптоза — усиление или ослабление при тех или иных болезнях.



Читайте также: