Funktsiya pariteti. Juft va toq funksiyalar. Davriy funksiyalar Funksiyaning juft yoki toq ekanligini qanday aniqlash mumkin

hatto, agar barcha \(x\) ta'rif sohasi uchun quyidagi to'g'ri bo'lsa: \(f(-x)=f(x)\) .

Juft funksiya grafigi \(y\) o‘qiga nisbatan simmetrikdir:

Misol: \(f(x)=x^2+\cos x\) funksiyasi juft, chunki \(f(-x)=(-x)^2+\cos((-x))=x^2+\cos x=f(x)\).

\(\blacktrianglerright\) \(f(x)\) funksiyasi chaqiriladi g'alati, agar barcha \(x\) taʼrif sohasi uchun quyidagi toʻgʻri boʻlsa: \(f(-x)=-f(x)\) .

Toq funksiyaning grafigi kelib chiqishiga nisbatan simmetrikdir:

Misol: \(f(x)=x^3+x\) funktsiyasi g'alati, chunki \(f(-x)=(-x)^3+(-x)=-x^3-x=-(x^3+x)=-f(x)\).

\(\blacktrianglerright\) Juft va toq bo lmagan funksiyalar funksiyalar deyiladi umumiy ko'rinish. Bu funktsiya har doim bo'lishi mumkin yagona yo'l uni juft va toq funksiyalarning yig‘indisi sifatida ifodalang.

Masalan, \(f(x)=x^2-x\) funksiya juft funksiya \(f_1=x^2\) va toq \(f_2=-x\) yig‘indisidir.

\(\blacktrianglerright\) Ba'zi xususiyatlar:

1) Bir xil paritetli ikkita funktsiyaning ko'paytmasi va qismi juft funktsiyadir.

2) Har xil paritetli ikkita funktsiyaning ko'paytmasi va bo'limi toq funktsiyadir.

3) Juft funksiyalar yig‘indisi va ayirmasi - juft funksiya.

4) Toq funksiyalar yig‘indisi va ayirmasi - toq funksiya.

5) Agar \(f(x)\) juft funksiya boʻlsa, u holda \(f(x)=c \ (c\in \mathbb(R)\) ) tenglama yagona ildizga ega boʻladi, agar faqat \( x =0\).

6) Agar \(f(x)\) juft yoki toq funksiya boʻlsa va \(f(x)=0\) tenglamaning ildizi \(x=b\) boʻlsa, bu tenglama albatta sekundga ega boʻladi. ildiz \(x =-b\) .

\(\blacktrianglerright\) \(f(x)\) funksiyasi \(X\) da davriy deyiladi, agar ba'zi bir son \(T\ne 0\) uchun quyidagilar bajarilsa: \(f(x)=f( x+T) \) , bu yerda \(x, x+T\da X\) . Bu tenglik bajariladigan eng kichik \(T\) funksiyaning asosiy (asosiy) davri deyiladi.

Davriy funksiya \(nT\) ko'rinishidagi istalgan raqamga ega bo'lib, bu erda \(n\in \mathbb(Z)\) ham nuqta bo'ladi.

Misol: har qanday trigonometrik funktsiya davriy;
\(f(x)=\sin x\) va \(f(x)=\cos x\) funktsiyalari uchun asosiy davr \(2\pi\) ga, \(f(x) funksiyalari uchun )=\mathrm( tg)\,x\) va \(f(x)=\mathrm(ctg)\,x\) asosiy davr \(\pi\) ga teng.

Davriy funktsiyaning grafigini qurish uchun uning grafigini uzunligi \(T\) (asosiy davr) bo'lgan istalgan segmentga chizish mumkin; keyin butun funktsiyaning grafigi tuzilgan qismni butun sonli davrlarga o'ngga va chapga siljitish bilan yakunlanadi:

\(\blacktrianglerright\) \(f(x)\) funksiyasining \(D(f)\) sohasi \(x\) argumentining barcha qiymatlaridan tashkil topgan toʻplam boʻlib, ular uchun funktsiya mantiqiy boʻladi. (aniqlangan).

Misol: \(f(x)=\sqrt x+1\) funksiyasi aniqlanish sohasiga ega: \(x\in)

1-topshiriq №6364

Vazifa darajasi: Yagona davlat imtihoniga teng

\(a\) parametrining qaysi qiymatlarida tenglama bajariladi

bitta yechim bormi?

E'tibor bering, \(x^2\) va \(\cos x\) juft funksiyalar bo'lganligi sababli, tenglamaning ildizi \(x_0\) bo'lsa, u ham \(-x_0\) ildiziga ega bo'ladi.
Darhaqiqat, \(x_0\) ildiz, ya'ni tenglik bo'lsin \(2x_0^2+a\mathrm(tg)\,(\cos x_0)+a^2=0\) to'g'ri. \(-x_0\) ni almashtiramiz: \(2 (-x_0)^2+a\mathrm(tg)\,(\cos(-x_0))+a^2=2x_0^2+a\mathrm(tg)\,(\cos x_0)+a ^2=0\).

Shunday qilib, agar \(x_0\ne 0\) bo'lsa, tenglama allaqachon kamida ikkita ildizga ega bo'ladi. Shuning uchun, \(x_0=0\) . Keyin:

Biz parametr uchun ikkita qiymat oldik \(a\) . E'tibor bering, biz \(x=0\) asl tenglamaning aynan ildizi ekanligidan foydalandik. Ammo biz uning yagona ekanligidan hech qachon foydalanmadik. Shuning uchun, siz \(a\) parametrining natijaviy qiymatlarini asl tenglamaga almashtirishingiz va qaysi aniq \(a\) ildiz \(x=0\) haqiqatan ham noyob bo'lishini tekshirishingiz kerak.

1) Agar \(a=0\) boʻlsa, tenglama \(2x^2=0\) koʻrinishini oladi. Shubhasiz, bu tenglama faqat bitta ildizga ega \(x=0\) . Shuning uchun \(a=0\) qiymati bizga mos keladi.

2) Agar \(a=-\mathrm(tg)\,1\) boʻlsa, tenglama koʻrinishga ega boʻladi. \ Keling, tenglamani shaklda qayta yozamiz \ Chunki \(-1\leqslant \cos x\leqslant 1\), Bu \(-\mathrm(tg)\,1\leqslant \mathrm(tg)\,(\cos x)\leqslant \mathrm(tg)\,1\). Shunday qilib, tenglamaning o'ng tomonining qiymatlari (*) segmentga tegishli \([-\mathrm(tg)^2\,1; \mathrm(tg)^2\,1]\).

Chunki \(x^2\geqslant 0\) , keyin chap tomoni(*) tenglama \(0+ \mathrm(tg)^2\,1\) dan katta yoki teng.

Shunday qilib, tenglik (*) tenglamaning ikkala tomoni \(\mathrm(tg)^2\,1\) ga teng bo'lgandagina to'g'ri bo'lishi mumkin. Va bu shuni anglatadiki \[\begin(holatlar) 2x^2+\mathrm(tg)^2\,1=\mathrm(tg)^2\,1 \\ \mathrm(tg)\,1\cdot \mathrm(tg)\ ,(\cos x)=\mathrm(tg)^2\,1 \end(holatlar) \quad\Leftrightarrow\quad \begin(holatlar) x=0\\ \mathrm(tg)\,(\cos x) =\mathrm(tg)\,1 \end(holatlar)\to'rtta\Chapga o'q\to'rtlik x=0\] Shuning uchun \(a=-\mathrm(tg)\,1\) qiymati bizga mos keladi.

Javob:

\(a\in \(-\mathrm(tg)\,1;0\)\)

2-topshiriq №3923

Vazifa darajasi: Yagona davlat imtihoniga teng

\(a\) parametrining barcha qiymatlarini toping, ularning har biri uchun funktsiya grafigi \

kelib chiqishiga nisbatan simmetrik.

Agar funktsiyaning grafigi koordinata boshiga nisbatan simmetrik bo'lsa, unda bunday funktsiya toq bo'ladi, ya'ni sohadan istalgan \(x\) uchun \(f(-x)=-f(x)\) bajariladi. funktsiyaning ta'rifi. Shunday qilib, \(f(-x)=-f(x).\) bo'lgan parametr qiymatlarini topish talab qilinadi.

\[\begin(hizalangan) &3\mathrm(tg)\,\left(-\dfrac(ax)5\right)+2\sin \dfrac(8\pi a+3x)4= -\left(3\ mathrm(tg)\,\left(\dfrac(ax)5\o'ng)+2\sin \dfrac(8\pi a-3x)4\o'ng)\to'rtlik \O'ng strelka\to'rt -3\mathrm(tg)\ ,\dfrac(ax)5+2\sin \dfrac(8\pi a+3x)4= -\left(3\mathrm(tg)\,\left(\dfrac(ax)5\o'ng)+2\ sin \dfrac(8\pi a-3x)4\o'ng) \to'rtlik \O'ng strelka\\ \Rightarrow\quad &\sin \dfrac(8\pi a+3x)4+\sin \dfrac(8\pi a- 3x)4=0 \to'rtta \O'ng strelka \quad2\sin \dfrac12\left(\dfrac(8\pi a+3x)4+\dfrac(8\pi a-3x)4\o'ng)\cdot \cos \dfrac12 \left(\dfrac(8\pi a+3x)4-\dfrac(8\pi a-3x)4\right)=0 \to'rt \o'ngga\to'rt \sin (2\pi a)\cdot \cos \ frac34 x=0 \end(hizalangan)\]

Oxirgi tenglama \(f(x)\ domenidagi barcha \(x\) uchun bajarilishi kerak, shuning uchun, \(\sin(2\pi a)=0 \O'ng strelka a=\dfrac n2, n\in\mathbb(Z)\).

Javob:

\(\dfrac n2, n\in\mathbb(Z)\)

3-topshiriq №3069

Vazifa darajasi: Yagona davlat imtihoniga teng

Parametrning barcha qiymatlarini toping \(a\) , ularning har biri uchun \ tenglama 4 ta yechimga ega, bu erda \(f\) davri \(T=\dfrac(16)3\) bilan teng davriy funktsiyadir. butun son qatorida aniqlangan va \(f(x)=ax^2\) uchun \(0\leqslant x\leqslant \dfrac83.\)

(Abonentlardan topshiriq)

\(f(x)\) juft funksiya boʻlgani uchun uning grafigi ordinata oʻqiga nisbatan simmetrik boʻladi, demak, qachon \(-\dfrac83\leqslant x\leqslant 0\)\(f(x)=ax^2\) . Shunday qilib, qachon \(-\dfrac83\leqslant x\leqslant \dfrac83\), va bu uzunlik segmenti \(\dfrac(16)3\) , funksiya \(f(x)=ax^2\) .

1) \(a>0\) bo'lsin. U holda \(f(x)\) funksiyaning grafigi quyidagicha bo'ladi:


Keyin tenglama 4 ta yechimga ega bo'lishi uchun \(g(x)=|a+2|\cdot \sqrtx\) grafigi \(A\) nuqtadan o'tishi kerak:


Demak, \[\dfrac(64)9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad \left[\begin(to'plangan)\begin(hizalangan) &9(a+2)=32a\\ &9(a) +2)=-32a\end(hizalangan)\end(to'plangan)\o'ng. \quad\Chap o'ng o'q\to'rt \chap[\begin(to'plangan)\begin(hizalangan) &a=\dfrac(18)(23)\\ &a=-\dfrac(18)(41) \end(hizalangan) \end( yig'ildi)\to'g'ri.\] Chunki \(a>0\) , u holda \(a=\dfrac(18)(23)\) mos keladi.

2) \(a<0\) . Тогда картинка окажется симметричной относительно начала координат:


\(g(x)\) grafigi \(B\) nuqtadan o'tishi kerak: \[\dfrac(64)9a=|a+2|\cdot \sqrt(-8) \quad\Chapga o'q\quad \chap[\begin(to'plangan)\begin(hizalangan) &a=\dfrac(18)(23) )\\ &a=-\dfrac(18)(41) \end(hizalangan) \end(yig'ilgan)\o'ng.\] Chunki \(a<0\) , то подходит \(a=-\dfrac{18}{41}\) .

3) \(a=0\) mos kelmaydigan holat, shundan beri \(f(x)=0\) hamma uchun \(x\) , \(g(x)=2\sqrtx\) va tenglama faqat 1 ta ildizga ega bo'ladi.

Javob:

\(a\in \chap\(-\dfrac(18)(41);\dfrac(18)(23)\o'ng\)\)

4-topshiriq №3072

Vazifa darajasi: Yagona davlat imtihoniga teng

\(a\) ning barcha qiymatlarini toping, ularning har biri uchun tenglama \

kamida bitta ildizga ega.

(Abonentlardan topshiriq)

Keling, tenglamani shaklda qayta yozamiz \ va ikkita funktsiyani ko'rib chiqing: \(g(x)=7\sqrt(2x^2+49)\) va \(f(x)=3|x-7a|-6|x|-a^2+7a\ ).
\(g(x)\) funksiyasi juft va minimal nuqtaga ega \(x=0\) (va \(g(0)=49\) ).
\(x>0\) uchun \(f(x)\) funksiyasi kamayib bormoqda va \(x) uchun<0\) – возрастающей, следовательно, \(x=0\) – точка максимума.
Haqiqatan ham, \(x>0\) ikkinchi modul ijobiy ochilganda (\(|x|=x\) ), shuning uchun birinchi modul qanday ochilishidan qat'i nazar, \(f(x)\) teng bo'ladi. \( kx+A\) ga, bu erda \(A\) \(a\) ifodasi va \(k\) \(-9\) yoki \(-3\) ga teng. Qachon \(x<0\) наоборот: второй модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(3\) , либо \(9\) .
Maksimal nuqtadagi \(f\) qiymatini topamiz: \

Tenglama kamida bitta yechimga ega bo'lishi uchun \(f\) va \(g\) funksiyalarning grafiklari kamida bitta kesishish nuqtasiga ega bo'lishi kerak. Shuning uchun sizga kerak: \ \\]

Javob:

\(a\\(-7\)\kupada\)

5-topshiriq №3912

Vazifa darajasi: Yagona davlat imtihoniga teng

Parametrning barcha qiymatlarini toping \(a\) , ularning har biri uchun tenglama \

olti xil yechimga ega.

Almashtiramiz \((\sqrt2)^(x^3-3x^2+4)=t\) , \(t>0\) . Keyin tenglama shaklni oladi \ Biz asta-sekin dastlabki tenglama oltita yechimga ega bo'lgan shartlarni yozamiz.
E'tibor bering, kvadrat tenglama \((*)\) maksimal ikkita yechimga ega bo'lishi mumkin. Har qanday kub tenglama \(Ax^3+Bx^2+Cx+D=0\) uchtadan koʻp boʻlmagan yechimga ega boʻlishi mumkin. Shuning uchun, agar \((*)\) tenglama ikki xil yechimga ega bo'lsa (musbat!, chunki \(t\) noldan katta bo'lishi kerak) \(t_1\) va \(t_2\) , u holda teskarisini qilish orqali. almashtirish, biz olamiz: \[\left[\begin(to'plangan)\begin(hizalangan) &(\sqrt2)^(x^3-3x^2+4)=t_1\\ &(\sqrt2)^(x^3-3x^2) +4)=t_2\end(hizalangan)\end(yig'ilgan)\o'ng.\] Har qanday musbat son ma'lum darajada \(\sqrt2\) shaklida ifodalanishi mumkinligi sababli, masalan, \(t_1=(\sqrt2)^(\log_(\sqrt2) t_1)\), keyin to'plamning birinchi tenglamasi shaklda qayta yoziladi \ Yuqorida aytib o'tganimizdek, har qanday kub tenglama uchtadan ko'p bo'lmagan yechimga ega, shuning uchun to'plamdagi har bir tenglama uchtadan ko'p bo'lmagan yechimga ega bo'ladi. Bu shuni anglatadiki, butun to'plam oltitadan ko'p bo'lmagan echimlarga ega bo'ladi.
Bu shuni anglatadiki, dastlabki tenglama oltita yechimga ega bo'lishi uchun \((*)\) kvadrat tenglama ikki xil yechimga ega bo'lishi kerak va har bir natijada olingan kub tenglama (to'plamdan) uchta turli echimga ega bo'lishi kerak (va bitta yechim emas bitta tenglama har qanday tenglamaga to'g'ri kelishi kerak - ikkinchisining qaroriga ko'ra!)
Shubhasiz, agar \((*)\) kvadrat tenglama bitta yechimga ega bo'lsa, u holda biz dastlabki tenglamaning oltita yechimini olmaymiz.

Shunday qilib, yechim rejasi aniq bo'ladi. Keling, bajarilishi kerak bo'lgan shartlarni nuqtama-nuqta yozamiz.

1) \((*)\) tenglama ikki xil yechimga ega boʻlishi uchun uning diskriminanti ijobiy boʻlishi kerak: \

2) Bundan tashqari, ikkala ildiz ham ijobiy bo'lishi kerak (chunki \(t>0\) ). Agar ikkita ildizning ko'paytmasi ijobiy bo'lsa va ularning yig'indisi ijobiy bo'lsa, unda ildizlarning o'zi ijobiy bo'ladi. Shuning uchun sizga kerak: \[\begin(holatlar) 12-a>0\\-(a-10)>0\end(holatlar)\to'rt\chap o'ng o'q\to'rt a<10\]

Shunday qilib, biz o'zimizni ikki xil ijobiy ildiz bilan ta'minladik \(t_1\) va \(t_2\) .

3) Keling, ushbu tenglamani ko'rib chiqaylik \ Nima uchun \(t\) uch xil yechimga ega bo'ladi?
\(f(x)=x^3-3x^2+4\) funktsiyasini ko'rib chiqing.
Faktorlarga ajratish mumkin: \ Shuning uchun uning nollari: \(x=-1;2\) .
Agar \(f"(x)=3x^2-6x\) hosilasini topsak, u holda ikkita ekstremum nuqtani olamiz \(x_(max)=0, x_(min)=2\) .
Shunday qilib, grafik quyidagicha ko'rinadi:


Biz har qanday gorizontal chiziq \(y=k\) ekanligini ko'ramiz, bu erda \(0 \(x^3-3x^2+4=\log_(\sqrt2) t\) uch xil yechimga ega bo'lsa, \(0<\log_ {\sqrt2}t<4\) .
Shunday qilib, sizga kerak: \[\begin(holatlar) 0<\log_{\sqrt2}t_1<4\\ 0<\log_{\sqrt2}t_2<4\end{cases}\qquad (**)\] Darhol shuni ta'kidlaymizki, agar \(t_1\) va \(t_2\) raqamlari boshqacha bo'lsa, \(\log_(\sqrt2)t_1\) va \(\log_(\sqrt2)t_2\) raqamlari bo'ladi. har xil, bu tenglamalarni bildiradi \(x^3-3x^2+4=\log_(\sqrt2) t_1\) Va \(x^3-3x^2+4=\log_(\sqrt2) t_2\) turli ildizlarga ega bo'ladi.
Tizim \((**)\) quyidagicha qayta yozilishi mumkin: \[\boshlang(holatlar) 1

Shunday qilib, biz \((*)\) tenglamaning ikkala ildizi \((1;4)\) oraliqda yotishi kerakligini aniqladik. Bu shartni qanday yozish kerak?
Biz ildizlarni aniq yozmaymiz.
\(g(t)=t^2+(a-10)t+12-a\) funksiyasini ko'rib chiqaylik. Uning grafigi shoxlari yuqoriga ko'tarilgan parabola bo'lib, u x o'qi bilan kesishgan ikkita nuqtaga ega (biz bu shartni 1-bandda yozganmiz)). X o'qi bilan kesishish nuqtalari \((1;4)\) oralig'ida bo'lishi uchun uning grafigi qanday bo'lishi kerak? Shunday qilib:


Birinchidan, \(1\) va \(4\) nuqtalardagi funksiyaning \(g(1)\) va \(g(4)\) qiymatlari musbat bo‘lishi kerak, ikkinchidan, \(t_0\ ) parabola ham \((1;4)\) oralig'ida bo'lishi kerak. Shunday qilib, biz tizimni yozishimiz mumkin: \[\begin(holatlar) 1+a-10+12-a>0\\ 4^2+(a-10)\cdot 4+12-a>0\\ 1<\dfrac{-(a-10)}2<4\end{cases}\quad\Leftrightarrow\quad 4\(a\) har doim kamida bitta ildizga ega \(x=0\) . Demak, masalaning shartlarini bajarish uchun tenglama zarur \

arifmetik progressiyani \(x=0\) bilan ifodalovchi noldan farqli to'rt xil ildizga ega edi.

E'tibor bering, \(y=25x^4+25(a-1)x^2-4(a-7)\) juft bo'lib, ya'ni agar \(x_0\) tenglamaning ildizi bo'lsa \( (*)\ ), keyin \(-x_0\) ham uning ildizi bo'ladi. Keyin bu tenglamaning ildizlari o'sish tartibida tartiblangan sonlar bo'lishi kerak: \(-2d, -d, d, 2d\) (keyin \(d>0\)). Aynan shu besh raqam arifmetik progressiya hosil qiladi (farq \(d\) bilan).

Bu ildizlar \(-2d, -d, d, 2d\) raqamlari bo'lishi uchun \(d^(\,2), 4d^(\,2)\) raqamlarining ildizlari bo'lishi kerak. tenglama \(25t^2 +25(a-1)t-4(a-7)=0\) . Keyin, Veta teoremasiga ko'ra:

Keling, tenglamani shaklda qayta yozamiz \ va ikkita funktsiyani ko'rib chiqing: \(g(x)=20a-a^2-2^(x^2+2)\) va \(f(x)=13|x|-2|5x+12a|\) .
\(g(x)\) funksiyasi maksimal nuqtaga ega \(x=0\) (va \(g_(\matn(yuqori))=g(0)=-a^2+20a-4\)):
\(g"(x)=-2^(x^2+2)\cdot \ln 2\cdot 2x\). Nol hosilasi: \(x=0\) . Qachon \(x<0\) имеем: \(g">0\) , \(x>0\) uchun: \(g"<0\) .
\(x>0\) uchun \(f(x)\) funksiyasi ortib bormoqda va \(x<0\) – убывающей, следовательно, \(x=0\) – точка минимума.
Haqiqatan ham, \(x>0\) birinchi modul ijobiy ochilganda (\(|x|=x\)), shuning uchun ikkinchi modul qanday ochilishidan qat'i nazar, \(f(x)\) teng bo'ladi. \( kx+A\) ga, bu yerda \(A\) \(a\) ifodasi va \(k\) \(13-10=3\) yoki \(13+10) ga teng. =23\). Qachon \(x<0\) наоборот: первый модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(-3\) , либо \(-23\) .
Minimal nuqtadagi \(f\) qiymatini topamiz: \

Tenglama kamida bitta yechimga ega bo'lishi uchun \(f\) va \(g\) funksiyalarning grafiklari kamida bitta kesishish nuqtasiga ega bo'lishi kerak. Shuning uchun sizga kerak: \ Ushbu tizimlar to'plamini hal qilib, biz javob olamiz: \\]

Javob:

\(a\\(-2\)\kupada\)

Qaysi biri sizga u yoki bu darajada tanish edi. Shuningdek, u yerda funksiya xossalari zaxirasi bosqichma-bosqich to‘ldirilishi qayd etildi. Ushbu bo'limda ikkita yangi xususiyat muhokama qilinadi.

Ta'rif 1.

y = f(x), x ê X funksiyasi, agar X to'plamdagi har qanday x qiymat uchun f (-x) = f (x) tenglik bajarilgan taqdirda ham chaqiriladi.

Ta'rif 2.

y = f(x), x ê X funksiyasi toq deyiladi, agar X to'plamdagi har qanday x qiymat uchun f (-x) = -f (x) tenglik bajarilsa.

y = x 4 juft funksiya ekanligini isbotlang.

Yechim. Bizda: f(x) = x 4, f(-x) = (-x) 4. Lekin(-x) 4 = x 4. Demak, har qanday x uchun f(-x) = f(x) tenglik amal qiladi, ya'ni. funksiyasi teng.

Xuddi shunday, y - x 2, y = x 6, y - x 8 funktsiyalari juft ekanligini isbotlash mumkin.

y = x 3 ~ toq funksiya ekanligini isbotlang.

Yechim. Bizda: f(x) = x 3, f(-x) = (-x) 3. Lekin (-x) 3 = -x 3. Bu shuni anglatadiki, har qanday x uchun f (-x) = -f (x) tenglik amal qiladi, ya'ni. funktsiya g'alati.

Xuddi shunday, y = x, y = x 5, y = x 7 funksiyalarning toq ekanligini isbotlash mumkin.

Siz va men bir necha bor amin bo'lganmizki, matematikadagi yangi atamalar ko'pincha "er yuzida" kelib chiqadi, ya'ni. ularni qandaydir tarzda tushuntirish mumkin. Bu juft va toq funksiyalarda ham shunday. Qarang: y - x 3, y = x 5, y = x 7 toq funksiyalar, y = x 2, y = x 4, y = x 6 esa juft funksiyalardir. Va umuman olganda, y = x" ko'rinishidagi har qanday funktsiya uchun (quyida biz ushbu funktsiyalarni maxsus o'rganamiz), bu erda n - natural son, biz xulosa qilishimiz mumkin: agar n toq son bo'lsa, u holda y = x" funktsiyasi g'alati; agar n juft son bo‘lsa, u holda y = xn funksiya juft bo‘ladi.

Juft ham, toq ham bo‘lmagan funksiyalar ham bor. Masalan, y = 2x + 3 funksiyasi shundaydir. Darhaqiqat, f(1) = 5 va f (-1) = 1. Ko'rib turganingizdek, bu erda f(-x) = o'ziga xoslik ham emas. f ( x), na f(-x) = -f(x) identifikatori.

Demak, funktsiya juft, toq yoki hech biri bo'lmasligi mumkin.

Berilgan funksiyaning juft yoki toq ekanligini oʻrganish odatda paritetni oʻrganish deb ataladi.

1 va 2 ta'riflar funksiyaning x va -x nuqtalaridagi qiymatlariga ishora qiladi. Bu funksiya x nuqtada ham, -x nuqtada ham aniqlangan deb faraz qiladi. Demak, -x nuqta x nuqta bilan bir vaqtda funksiyaning aniqlanish sohasiga tegishli. Agar X sonli to'plam o'zining har bir elementi x bilan birga qarama-qarshi element -xni ham o'z ichiga olsa, X simmetrik to'plam deyiladi. Aytaylik, (-2, 2), [-5, 5], (-oo, +oo) simmetrik to'plamlar, while ; (∞;∞) simmetrik toʻplamlar, , [–5;4] esa assimetrik toʻplamlardir.

– U hatto funktsiyalar ta'rif sohasi simmetrik to'plammi? G'alatilarmi?
– Agar D( f) assimetrik to‘plam bo‘lsa, u holda funksiya nima?
– Shunday qilib, agar funktsiya da = f(X) – juft yoki toq, u holda uning aniqlanish sohasi D( f) simmetrik to‘plamdir. Qarama-qarshi gap to'g'rimi: agar funktsiyaning aniqlanish sohasi simmetrik to'plam bo'lsa, u juft yoki toqmi?
- Bu shuni anglatadiki, ta'rif sohasining nosimmetrik to'plamining mavjudligi zaruriy shart, ammo etarli emas.
– Xo‘sh, funksiyani paritet uchun qanday tekshirasiz? Keling, algoritm yaratishga harakat qilaylik.

Slayd

Paritet uchun funktsiyani o'rganish algoritmi

1. Funksiyaning aniqlanish sohasi simmetrik ekanligini aniqlang. Agar yo'q bo'lsa, u holda funktsiya juft ham, toq ham emas. Ha bo'lsa, algoritmning 2-bosqichiga o'ting.

2. uchun ifoda yozing f(–X).

3. Taqqoslash f(–X).Va f(X):

  • Agar f(–X).= f(X), u holda funksiya juft bo‘ladi;
  • Agar f(–X).= – f(X), u holda funksiya toq bo'ladi;
  • Agar f(–X) ≠ f(X) Va f(–X) ≠ –f(X), u holda funksiya juft ham, toq ham emas.

Misollar:

a) funksiyani paritet uchun tekshiring da= x 5 +; b) da= ; V) da= .

Yechim.

a) h(x) = x 5 +,

1) D(h) = (–∞; 0) U (0; +∞), simmetrik toʻplam.

2) h (– x) = (–x) 5 + – x5 –= – (x 5 +),

3) h(– x) = – h (x) => funksiya h(x)= x 5 + toq.

b) y =,

da = f(X), D(f) = (–∞; –9)? (–9; +∞), assimetrik to'plam, ya'ni funktsiya juft ham, toq ham emas.

V) f(X) =, y = f (x),

1) D( f) = (–∞; 3] ≠ ; b) (∞; –2), (–4; 4]?

Variant 2

1. Berilgan to‘plam simmetrikmi: a) [–2;2]; b) (∞; 0], (0; 7) ?


A); b) y = x (5 – x 2). 2. Funksiyani paritet uchun tekshiring:

a) y = x 2 (2x – x 3), b) y =

3. Rasmda. grafik tuzilgan da = f(X), Barcha uchun X, shartni qondirish X? 0.
Funktsiyaning grafigini chizing da = f(X), Agar da = f(X) juft funksiyadir.

3. Rasmda. grafik tuzilgan da = f(X), x shartni qanoatlantiradigan barcha x uchun? 0.
Funktsiyaning grafigini chizing da = f(X), Agar da = f(X) g'alati funktsiyadir.

O'zaro tekshirish slayd.

6. Uyga vazifa: №11.11, 11.21,11.22;

Paritet xossasining geometrik ma’nosini isbotlash.

***(Yagona davlat imtihonini topshirish varianti).

1. y = f(x) toq funksiya butun sonlar qatorida aniqlangan. x o'zgaruvchining har qanday manfiy bo'lmagan qiymati uchun bu funktsiyaning qiymati g() funktsiyasining qiymatiga to'g'ri keladi. X) = X(X + 1)(X + 3)(X– 7). h( funksiyaning qiymatini toping. X) = da X = 3.

7. Xulosa qilish



Shuningdek o'qing: