Tenglamalarni algoritm yordamida yechish. Chiziqli tenglamalar tizimiga misollar: yechish usuli Tenglamalarni yechish algoritmi misollar keltiring.

Qo'shish

Qo'shish

Qo'shish + qo'shish = yig'indi

1) Noma'lum hadni topish uchun yig'indidan ma'lum hadni ayirish kerak.

Ayirish

Ayirish

Minuend - subtrahend = farq

1) Noma'lum ayirmani topish uchun minuenddan farqni ayirish kerak.

2) Noma’lum minuendni topish uchun ayirmaga ayirma qo‘shish kerak.

Ko'paytirish

Ko'paytirish

Ko'paytiruvchi ∙ ko'paytiruvchi = mahsulot

1) Noma'lum omilni topish uchun mahsulotni ma'lum koeffitsientga bo'lish kerak

Bo'lim

Dividend: bo'luvchi = qism

Bo'lim

Dividend: bo'luvchi = qism

1) Noma'lum dividendni topish uchun siz qismni bo'luvchiga ko'paytirishingiz kerak.

2) Noma'lum bo'luvchini topish uchun dividendni qismga bo'lish kerak.

Murakkab tenglamani yechish algoritmi:

1.Chap tomondan toping oxirgi harakat, uni aylantiring.

2. Yuqoridagi harakat komponentlarini belgilang.

3. Qoidani tanlang.

4.Noma'lum komponentni chapga qoldiring.

5.O'ng tomonning natijasini hisoblang.

6. Oddiy tenglamani oldingizmi?

Yo'q - keyin nuqtaga qayting 1.

Ushbu videoda biz butun to'plamni tahlil qilamiz chiziqli tenglamalar, ular bir xil algoritm yordamida hal qilinadi - shuning uchun ular eng oddiy deb ataladi.

Birinchidan, aniqlaymiz: chiziqli tenglama nima va qaysi biri eng oddiy deb ataladi?

Chiziqli tenglama - bu faqat bitta o'zgaruvchiga ega bo'lgan va faqat birinchi darajali tenglama.

Eng oddiy tenglama qurilishni anglatadi:

Boshqa barcha chiziqli tenglamalar algoritmdan foydalanib, eng oddiyiga qisqartiriladi:

  1. Agar mavjud bo'lsa, qavslarni kengaytiring;
  2. Oʻzgaruvchisi boʻlgan shartlarni teng belgisining bir tomoniga, oʻzgaruvchisi boʻlmagan shartlarni ikkinchi tomoniga koʻchiring;
  3. Tenglik belgisining chap va o'ng tomoniga o'xshash shartlarni bering;
  4. Hosil bo‘lgan tenglamani $x$ o‘zgaruvchining koeffitsientiga bo‘ling.

Albatta, bu algoritm har doim ham yordam bermaydi. Gap shundaki, ba'zida bu hiyla-nayranglardan keyin $x$ o'zgaruvchisining koeffitsienti nolga teng bo'lib chiqadi. Bunday holda, ikkita variant mavjud:

  1. Tenglama umuman yechimga ega emas. Misol uchun, $0\cdot x=8$ kabi narsa paydo bo'lganda, ya'ni. chap tomonda nol, o'ngda esa noldan boshqa raqam. Quyidagi videoda biz bu holatning mumkin bo'lgan bir nechta sabablarini ko'rib chiqamiz.
  2. Yechim barcha raqamlardir. Bu mumkin bo'lgan yagona holat tenglama $0\cdot x=0$ konstruktsiyasiga qisqartirilganda bo'ladi. Qaysi $x$ ni almashtirsak ham, baribir “nol nolga teng”, ya’ni “nolga teng” bo‘lib chiqishi mantiqan to‘g‘ri. to'g'ri raqamli tenglik.

Keling, bularning barchasi hayotiy misollar yordamida qanday ishlashini ko'rib chiqaylik.

Tenglamalarni yechishga misollar

Bugun biz chiziqli tenglamalar bilan shug'ullanamiz va faqat eng oddiylari. Umuman olganda, chiziqli tenglama aynan bitta o'zgaruvchini o'z ichiga olgan har qanday tenglikni anglatadi va u faqat birinchi darajaga boradi.

Bunday inshootlar taxminan bir xil tarzda hal qilinadi:

  1. Avvalo, agar mavjud bo'lsa, qavslarni kengaytirishingiz kerak (oxirgi misolimizda bo'lgani kabi);
  2. Keyin shunga o'xshash narsalarni birlashtiring
  3. Nihoyat, o'zgaruvchini ajratib oling, ya'ni. o'zgaruvchi bilan bog'liq bo'lgan hamma narsani - u mavjud bo'lgan atamalarni - bir tomonga siljiting va unsiz qolgan hamma narsani boshqa tomonga o'tkazing.

Keyin, qoida tariqasida, hosil bo'lgan tenglikning har bir tomoniga o'xshashlarni berishingiz kerak, shundan so'ng "x" koeffitsientiga bo'lish qoladi va biz yakuniy javobni olamiz.

Nazariy jihatdan, bu yoqimli va sodda ko'rinadi, ammo amalda hatto tajribali o'rta maktab o'quvchilari ham juda oddiy chiziqli tenglamalarda haqoratli xatolarga yo'l qo'yishlari mumkin. Odatda, qavslarni ochishda yoki "ortiqcha" va "minuslar" ni hisoblashda xatolarga yo'l qo'yiladi.

Bundan tashqari, shunday bo'ladiki, chiziqli tenglamaning yechimlari umuman yo'q yoki yechim butun son chizig'i, ya'ni. har qanday raqam. Ushbu nozikliklarni bugungi darsimizda ko'rib chiqamiz. Ammo siz allaqachon tushunganingizdek, biz boshlaymiz oddiy vazifalar.

Oddiy chiziqli tenglamalarni yechish sxemasi

Birinchidan, yana bir bor eng oddiy chiziqli tenglamalarni echish uchun butun sxemani yozishga ruxsat bering:

  1. Agar mavjud bo'lsa, qavslarni kengaytiring.
  2. Biz o'zgaruvchilarni ajratamiz, ya'ni. Biz "X" ni o'z ichiga olgan hamma narsani bir tomonga, "X" lari bo'lmagan hamma narsani boshqa tomonga o'tkazamiz.
  3. Biz shunga o'xshash shartlarni taqdim etamiz.
  4. Biz hamma narsani "x" koeffitsientiga ajratamiz.

Albatta, bu sxema har doim ham ishlamaydi, unda ma'lum nozikliklar va fokuslar mavjud va endi biz ular bilan tanishamiz.

Oddiy chiziqli tenglamalarning haqiqiy misollarini yechish

Vazifa № 1

Birinchi qadam bizdan qavslarni ochishni talab qiladi. Ammo ular bu misolda yo'q, shuning uchun biz bu bosqichni o'tkazib yuboramiz. Ikkinchi bosqichda biz o'zgaruvchilarni ajratishimiz kerak. Eslatma: haqida gapiramiz faqat individual shartlar haqida. Keling, buni yozamiz:

Biz chap va o'ngda shunga o'xshash shartlarni taqdim etamiz, ammo bu erda allaqachon qilingan. Shuning uchun biz to'rtinchi bosqichga o'tamiz: koeffitsientga bo'ling:

\[\frac(6x)(6)=-\frac(72)(6)\]

Shunday qilib, biz javob oldik.

Vazifa № 2

Biz ushbu muammoda qavslarni ko'rishimiz mumkin, shuning uchun ularni kengaytiramiz:

Chapda ham, o'ngda ham taxminan bir xil dizaynni ko'ramiz, lekin keling, algoritmga muvofiq harakat qilaylik, ya'ni. o'zgaruvchilarni ajratish:

Mana bir nechta shunga o'xshashlar:

Bu qanday ildizlarda ishlaydi? Javob: har qanday uchun. Shuning uchun $x$ har qanday raqam ekanligini yozishimiz mumkin.

Vazifa № 3

Uchinchi chiziqli tenglama qiziqroq:

\[\chap(6-x \o'ng)+\chap(12+x \o'ng)-\chap(3-2x \o'ng)=15\]

Bu erda bir nechta qavslar mavjud, lekin ular hech narsa bilan ko'paytirilmaydi, ular oldida turli xil belgilar mavjud. Keling, ularni ajratamiz:

Bizga ma'lum bo'lgan ikkinchi bosqichni bajaramiz:

\[-x+x+2x=15-6-12+3\]

Keling, hisob-kitob qilaylik:

Biz oxirgi bosqichni bajaramiz - hamma narsani "x" koeffitsientiga bo'ling:

\[\frac(2x)(x)=\frac(0)(2)\]

Chiziqli tenglamalarni yechishda eslash kerak bo'lgan narsalar

Agar biz juda oddiy vazifalarni e'tiborsiz qoldirsak, men quyidagilarni aytmoqchiman:

  • Yuqorida aytganimdek, har bir chiziqli tenglamaning yechimi yo'q - ba'zida oddiygina ildizlar yo'q;
  • Ildizlar bo'lsa ham, ular orasida nol bo'lishi mumkin - buning hech qanday yomon joyi yo'q.

Nol boshqalar bilan bir xil raqam; siz uni hech qanday tarzda kamsitmasligingiz kerak yoki agar siz nolga ega bo'lsangiz, unda siz noto'g'ri ish qildingiz deb o'ylamasligingiz kerak.

Yana bir xususiyat qavslarning ochilishi bilan bog'liq. Iltimos, diqqat qiling: ularning oldida "minus" bo'lsa, biz uni olib tashlaymiz, lekin qavs ichida biz belgilarni o'zgartiramiz qarama-qarshi. Va keyin biz uni standart algoritmlar yordamida ochishimiz mumkin: biz yuqoridagi hisob-kitoblarda ko'rgan narsamizni olamiz.

Ushbu oddiy haqiqatni tushunish sizga o'rta maktabda ahmoqona va xafagarchilikka yo'l qo'ymaslikka yordam beradi, chunki bunday narsalarni qilish odatiy holdir.

Murakkab chiziqli tenglamalarni yechish

Keling, ko'proq narsaga o'tamiz murakkab tenglamalar. Endi konstruktsiyalar murakkablashadi va turli xil o'zgarishlarni amalga oshirishda kvadrat funktsiya paydo bo'ladi. Biroq, biz bundan qo'rqmasligimiz kerak, chunki agar muallifning rejasiga ko'ra, biz chiziqli tenglamani yechayotgan bo'lsak, unda transformatsiya jarayonida kvadrat funktsiyani o'z ichiga olgan barcha monomiallar albatta bekor qilinadi.

Misol № 1

Shubhasiz, birinchi qadam qavslarni ochishdir. Buni juda ehtiyotkorlik bilan qilaylik:

Endi maxfiylikni ko'rib chiqaylik:

\[-x+6((x)^(2))-6((x)^(2))+x=-12\]

Mana bir nechta shunga o'xshashlar:

Bu aniq berilgan tenglama Hech qanday yechim yo'q, shuning uchun biz buni javobda yozamiz:

\[\varnothing\]

yoki hech qanday ildiz yo'q.

Misol № 2

Biz xuddi shu harakatlarni bajaramiz. Birinchi qadam:

Keling, o'zgaruvchisi bo'lgan hamma narsani chapga, usiz esa o'ngga siljitamiz:

Mana bir nechta shunga o'xshashlar:

Shubhasiz, bu chiziqli tenglamaning yechimi yo'q, shuning uchun biz uni quyidagicha yozamiz:

\[\varnothing\],

yoki hech qanday ildiz yo'q.

Yechimning nuanslari

Ikkala tenglama ham to'liq yechilgan. Bu ikki iboradan misol tariqasida biz yana bir bor amin bo‘ldikki, hatto eng oddiy chiziqli tenglamalarda ham hamma narsa unchalik oddiy bo‘lmasligi mumkin: bitta, yoki hech biri, yoki cheksiz ko‘p ildizlar bo‘lishi mumkin. Bizning holatlarimizda biz ikkita tenglamani ko'rib chiqdik, ikkalasi ham oddiygina ildizga ega emas.

Ammo men sizning e'tiboringizni yana bir faktga qaratmoqchiman: qavslar bilan qanday ishlash va ularning oldida minus belgisi bo'lsa, ularni qanday ochish kerak. Ushbu ifodani ko'rib chiqing:

Ochishdan oldin siz hamma narsani "X" ga ko'paytirishingiz kerak. E'tibor bering: ko'payadi har bir alohida atama. Ichkarida ikkita atama mavjud - mos ravishda ikkita atama va ko'paytiriladi.

Va faqat bu oddiy ko'rinadigan, ammo juda muhim va xavfli o'zgarishlar tugagandan so'ng, siz qavsni undan keyin minus belgisi borligi nuqtai nazaridan ochishingiz mumkin. Ha, ha: faqat hozir, o'zgartirishlar tugallangandan so'ng, biz qavslar oldida minus belgisi borligini eslaymiz, ya'ni pastdagi hamma narsa shunchaki belgilarni o'zgartiradi. Shu bilan birga, qavslarning o'zi yo'qoladi va eng muhimi, oldingi "minus" ham yo'qoladi.

Ikkinchi tenglama bilan ham xuddi shunday qilamiz:

Men bu mayda-chuyda, arzimasdek ko‘ringan faktlarga bejiz e’tibor qaratganim yo‘q. Chunki tenglamalarni yechish har doim elementar o'zgarishlar ketma-ketligi bo'lib, bu erda oddiy harakatlarni aniq va malakali bajara olmaslik yuqori sinf o'quvchilarining mening oldimga kelishiga va yana shunday oddiy tenglamalarni echishni o'rganishiga olib keladi.

Albatta, kun keladiki, siz bu ko'nikmalarni avtomatizm darajasiga ko'tarasiz. Endi har safar juda ko'p o'zgarishlarni amalga oshirishingiz shart emas, siz hamma narsani bitta satrga yozasiz. Ammo endigina o'rganayotganingizda, har bir harakatni alohida yozishingiz kerak.

Bundan ham murakkab chiziqli tenglamalarni yechish

Biz hozir hal qilmoqchi bo'lgan narsani eng oddiy vazifa deb atash qiyin, ammo ma'no o'zgarishsiz qolmoqda.

Vazifa № 1

\[\left(7x+1 \o'ng)\left(3x-1 \o'ng)-21((x)^(2))=3\]

Birinchi qismdagi barcha elementlarni ko'paytiramiz:

Keling, bir oz maxfiylikni ta'minlaylik:

Mana bir nechta shunga o'xshashlar:

Keling, oxirgi bosqichni bajaramiz:

\[\frac(-4x)(4)=\frac(4)(-4)\]

Mana bizning yakuniy javobimiz. Va yechish jarayonida bizda kvadratik funktsiyaga ega koeffitsientlar bo'lganiga qaramay, ular bir-birini bekor qildi, bu esa tenglamani kvadrat emas, chiziqli qiladi.

Vazifa № 2

\[\chap(1-4x \o'ng)\chap(1-3x \o'ng)=6x\chap(2x-1 \o'ng)\]

Keling, birinchi qadamni diqqat bilan bajaramiz: birinchi qavsdagi har bir elementni ikkinchisidan har bir elementga ko'paytiramiz. O'zgartirishlardan keyin jami to'rtta yangi atama bo'lishi kerak:

Endi har bir atamada ko'paytirishni diqqat bilan bajaramiz:

Keling, "X" harfi bo'lgan shartlarni chapga, bo'lmaganlarini esa o'ngga o'tkazamiz:

\[-3x-4x+12((x)^(2))-12((x)^(2))+6x=-1\]

Mana shunga o'xshash atamalar:

Yana bir bor yakuniy javobni oldik.

Yechimning nuanslari

Bu ikki tenglama haqida eng muhim eslatma quyidagicha: biz bir nechta haddan iborat bo'lgan qavslarni ko'paytirishni boshlaganimizdan so'ng, bu quyidagi qoidaga muvofiq amalga oshiriladi: biz birinchi haddan birinchisini olamiz va har bir element bilan ko'paytiramiz. ikkinchisi; keyin birinchi elementdan ikkinchi elementni olamiz va xuddi shunday ikkinchi elementning har bir elementiga ko'paytiramiz. Natijada biz to'rtta muddatga ega bo'lamiz.

Algebraik yig'indi haqida

Ushbu oxirgi misol bilan men talabalarga nimani eslatmoqchiman algebraik yig'indi. Klassik matematikada $1-7$ deganda biz oddiy qurilishni nazarda tutamiz: bittadan yettini ayirish. Algebrada biz quyidagilarni nazarda tutamiz: "bir" raqamiga biz boshqa raqamni qo'shamiz, ya'ni "minus etti". Algebraik yig'indi oddiy arifmetik yig'indidan shunday farq qiladi.

Barcha o'zgarishlarni, har bir qo'shish va ko'paytirishni amalga oshirayotganda, yuqorida tavsiflanganlarga o'xshash konstruktsiyalarni ko'rishni boshlasangiz, polinomlar va tenglamalar bilan ishlashda algebrada hech qanday muammo bo'lmaydi.

Va nihoyat, keling, biz ko'rib chiqqanlardan ham murakkabroq bo'lgan yana bir nechta misollarni ko'rib chiqaylik va ularni hal qilish uchun biz standart algoritmimizni biroz kengaytirishimiz kerak.

Kasrli tenglamalarni yechish

Bunday vazifalarni hal qilish uchun biz algoritmimizga yana bir qadam qo'shishimiz kerak. Lekin birinchi navbatda algoritmimizni eslatib o'taman:

  1. Qavslarni oching.
  2. Alohida o'zgaruvchilar.
  3. Shunga o'xshashlarni olib keling.
  4. Nisbatga bo'linadi.

Afsuski, bu ajoyib algoritm, barcha samaradorligiga qaramay, oldimizda kasrlar mavjud bo'lganda, unchalik mos kelmaydi. Va biz quyida ko'rib chiqamiz, biz ikkala tenglamada ham chap, ham o'ngda kasrga egamiz.

Bu holatda qanday ishlash kerak? Ha, bu juda oddiy! Buning uchun siz algoritmga yana bir qadam qo'shishingiz kerak, bu birinchi harakatdan oldin ham, keyin ham bajarilishi mumkin, ya'ni kasrlardan xalos bo'lish. Shunday qilib, algoritm quyidagicha bo'ladi:

  1. Fraksiyalardan xalos bo'ling.
  2. Qavslarni oching.
  3. Alohida o'zgaruvchilar.
  4. Shunga o'xshashlarni olib keling.
  5. Nisbatga bo'linadi.

"Fraksiyalardan xalos bo'lish" nimani anglatadi? Va nima uchun buni birinchi standart qadamdan keyin ham, oldin ham qilish mumkin? Aslida, bizning holatlarimizda, barcha kasrlar o'zlarining maxrajlarida sonli, ya'ni. Hamma joyda maxraj shunchaki raqamdir. Shuning uchun, agar tenglamaning ikkala tomonini bu raqamga ko'paytirsak, biz kasrlardan xalos bo'lamiz.

Misol № 1

\[\frac(\left(2x+1 \o'ng)\left(2x-3 \o'ng))(4)=((x)^(2))-1\]

Keling, bu tenglamadagi kasrlardan xalos bo'laylik:

\[\frac(\left(2x+1 \o'ng)\left(2x-3 \o'ng)\cdot 4)(4)=\left(((x)^(2))-1 \o'ng)\cdot 4\]

E'tibor bering: hamma narsa bir marta "to'rt" ga ko'paytiriladi, ya'ni. Sizda ikkita qavs borligi har birini "to'rt" ga ko'paytirish kerak degani emas. Keling, yozamiz:

\[\left(2x+1 \o'ng)\left(2x-3 \right)=\left(((x)^(2))-1 \o'ng)\cdot 4\]

Endi kengaytiramiz:

Biz o'zgaruvchini ajratamiz:

Biz shunga o'xshash atamalarni qisqartiramiz:

\[-4x=-1\chap| :\left(-4 \o'ng) \o'ng.\]

\[\frac(-4x)(-4)=\frac(-1)(-4)\]

Biz yakuniy yechimni oldik, keling, ikkinchi tenglamaga o'tamiz.

Misol № 2

\[\frac(\left(1-x \o'ng)\left(1+5x \o'ng))(5)+(x)^(2))=1\]

Bu erda biz bir xil harakatlarni bajaramiz:

\[\frac(\left(1-x \o'ng)\left(1+5x \o'ng)\cdot 5)(5)+((x)^(2))\cdot 5=5\]

\[\frac(4x)(4)=\frac(4)(4)\]

Muammo hal qilindi.

Men bugun sizga aytmoqchi bo'lgan narsam shu edi.

Asosiy fikrlar

Asosiy topilmalar quyidagilar:

  • Chiziqli tenglamalarni yechish algoritmini bilish.
  • Qavslarni ochish qobiliyati.
  • Agar ko'rsangiz, tashvishlanmang kvadratik funktsiyalar, ehtimol, keyingi transformatsiyalar jarayonida ular kamayadi.
  • Chiziqli tenglamalarda ildizlarning uchta turi mavjud, hatto eng oddiylari ham: bitta ildiz, butun son qatori ildiz va umuman ildiz yo'q.

Umid qilamanki, bu dars sizga barcha matematikani qo'shimcha tushunish uchun oddiy, ammo juda muhim mavzuni o'zlashtirishga yordam beradi. Agar biror narsa aniq bo'lmasa, saytga o'ting va u erda keltirilgan misollarni hal qiling. Bizni kuzatib boring, sizni yana ko'plab qiziqarli narsalar kutmoqda!

Men maxrajdagi noma’lumli tenglamani yechishda yordam so‘rayman: (y+5)/(y^2-5*y)-(y-5)/(2*y^2-10*y)=( y+25)/ (2y^2-50) bo‘ladi

Tenglama 7-sinf uchun algrebe darsligida berilgan. Men qaror qilishga harakat qildim, lekin doimo ba'zi bir butunlay chalkash holatlarga keldim. Ma'lumot uchun: shunga o'xshash tenglamali mavzu kvadrat tenglamalarni echishdan ancha oldin keladi, shuning uchun nazariy jihatdan tenglamani uni qisqartirmasdan yechish kerak. kvadrat tenglama. Umuman olganda, men ko'rsatilgan yechim algoritmi uchun minnatdor bo'laman.

Darslik oxirida quyidagi javob berilgan: 15

1) (-3;2) sonlar juftligi 2x-3y=0 tenglamaning yechimimi?

2) 3y-9x=18 tenglama yechimlari orasidan o‘zgaruvchilarning qiymatlari teng bo‘lgan yechimni toping.
3) 4x-5y=10 tenglama grafigiga A nuqta olinadi.A nuqtaning koordinatasi 2 bo’lsa, uning abssissasini toping.
4) ax+by=1 funksiyaning grafigi A(1;-2) va B(-2;7) nuqtalardan o’tadi.a va b koeffitsientlar qanday? 1).a=3, b=1 2).a=1,b=3 3).a=-1,b=5 4).a=3,b=9.
5) (-1;7) sonlar juftligi 23x+4y=5 tenglamaning yechimimi?
6) x-7y=12 tenglama yechimlari orasidan o‘zgaruvchilarning qiymatlari teng bo‘lgan yechimni toping.
7) 12x-5y=23 tenglama grafigida S nuqta olinadi.S nuqtaning abssissasi -1 ga teng bo lsa, uning koordinatasini toping.

Bugun oxirgi marta yordam No 1. (-1:1), (yarim kasr, beshdan ikki kasr), (-4:1) juft sonlardan qaysi biri 2x+5y- tenglamaning yechimi hisoblanadi. 3=0

No 2 Agar juft sonlar (6:-4) tenglama yechimi ekanligi ma'lum bo'lsa, +5x+by+18=0 tenglamadagi b koeffitsientining qiymatlarini toping. 3-sonli ikkita o‘zgaruvchisi 6x-3y=3 bo‘lgan chiziqli tenglamani ko‘rinishga o‘tkazing. chiziqli funksiya y=rx+m

8-SINF KREDIT UCHUN ALGEBRA SAVOLLARI?

1. Oddiy kasr nima? Oddiy kasrni yozish. Kasrning asosiy xossasi. Misollar keltiring.
2. Qo‘shish va bo‘lish oddiy kasrlar turli maxrajlar bilan. Misollar keltiring.
3. Maxrajlari har xil bo‘lgan oddiy kasrlarni ko‘paytirish va ayirish. Misollar keltiring.
4. O‘nli kasr nima? O'nli kasrni yozish. Misollar keltiring.
5. Qo‘shish va bo‘lish o'nli kasrlar. Misollar keltiring.
6. O‘nli kasrlarni ko‘paytirish va ayirish. Misollar keltiring.
7. Algebraik kasr nima. Misollar keltiring.
8. Algebraik kasrni aniqlash sohasi. Misollar keltiring.
9. Algebraik kasrning asosiy xossasi. Misollar keltiring.
10. Qo‘shish va bo‘lish algebraik kasrlar. Misollar keltiring.
11. Algebraik kasrlarni ayirish va ko‘paytirish. Misollar keltiring.
12. Natural ko‘rsatkichli daraja nimaga aytiladi? Har qanday darajali musbat sonning kuchi. Daraja salbiy raqam juft raqam bilan. Toq darajali manfiy sonning kuchi. Misollar keltiring.
13. Butun ko‘rsatkichli daraja xossalari. Misollar keltiring.
14. Tenglama deb nimaga aytiladi? Tenglamaning ildizlari? Tenglamani yechish nimani anglatadi? Misollar keltiring.
15. Tenglamalarni yechish algoritmi. Misollar keltiring.
16. Yechish algoritmi kasr tenglamasi. Misollar keltiring.
17. Kvadrat ildiz. Arifmetik kvadrat ildiz. Misollar keltiring.
18. Arifmetikaning xossalari kvadrat ildiz. Misollar keltiring.
19. x2 = a tenglama va uning ildizlari. Misollar keltiring.
20. Kvadrat ildizlarning xossalari. Misol keltiring.

Qabul qilingan tenglamalar tizimlari keng qo'llanilishi bilan iqtisodiyot sohasida matematik modellashtirish turli jarayonlar. Masalan, ishlab chiqarishni boshqarish va rejalashtirish, logistika yo'nalishlari (transport muammosi) yoki jihozlarni joylashtirish muammolarini hal qilishda.

Tenglamalar sistemasi nafaqat matematikada, balki fizika, kimyo va biologiyada ham aholi sonini topish masalalarini yechishda qo'llaniladi.

Chiziqli tenglamalar tizimi bir nechta o'zgaruvchiga ega bo'lgan ikki yoki undan ortiq tenglamalar bo'lib, ular uchun umumiy yechim topish kerak. Barcha tenglamalar haqiqiy tenglikka aylanadigan yoki ketma-ketlik mavjud emasligini isbotlaydigan raqamlarning bunday ketma-ketligi.

Chiziqli tenglama

ax+by=c ko’rinishdagi tenglamalar chiziqli deyiladi. X, y belgilari - qiymati topilishi kerak bo'lgan noma'lumlar, b, a - o'zgaruvchilarning koeffitsientlari, c - tenglamaning erkin hadi.
Tenglamani chizib yechish to‘g‘ri chiziqqa o‘xshaydi, uning barcha nuqtalari ko‘phadning yechimlaridir.

Chiziqli tenglamalar sistemalarining turlari

Eng oddiy misollar ikkita o'zgaruvchisi X va Y bo'lgan chiziqli tenglamalar tizimi hisoblanadi.

F1(x, y) = 0 va F2(x, y) = 0, bu erda F1,2 funksiyalar va (x, y) funksiya o'zgaruvchilari.

Tenglamalar tizimini yechish - bu tizim haqiqiy tenglikka aylanadigan qiymatlarni (x, y) topish yoki x va y ning mos qiymatlari mavjud emasligini aniqlashni anglatadi.

Nuqtaning koordinatalari sifatida yozilgan juft qiymatlar (x, y) chiziqli tenglamalar tizimining yechimi deb ataladi.

Agar tizimlar bitta umumiy yechimga ega bo'lsa yoki hech qanday yechim mavjud bo'lmasa, ular ekvivalent deb ataladi.

Chiziqli tenglamalarning bir jinsli sistemalari - o'ng tomoni nolga teng bo'lgan tizimlar. Agar tenglik belgisidan keyingi o'ng qism qiymatga ega bo'lsa yoki funktsiya bilan ifodalangan bo'lsa, bunday tizim geterogendir.

O'zgaruvchilar soni ikkitadan ancha ko'p bo'lishi mumkin, keyin biz uchta yoki undan ko'p o'zgaruvchiga ega chiziqli tenglamalar tizimining misoli haqida gapirishimiz kerak.

Tizimlar bilan duch kelganda, maktab o'quvchilari tenglamalar soni noma'lumlar soniga to'g'ri kelishi kerak deb o'ylashadi, ammo bu unday emas. Tizimdagi tenglamalar soni o'zgaruvchilarga bog'liq emas, ular xohlagancha ko'p bo'lishi mumkin.

Tenglamalar sistemalarini yechishning oddiy va murakkab usullari

Bunday tizimlarni hal qilishning umumiy analitik usuli mavjud emas, barcha usullar asoslanadi raqamli yechimlar. IN maktab kursi Matematika almashtirish, algebraik qo'shish, almashtirish, shuningdek, grafik va matritsa usullari, Gauss usuli bilan yechish kabi usullarni batafsil tavsiflaydi.

Yechish usullarini o'rgatishda asosiy vazifa tizimni to'g'ri tahlil qilishni va har bir misol uchun optimal yechim algoritmini topishni o'rgatishdir. Asosiysi, har bir usul uchun qoidalar va harakatlar tizimini yodlash emas, balki ma'lum bir usuldan foydalanish tamoyillarini tushunishdir.

7-sinf dasturining chiziqli tenglamalar sistemasiga misollar yechish o'rta maktab juda oddiy va batafsil tushuntirilgan. Har qanday matematika darsligida ushbu bo'limga etarlicha e'tibor beriladi. Chiziqli tenglamalar sistemalariga misollarni Gauss va Kramer usuli yordamida yechish oliy ta’limning dastlabki yillarida batafsil o‘rganiladi.

Tizimlarni almashtirish usuli yordamida yechish

O'zgartirish usulining harakatlari bir o'zgaruvchining qiymatini ikkinchisi bilan ifodalashga qaratilgan. Ifoda qolgan tenglamaga almashtiriladi, so'ngra u bitta o'zgaruvchili shaklga keltiriladi. Harakat tizimdagi noma'lumlar soniga qarab takrorlanadi

7-sinf chiziqli tenglamalar tizimi misoliga almashtirish usuli yordamida yechim keltiramiz:

Misoldan ko'rinib turibdiki, x o'zgaruvchisi F(X) = 7 + Y orqali ifodalangan. X o'rniga tizimning 2- tenglamasiga almashtirilgan natija 2-tenglamada bitta Y o'zgaruvchisini olishga yordam berdi. . Bu misolni yechish oson va Y qiymatini olish imkonini beradi.Oxirgi qadam olingan qiymatlarni tekshirishdir.

Chiziqli tenglamalar sistemasiga misolni almashtirish usuli bilan yechish har doim ham mumkin emas. Tenglamalar murakkab bo'lishi mumkin va o'zgaruvchini ikkinchi noma'lum bilan ifodalash keyingi hisob-kitoblar uchun juda og'ir bo'ladi. Tizimda 3 dan ortiq noma'lum bo'lsa, almashtirish yo'li bilan yechish ham o'rinsiz.

Chiziqli bir hil bo'lmagan tenglamalar sistemasiga misol yechimi:

Algebraik qo‘shish yordamida yechim

Qo'shish usulidan foydalangan holda tizimlar yechimlarini izlashda tenglamalar atama bo'yicha qo'shiladi va turli raqamlarga ko'paytiriladi. Matematik operatsiyalarning yakuniy maqsadi bitta o'zgaruvchidagi tenglamadir.

Ushbu usulni qo'llash amaliyot va kuzatishni talab qiladi. Chiziqli tenglamalar tizimini 3 yoki undan ortiq oʻzgaruvchi boʻlganda qoʻshish usuli yordamida yechish oson emas. Tenglamalar kasr va o'nli kasrlarni o'z ichiga olgan bo'lsa, algebraik qo'shish qulay.

Yechim algoritmi:

  1. Tenglamaning ikkala tomonini ma'lum songa ko'paytiring. Arifmetik operatsiya natijasida o'zgaruvchining koeffitsientlaridan biri 1 ga teng bo'lishi kerak.
  2. Hosil boʻlgan iborani termin boʻyicha qoʻshing va nomaʼlumlardan birini toping.
  3. Qolgan o'zgaruvchini topish uchun olingan qiymatni tizimning 2-tenglamasiga almashtiring.

Yangi o'zgaruvchini kiritish orqali hal qilish usuli

Agar tizim ikkitadan ko'p bo'lmagan tenglamalar uchun yechim topishni talab qilsa, yangi o'zgaruvchi kiritilishi mumkin; noma'lumlar soni ham ikkitadan ko'p bo'lmasligi kerak.

Usul yangi o'zgaruvchini kiritish orqali tenglamalardan birini soddalashtirish uchun ishlatiladi. Yangi tenglama kiritilgan noma'lum uchun echiladi va olingan qiymatdan asl o'zgaruvchini aniqlash uchun foydalaniladi.

Misol shuni ko'rsatadiki, yangi t o'zgaruvchisini kiritish orqali tizimning 1- tenglamasini standart tenglamaga kamaytirish mumkin edi. kvadratik trinomial. Ko'phadni diskriminantni topib yechishingiz mumkin.

Diskriminantning qiymatini taniqli formuladan foydalanib topish kerak: D = b2 - 4*a*c, bu erda D - kerakli diskriminant, b, a, c - ko'phadning omillari. Berilgan misolda a=1, b=16, c=39, demak D=100. Agar diskriminant noldan katta bo'lsa, u holda ikkita yechim mavjud: t = -b±√D / 2*a, agar diskriminant noldan kichik bo'lsa, unda bitta yechim mavjud: x = -b / 2*a.

Olingan tizimlar uchun yechim qo'shish usuli bilan topiladi.

Tizimlarni echishning vizual usuli

3 ta tenglama tizimi uchun javob beradi. Usul tizimga kiritilgan har bir tenglamaning grafiklarini koordinata o'qi bo'yicha qurishdan iborat. Egri chiziqlarning kesishish nuqtalarining koordinatalari va bo'ladi umumiy qaror tizimlari.

Grafik usul bir qator nuanslarga ega. Chiziqli tenglamalar sistemalarini vizual tarzda yechishning bir qancha misollarini ko‘rib chiqamiz.

Misoldan ko'rinib turibdiki, har bir chiziq uchun ikkita nuqta qurilgan, x o'zgaruvchisining qiymatlari o'zboshimchalik bilan tanlangan: 0 va 3. X qiymatlari asosida y uchun qiymatlar topildi: 3 va 0. Koordinatalari (0, 3) va (3, 0) bo'lgan nuqtalar grafikda belgilangan va chiziq bilan bog'langan.

Ikkinchi tenglama uchun qadamlar takrorlanishi kerak. Chiziqlarning kesishish nuqtasi tizimning yechimidir.

Quyidagi misol topishni talab qiladi grafik yechim chiziqli tenglamalar sistemalari: 0,5x-y+2=0 va 0,5x-y-1=0.

Misoldan ko'rinib turibdiki, tizim hech qanday yechimga ega emas, chunki grafiklar parallel va butun uzunligi bo'ylab kesishmaydi.

2 va 3-misollardagi tizimlar bir-biriga o'xshash, ammo tuzilganida ularning echimlari boshqacha ekanligi ayon bo'ladi. Shuni esda tutish kerakki, tizimning yechimi bor yoki yo'qligini har doim ham aytish mumkin emas, har doim grafik yaratish kerak.

Matritsa va uning turlari

Matritsalar chiziqli tenglamalar tizimini ixcham yozish uchun ishlatiladi. Matritsa - bu jadval maxsus turi raqamlar bilan to'ldirilgan. n*m n - satr va m - ustunga ega.

Ustunlar va satrlar soni teng bo'lganda matritsa kvadrat hisoblanadi. Matritsa-vektor - cheksiz mumkin bo'lgan qatorlar soniga ega bo'lgan bitta ustunli matritsa. Diagonallardan biri va boshqa nol elementlari bo'ylab birlari bo'lgan matritsaga o'ziga xoslik deyiladi.

Teskari matritsa bu matritsa bo'lib, unga ko'paytirilganda asl matritsa birlik matritsaga aylanadi; bunday matritsa faqat dastlabki kvadrat uchun mavjud.

Tenglamalar tizimini matritsaga aylantirish qoidalari

Tenglamalar tizimlariga nisbatan tenglamalarning koeffitsientlari va erkin shartlari matritsa raqamlari sifatida yoziladi, bitta tenglama matritsaning bir qatoridir.

Agar satrning kamida bitta elementi nolga teng bo'lmasa, matritsa qatori nolga teng emas deyiladi. Shuning uchun, agar tenglamalarning birortasida o'zgaruvchilar soni farq qiladigan bo'lsa, unda etishmayotgan noma'lum o'rniga nol kiritish kerak.

Matritsa ustunlari o'zgaruvchilarga qat'iy mos kelishi kerak. Bu shuni anglatadiki, x o'zgaruvchining koeffitsientlari faqat bitta ustunda yozilishi mumkin, masalan, birinchi, noma'lum y koeffitsienti - faqat ikkinchisida.

Matritsani ko'paytirishda matritsaning barcha elementlari ketma-ket songa ko'paytiriladi.

Teskari matritsani topish variantlari

Teskari matritsani topish formulasi juda oddiy: K -1 = 1 / |K|, bu erda K -1 teskari matritsa va |K| matritsaning aniqlovchisi hisoblanadi. |K| nolga teng bo'lmasligi kerak, u holda tizim yechimga ega.

Determinant ikki-ikki matritsa uchun osongina hisoblab chiqiladi, shunchaki diagonal elementlarni bir-biriga ko'paytirish kerak. “Uchdan uch” varianti uchun |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c formulasi mavjud. 3 + a 3 b 2 c 1. Siz formuladan foydalanishingiz mumkin yoki ishda ustunlar va elementlar qatorlari soni takrorlanmasligi uchun har bir satr va har bir ustundan bitta elementni olishingiz kerakligini eslashingiz mumkin.

Matritsa usuli yordamida chiziqli tenglamalar sistemasiga misollar yechish

Yechimni topishning matritsa usuli ko'p sonli o'zgaruvchilar va tenglamalarga ega tizimlarni echishda noqulay yozuvlarni kamaytirishga imkon beradi.

Misolda, a nm - tenglamalarning koeffitsientlari, matritsa - vektor x n - o'zgaruvchilar, b n - erkin shartlar.

Gauss usuli yordamida tizimlarni yechish

Oliy matematikada Gauss usuli Kramer usuli bilan birgalikda oʻrganiladi va tizimlar yechimlarini topish jarayoni Gauss-Kramer yechim usuli deb ataladi. Bu usullar ko'p sonli chiziqli tenglamalarga ega bo'lgan tizimlarning o'zgaruvchilarini topish uchun ishlatiladi.

Gauss usuli almashtirish va algebraik qoʻshish yoʻli bilan yechimlarga juda oʻxshaydi, lekin tizimliroqdir. Maktab kursida 3 va 4 tenglamalar sistemalari uchun Gauss usuli bilan yechim qo'llaniladi. Usulning maqsadi tizimni teskari trapezoid shakliga tushirishdir. Algebraik o'zgartirishlar va almashtirishlar yordamida bitta o'zgaruvchining qiymati tizim tenglamalaridan birida topiladi. Ikkinchi tenglama 2 ta noma'lumli ifoda, 3 va 4 esa mos ravishda 3 va 4 o'zgaruvchiga ega.

Tizimni tavsiflangan shaklga keltirgandan so'ng, keyingi yechim ma'lum o'zgaruvchilarni tizim tenglamalariga ketma-ket almashtirishga tushiriladi.

7-sinf uchun maktab darsliklarida Gauss usuli bo'yicha yechimning namunasi quyidagicha tasvirlangan:

Misoldan ko'rinib turibdiki, (3) bosqichda ikkita tenglama olingan: 3x 3 -2x 4 =11 va 3x 3 +2x 4 =7. Har qanday tenglamani echish sizga x n o'zgaruvchilardan birini topishga imkon beradi.

Matnda tilga olingan 5-teoremada aytilishicha, agar tizim tenglamalaridan biri ekvivalent bilan almashtirilsa, natijada hosil bo'lgan tizim ham asl tenglamaga teng bo'ladi.

Gauss usulini talabalar tushunishi qiyin o'rta maktab, lekin dastur bo'yicha o'qiyotgan bolalarning zukkoligini rivojlantirishning eng qiziqarli usullaridan biridir chuqur o'rganish matematika va fizika darslarida.

Yozib olish qulayligi uchun hisob-kitoblar odatda quyidagicha amalga oshiriladi:

Tenglamalar va erkin atamalar koeffitsientlari matritsa shaklida yoziladi, bu erda matritsaning har bir qatori tizim tenglamalaridan biriga mos keladi. tenglamaning chap tomonini o'ngdan ajratadi. Rim raqamlari tizimdagi tenglamalar sonini bildiradi.

Birinchidan, ishlanadigan matritsani yozing, so'ngra qatorlardan biri bilan bajarilgan barcha harakatlar. Olingan matritsa "o'q" belgisidan keyin yoziladi va kerakli ishlarni bajarishda davom etadi algebraik amallar natijaga erishilgunga qadar.

Natijada diagonallardan biri 1 ga, qolgan barcha koeffitsientlar esa nolga teng bo'lgan matritsa bo'lishi kerak, ya'ni matritsa birlik shakliga tushiriladi. Tenglamaning har ikki tomonida raqamlar bilan hisob-kitoblarni bajarishni unutmasligimiz kerak.

Ushbu yozib olish usuli unchalik mashaqqatli emas va ko'plab noma'lum narsalarni sanab, chalg'itmaslikka imkon beradi.

Har qanday yechim usulidan bepul foydalanish ehtiyotkorlik va biroz tajribani talab qiladi. Hamma usullar ham amaliy xususiyatga ega emas. Yechimlarni topishning ba'zi usullari inson faoliyatining muayyan sohasida afzalroq, boshqalari esa ta'lim maqsadlarida mavjud.

Tenglamalarni yechish algoritmi: 1. Iloji bo'lsa ifodani soddalashtiring (qavslarni oching, o'xshash shartlarni keltiring). 2. Noma'lumni o'z ichiga olgan hadlarni tenglamaning bir tomoniga (odatda chapga), qolgan hadlarni esa boshqa tomoniga o'tkazing, belgilarni teskari tomonga o'zgartiring. 3. O‘xshash atamalarni keltiring. 4. Tenglamaning ildizini toping.

Slayd 27 taqdimotdan "Tenglamalar 6-sinf". Taqdimot bilan arxiv hajmi 2882 KB.

Matematika 6-sinf

xulosa boshqa taqdimotlar

"Natural sonlarning paydo bo'lishi" - Raqamlar. Mayya hindulari. Qadimgi cho'ponlar. Natural sonlar qanday paydo bo'lgan? Birinchi o'nlik raqamlari. Tosh davri matematikasi. Jonli hisoblash mashinasi. Raqamlarni yozish uchun o'nta piktogramma. Raqamlar nomlarni qabul qila boshlaydi. Butun sonlar. Qanday qilib odamlar raqamlarni yozishni o'rgandilar. Manfiy va kasr sonlar.

““Kasrlar” 6-sinf” - Bu kasrlar olib keldi bir xil maxraj. Sinov. O'zingiz sinab ko'ring. Bolalar, keling do'st bo'laylik. Sayohat. Qiyin harakat. Qizdirish; isitish. misrliklar. Do'st toping. Harakat rejasi. Kasrlarga bo'lgan ehtiyoj. Oh, bu fraktsiyalar. Inson kasrga o'xshaydi. Do'stlik. Rus tilidagi kasrlar.

“Kvadrat xossalari” - mavhum masalalar. Ajoyib xususiyatlar kvadrat. Kvadratni kesish bilan bog'liq muammolar. Kvadrat nima? Kvadrat ichida kvadrat. Kvadratning maydoni har qanday to'rtburchakning maydonidan kattaroqdir. Kvadratning asosiy xossalari. Kvadrat shaklida piyoda jangovar shakllanishi. Referatning maqsadlari. Origami siri nimada. Kvadrat. Mundarija. Origami. Tangram. Matematika bo'yicha kvadrat.

““Mal arifmetika” 6-sinf matematika” - Matematik labirint. Tekshirish. GCD. O'rtacha arifmetikni toping. Kasrlar tengmi? GCD ni toping. Soddalashtiring. 45 raqamining bo'luvchilari. Mustaqil ish. 2 va 5 ga bo'linadigan sonlar orasidan toping. Tasdiqlash ishi. Og'zaki hisoblash. Og'zaki hisoblash (zanjir bo'yicha). Hisoblash.

"Matematikada krossvord" - Matematika. Doiralarni chizish uchun vosita. Bosh qotirma. Matematik krossvordlar dunyosi. Matematik harakat. Krossvord qoidalari. Krossvordlar turlari. Ikki nuqtani bog'laydigan chiziq segmenti. Hikoya. Matematika bo'limi.

"6-sinf uchun matematika o'yinlari" - yozuvni hal qiling. Kichik g'altak, lekin qimmatli. Mashhur matematiklar. Ish qaysi ikki raqam bilan tugaydi? Kitob qancha turadi? Misr matematiklari. “va” birikmasi. Uzunlik o'lchovi. Qatorni uchta raqam bilan davom ettiring. Qiziqarli savollar. O'yin qoidalari. Arximed. Uyning 16-qavatiga boradigan yo'l 4-qavatga boradigan yo'ldan necha marta uzun? Qancha olma bor edi? Kundalik yarim metrli loglarga kesilgan. Professorning ukasi. Zinalar yuqoriga ko'tariladi.



Shuningdek o'qing: