Sinusning hosilasi: (sin x)′. Sinus hosilasi: (sin x)' Teskari trigonometrik funksiyalarning hosilalari teng

Hosil

Matematik funktsiyaning hosilasini hisoblash (differentsiatsiya) oliy matematikani yechishda juda keng tarqalgan muammodir. Oddiy (elementar) matematik funktsiyalar uchun bu juda oddiy masala, chunki elementar funktsiyalar uchun hosilalar jadvallari uzoq vaqtdan beri tuzilgan va ularga osongina kirish mumkin. Biroq, murakkab matematik funktsiyaning hosilasini topish arzimas ish emas va ko'pincha katta kuch va vaqtni talab qiladi.

Onlaynda lotin toping

Bizning onlayn xizmatimiz sizga ma'nosiz uzoq hisob-kitoblardan xalos bo'lishga imkon beradi va onlayn lotin toping bir lahzada. Bundan tashqari, veb-saytda joylashgan bizning xizmatimizdan foydalanish www.sayt, hisoblashingiz mumkin onlayn hosila elementar funksiyadan ham, analitik yechimga ega bo‘lmagan juda murakkab funksiyadan ham. Saytimizning boshqalarga nisbatan asosiy afzalliklari: 1) hosilani hisoblash uchun matematik funktsiyani kiritish usuliga qat'iy talablar yo'q (masalan, sinus x funksiyasini kiritishda uni sin x yoki sin sifatida kiritish mumkin. (x) yoki sin[x] va boshqalar d.); 2) onlayn lotin hisoblash rejimda bir zumda sodir bo'ladi onlayn va mutlaqo tekinga; 3) funksiyaning hosilasini topishga imkon beramiz har qanday buyurtma, lotinning tartibini o'zgartirish juda oson va tushunarli; 4) biz sizga deyarli har qanday matematik funktsiyaning hosilasini, hatto boshqa xizmatlar tomonidan yechilmaydigan juda murakkablarini ham topishga imkon beramiz. Berilgan javob har doim to'g'ri va xatolarni o'z ichiga olmaydi.

Bizning serverimizdan foydalanish sizga 1) hosilani siz uchun onlayn hisoblab chiqish imkonini beradi, bunda xato yoki matn terish xatosiga yo'l qo'yishingiz mumkin bo'lgan vaqt va zerikarli hisob-kitoblarni bartaraf etish; 2) agar siz matematik funktsiyaning hosilasini o'zingiz hisoblasangiz, biz sizga olingan natijani bizning xizmatimiz hisob-kitoblari bilan solishtirish va yechim to'g'ri ekanligiga ishonch hosil qilish yoki kirib kelgan xatoni topish imkoniyatini beramiz; 3) oddiy funksiyalarning hosilalari jadvallarini ishlatish o'rniga bizning xizmatimizdan foydalaning, bu erda kerakli funktsiyani topish uchun ko'pincha vaqt talab etiladi.

Sizga kerak bo'lgan yagona narsa onlayn lotin toping- bizning xizmatimizdan foydalanish

Jadvalning birinchi formulasini chiqarayotganda, biz bir nuqtada hosilaviy funktsiyani aniqlashdan boshlaymiz. Qaerga olib boraylik x- har qanday haqiqiy raqam, ya'ni x– funktsiyani aniqlash sohasidan istalgan raqam. Funksiya o'sishining argument o'sishiga nisbati chegarasini quyidagicha yozamiz:

Shuni ta'kidlash kerakki, chegara belgisi ostida nolning noaniqligi nolga bo'linadigan ifoda olinadi, chunki numerator cheksiz kichik qiymatni o'z ichiga olmaydi, lekin aniq nolga teng. Boshqacha qilib aytganda, doimiy funktsiyaning o'sishi har doim nolga teng.

Shunday qilib, doimiy funktsiyaning hosilasibutun ta'rif sohasi bo'ylab nolga teng.

Quvvat funksiyasining hosilasi.

Quvvat funksiyasining hosilasi formulasi shaklga ega , bu erda ko'rsatkich p- har qanday haqiqiy raqam.

Avval natural ko‘rsatkich, ya’ni for formulasini isbotlaymiz p = 1, 2, 3, …

Biz hosila ta'rifidan foydalanamiz. Quvvat funksiyasi ortishining argument ortishiga nisbati chegarasini yozamiz:

Numeratordagi ifodani soddalashtirish uchun Nyuton binomial formulasiga murojaat qilamiz:

Demak,

Bu tabiiy daraja uchun daraja funksiyasining hosilasi formulasini isbotlaydi.

Ko'rsatkichli funktsiyaning hosilasi.

Biz ta'rifga asoslangan hosila formulasini keltiramiz:

Biz noaniqlikka keldik. Uni kengaytirish uchun biz yangi o'zgaruvchini kiritamiz va . Keyin. Oxirgi o'tishda biz yangi logarifmik asosga o'tish uchun formuladan foydalandik.

Keling, asl chegaraga almashtiramiz:

Agar ikkinchi ajoyib chegarani eslasak, eksponensial funktsiyaning hosilasi formulasiga kelamiz:

Logarifmik funktsiyaning hosilasi.

Logarifmik funksiyaning hosilasi formulasini hamma uchun isbotlaymiz x ta'rif domenidan va bazaning barcha haqiqiy qiymatlaridan a logarifm lotin ta'rifi bo'yicha bizda:

E'tibor berganingizdek, isbotlash jarayonida logarifm xususiyatlaridan foydalangan holda o'zgartirishlar amalga oshirildi. Tenglik ikkinchi ajoyib chegara tufayli haqiqatdir.

Trigonometrik funksiyalarning hosilalari.

Trigonometrik funktsiyalarning hosilalari formulalarini olish uchun biz ba'zi trigonometriya formulalarini, shuningdek, birinchi ajoyib chegarani esga olishimiz kerak.

Sinus funktsiyasi uchun hosila ta'rifi bilan bizda mavjud .

Sinuslar farqi formulasidan foydalanamiz:

Birinchi ajoyib chegaraga o'tish uchun qoladi:

Shunday qilib, funktsiyaning hosilasi gunoh x Mavjud chunki x.

Kosinus hosilasi formulasi ham xuddi shunday isbotlangan.

Demak, funktsiyaning hosilasi chunki x Mavjud -sin x.

Tasdiqlangan differentsiallash qoidalaridan (kasr hosilasi) foydalanib, tangens va kotangens uchun hosilalar jadvali uchun formulalarni olamiz.

Giperbolik funksiyalarning hosilalari.

Differensiallash qoidalari va hosilalar jadvalidan ko'rsatkichli funktsiyaning hosilasi formulasi giperbolik sinus, kosinus, tangens va kotangens hosilalari uchun formulalar chiqarish imkonini beradi.

Teskari funktsiyaning hosilasi.

Taqdimot paytida chalkashliklarga yo'l qo'ymaslik uchun differensiallash amalga oshiriladigan funktsiya argumentini pastki qatorda belgilaymiz, ya'ni u funktsiyaning hosilasidir. f(x) tomonidan x.

Endi shakllantiramiz teskari funksiyaning hosilasini topish qoidasi.

Funktsiyalarga ruxsat bering y = f(x) Va x = g(y) o'zaro teskari, intervallarda va mos ravishda aniqlanadi. Agar biror nuqtada funktsiyaning nolga teng bo'lmagan chekli hosilasi mavjud bo'lsa f(x), u holda nuqtada teskari funktsiyaning chekli hosilasi mavjud g(y), va . Boshqa postda .

Ushbu qoida har qanday kishi uchun qayta shakllantirilishi mumkin x intervaldan , keyin biz olamiz .

Keling, ushbu formulalarning to'g'riligini tekshiramiz.

Natural logarifm uchun teskari funksiya topilsin (Bu yerga y funktsiyadir va x- dalil). Bu tenglamani yechilgandan keyin x, biz olamiz (bu erda x funktsiyadir va y- uning argumenti). Ya'ni, va o'zaro teskari funktsiyalar.

Hosilalar jadvalidan buni ko'ramiz Va .

Teskari funktsiyaning hosilalarini topish formulalari bizni bir xil natijalarga olib kelishiga ishonch hosil qilaylik:

Ko'rib turganingizdek, biz hosilalar jadvalidagi kabi natijalarga erishdik.

Endi biz teskari trigonometrik funksiyalarning hosilalari uchun formulalarni isbotlash uchun bilimga egamiz.

Arksinusning hosilasidan boshlaylik.

. Keyin, teskari funktsiyaning hosilasi uchun formuladan foydalanib, biz olamiz

Faqat o'zgarishlarni amalga oshirish qoladi.

Arksinus diapazoni interval bo'lgani uchun , Bu (asosiy elementar funksiyalar, ularning xossalari va grafiklari bo'limiga qarang). Shuning uchun biz buni hisobga olmaymiz.

Demak, . Arksinus hosilasining ta'rif sohasi intervaldir (-1; 1) .

Ark kosinusi uchun hamma narsa xuddi shu tarzda amalga oshiriladi:

Arktangentning hosilasini topamiz.

Teskari funktsiya uchun .

Hosil bo‘lgan ifodani soddalashtirish uchun arktangentni arkkosinus bilan ifodalaylik.

Mayli arctgx = z, Keyin

Demak,

Yoy kotangentining hosilasi xuddi shunday tarzda topiladi:

Mavzuni o'rganishda qulaylik va ravshanlik uchun biz yig'ma jadvalni taqdim etamiz.

Doimiyy = C

Quvvat funktsiyasi y = x p

(x p) " = p x p - 1

Eksponensial funktsiyay = a x

(a x) " = a x ln a

Xususan, qachona = ebizda ... bor y = e x

(e x) " = e x

Logarifmik funktsiya

(log a x) " = 1 x ln a

Xususan, qachona = ebizda ... bor y = logx

(ln x) " = 1 x

Trigonometrik funktsiyalar

(sin x) " = cos x (cos x) " = - sin x (t g x) " = 1 cos 2 x (c t g x) " = - 1 sin 2 x

Teskari trigonometrik funksiyalar

(a r c sin x) " = 1 1 - x 2 (a r c cos x) " = - 1 1 - x 2 (a r c t g x) " = 1 1 + x 2 (a r c c t g x) " = - 1 1 + x 2

Giperbolik funktsiyalar

(s h x) " = c h x (c h x) " = s h x (t h x) " = 1 c h 2 x (c t h x) " = - 1 s h 2 x

Keling, ko'rsatilgan jadvalning formulalari qanday olinganligini tahlil qilaylik yoki boshqacha qilib aytganda, har bir funktsiya turi uchun hosila formulalarining kelib chiqishini isbotlaymiz.

Konstantaning hosilasi

Dalil 1

Bu formulani chiqarish uchun funktsiyaning nuqtadagi hosilasi ta'rifini asos qilib olamiz. Biz x 0 = x dan foydalanamiz, bu erda x har qanday haqiqiy sonning qiymatini oladi, yoki boshqacha qilib aytganda, x f (x) = C funktsiya sohasining istalgan soni. Funksiya ortishining argument ortishiga nisbati chegarasini ∆ x → 0 shaklida yozamiz:

lim ∆ x → 0 ∆ f (x) ∆ x = lim ∆ x → 0 C - C ∆ x = lim ∆ x → 0 0 ∆ x = 0

E'tibor bering, 0 ∆ x ifodasi chegara belgisi ostiga tushadi. Bu "nol nolga bo'lingan" noaniqlik emas, chunki numerator cheksiz kichik qiymatni o'z ichiga olmaydi, lekin aniq nolga teng. Boshqacha qilib aytganda, doimiy funktsiyaning o'sishi har doim nolga teng.

Shunday qilib, f (x) = C doimiy funktsiyaning hosilasi butun ta'rif sohasi bo'ylab nolga teng.

1-misol

Doimiy funktsiyalar berilgan:

f 1 (x) = 3, f 2 (x) = a, a ∈ R, f 3 (x) = 4. 13 7 22 , f 4 (x) = 0 , f 5 (x) = - 8 7

Yechim

Keling, berilgan shartlarni tavsiflaymiz. Birinchi funktsiyada biz 3 natural sonining hosilasini ko'ramiz. Quyidagi misolda siz ning hosilasini olishingiz kerak A, Qayerda A- har qanday haqiqiy raqam. Uchinchi misol bizga irratsional 4 raqamining hosilasini beradi. 13 7 22, toʻrtinchisi nolning hosilasi (nol butun son). Nihoyat, beshinchi holatda biz ratsional kasrning hosilasiga egamiz - 8 7.

Javob: berilgan funksiyalarning hosilalari har qanday real uchun nolga teng x(butun ta'rif sohasi bo'ylab)

f 1 " (x) = (3) " = 0 , f 2 " (x) = (a) " = 0 , a ∈ R , f 3 " (x) = 4 . 13 7 22 " = 0 , f 4 " (x) = 0 " = 0 , f 5 " (x) = - 8 7 " = 0

Quvvat funksiyasining hosilasi

Keling, quvvat funksiyasi va uning hosilasi formulasiga o'tamiz, u quyidagi ko'rinishga ega: (x p) " = p x p - 1, bu erda ko'rsatkich. p har qanday haqiqiy sondir.

Dalil 2

Ko'rsatkich natural son bo'lganda formulaning isboti: p = 1, 2, 3, …

Biz yana hosila ta'rifiga tayanamiz. Quvvat funksiyasi ortishining argument ortishiga nisbati chegarasini yozamiz:

(x p) " = lim ∆ x → 0 = ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x

Numeratordagi ifodani soddalashtirish uchun Nyutonning binomial formulasidan foydalanamiz:

(x + ∆ x) p - x p = C p 0 + x p + C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · (∆ x) 2 + . . . + + C p p - 1 x (∆ x) p - 1 + C p p (∆ x) p - x p = = C p 1 x p - 1 ∆ x + C p 2 x p - 2 (∆ x) 2 +. . . + C p p - 1 x (∆ x) p - 1 + C p p (∆ x) p

Shunday qilib:

(x p) " = lim ∆ x → 0 ∆ (x p) ∆ x = lim ∆ x → 0 (x + ∆ x) p - x p ∆ x = = lim ∆ x → 0 (C p 1 x p - 1 ∆ x + C p 2 x p - 2 (∆ x) 2 + ... + C p p - 1 x (∆ x) p - 1 + C p p (∆ x) p) ∆ x = = lim ∆ x → 0 (C p 1) x p - 1 + C p 2 x p - 2 ∆ x + .. + C p p - 1 x (∆ x) p - 2 + C p p (∆ x) p - 1) = = C p 1 · x p - 1 + 0 + 0 + . . . + 0 = p ! 1 ! · (p - 1) ! · x p - 1 = p · x p - 1

Shunday qilib, ko‘rsatkich natural son bo‘lganda daraja funksiyasining hosilasi formulasini isbotladik.

Dalil 3

Qachon ish bo'yicha dalillarni taqdim etish p- noldan boshqa har qanday haqiqiy son, biz logarifmik hosiladan foydalanamiz (bu erda biz logarifmik funktsiyaning hosilasidan farqini tushunishimiz kerak). To'liqroq tushunchaga ega bo'lish uchun logarifmik funktsiyaning hosilasini o'rganish va yashirin funktsiyaning hosilasi va murakkab funktsiyaning hosilasini yanada chuqurroq tushunish tavsiya etiladi.

Keling, ikkita holatni ko'rib chiqaylik: qachon x ijobiy va qachon x salbiy.

Shunday qilib, x > 0. Keyin: x p > 0 . y = x p tenglikni e asosiga logarifm qilamiz va logarifmning xossasini qo‘llaymiz:

y = x p ln y = ln x p ln y = p · ln x

Ushbu bosqichda biz aniq belgilangan funktsiyani oldik. Keling, uning hosilasini aniqlaymiz:

(ln y) " = (p · ln x) 1 y · y " = p · 1 x ⇒ y " = p · y x = p · x p x = p · x p - 1

Endi biz qachon ishni ko'rib chiqamiz x - manfiy raqam.

Agar ko'rsatkich p juft son bo‘lsa, u holda x uchun quvvat funksiyasi aniqlanadi< 0 , причем является четной: y (x) = - y ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p · x p - 1

Keyin x p< 0 и возможно составить доказательство, используя логарифмическую производную.

Agar p toq son bo'lsa, u holda quvvat funksiyasi x uchun aniqlanadi< 0 , причем является нечетной: y (x) = - y (- x) = - (- x) p . Тогда x p < 0 , а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:

y " (x) = (- (- x) p) " = - ((- x) p) " = - p · (- x) p - 1 · (- x) " = = p · (- x) p - 1 = p x p - 1

Oxirgi o'tish, agar bo'lsa, tufayli mumkin p demak, bu toq raqam p - 1 juft son yoki nol (p = 1 uchun), shuning uchun salbiy uchun x(- x) p - 1 = x p - 1 tengligi to'g'ri.

Shunday qilib, biz har qanday haqiqiy p uchun darajali funktsiyaning hosilasi formulasini isbotladik.

2-misol

Berilgan funktsiyalar:

f 1 (x) = 1 x 2 3 , f 2 (x) = x 2 - 1 4 , f 3 (x) = 1 x log 7 12

Ularning hosilalarini aniqlang.

Yechim

Berilgan funksiyalarning ba’zilarini daraja xossalariga asoslanib jadval ko‘rinishiga y = x p ga aylantiramiz va keyin formuladan foydalanamiz:

f 1 (x) = 1 x 2 3 = x - 2 3 ⇒ f 1 " (x) = - 2 3 x - 2 3 - 1 = - 2 3 x - 5 3 f 2 " (x) = x 2 - 1 4 = 2 - 1 4 x 2 - 1 4 - 1 = 2 - 1 4 x 2 - 5 4 f 3 (x) = 1 x log 7 12 = x - log 7 12 ⇒ f 3" ( x) = - log 7 12 x - log 7 12 - 1 = - log 7 12 x - log 7 12 - log 7 7 = - log 7 12 x - log 7 84

Ko'rsatkichli funktsiyaning hosilasi

Isbot 4

Keling, ta'rifdan foydalanib, hosila formulasini asos qilib olaylik:

(a x) " = lim ∆ x → 0 a x + ∆ x - a x ∆ x = lim ∆ x → 0 a x (a ∆ x - 1) ∆ x = a x lim ∆ x → 0 a ∆ x - 1 ∆ x = 0 0

Bizda noaniqlik paydo bo'ldi. Uni kengaytirish uchun z = a ∆ x - 1 (z → 0 ni ∆ x → 0 ko'rinishida) yangi o'zgaruvchi yozamiz. Bunday holda, a ∆ x = z + 1 ⇒ ∆ x = log a (z + 1) = ln (z + 1) ln a . Oxirgi o'tish uchun yangi logarifm bazasiga o'tish formulasi ishlatilgan.

Keling, asl chegarani almashtiramiz:

(a x) " = a x · lim ∆ x → 0 a ∆ x - 1 ∆ x = a x · ln a · lim ∆ x → 0 1 1 z · ln (z + 1) = = a x · ln a · lim ∆ x → 0 1 ln (z + 1) 1 z = a x · ln a · 1 ln lim ∆ x → 0 (z + 1) 1 z

Keling, ikkinchi ajoyib chegarani eslaylik va keyin eksponensial funktsiyaning hosilasi uchun formulani olamiz:

(a x) " = a x · ln a · 1 ln lim z → 0 (z + 1) 1 z = a x · ln a · 1 ln e = a x · ln a

3-misol

Eksponensial funktsiyalar berilgan:

f 1 (x) = 2 3 x , f 2 (x) = 5 3 x , f 3 (x) = 1 (e) x

Ularning hosilalarini topish kerak.

Yechim

Eksponensial funktsiyaning hosilasi va logarifmning xususiyatlari uchun formuladan foydalanamiz:

f 1 " (x) = 2 3 x " = 2 3 x ln 2 3 = 2 3 x (ln 2 - ln 3) f 2 " (x) = 5 3 x " = 5 3 x ln 5 1 3 = 1 3 5 3 x ln 5 f 3 " (x) = 1 (e) x " = 1 e x " = 1 e x ln 1 e = 1 e x ln e - 1 = - 1 e x

Logarifmik funktsiyaning hosilasi

Dalil 5

Har qanday logarifmik funktsiyaning hosilasi formulasining isbotini keltiramiz x ta'rif sohasida va logarifmning a asosining har qanday ruxsat etilgan qiymatlari. Loyqa tushunchasiga asoslanib, biz quyidagilarni olamiz:

(log a x) " = lim ∆ x → 0 log a (x + ∆ x) - log a x ∆ x = lim ∆ x → 0 log a x + ∆ x x ∆ x = = lim ∆ x → 0 1 ∆ x log a 1 + ∆ x x = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x = = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x · x x = lim ∆ x → 0 1 x · log a 1 + ∆ x x x ∆ x = = 1 x · log a lim ∆ x → 0 1 + ∆ x x x ∆ x = 1 x · log a e = 1 x · ln e ln a = 1 x · ln a

Ko'rsatilgan tenglik zanjiridan ko'rinib turibdiki, o'zgarishlar logarifm xususiyatiga asoslangan. lim ∆ x → 0 1 + ∆ x x x ∆ x = e tengligi ikkinchi ajoyib chegaraga muvofiq to'g'ri.

4-misol

Logarifmik funktsiyalar berilgan:

f 1 (x) = log ln 3 x, f 2 (x) = ln x

Ularning hosilalarini hisoblash kerak.

Yechim

Olingan formulani qo'llaymiz:

f 1 "(x) = (log ln 3 x) " = 1 x · ln (ln 3) ; f 2 "(x) = (ln x) " = 1 x ln e = 1 x

Shunday qilib, natural logarifmning hosilasi bir ga bo'linadi x.

Trigonometrik funksiyalarning hosilalari

Isbot 6

Trigonometrik funktsiyaning hosilasi formulasini olish uchun ba'zi trigonometrik formulalar va birinchi ajoyib chegaradan foydalanamiz.

Sinus funktsiyasi hosilasining ta'rifiga ko'ra, biz quyidagilarni olamiz:

(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x

Sinuslar farqi formulasi bizga quyidagi amallarni bajarishga imkon beradi:

(sin x) " = lim ∆ x → 0 sin (x + ∆ x) - sin x ∆ x = = lim ∆ x → 0 2 sin x + ∆ x - x 2 cos x + ∆ x + x 2 ∆ x = = lim ∆ x → 0 sin ∆ x 2 · cos x + ∆ x 2 ∆ x 2 = = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2

Va nihoyat, biz birinchi ajoyib chegaradan foydalanamiz:

sin " x = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = cos x

Demak, funktsiyaning hosilasi gunoh x bo'ladi chunki x.

Kosinus hosilasi formulasini ham isbotlaymiz:

cos " x = lim ∆ x → 0 cos (x + ∆ x) - cos x ∆ x = = lim ∆ x → 0 - 2 sin x + ∆ x - x 2 sin x + ∆ x + x 2 ∆ x = = - lim ∆ x → 0 sin ∆ x 2 sin x + ∆ x 2 ∆ x 2 = = - sin x + 0 2 lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = - sin x

Bular. cos x funksiyaning hosilasi bo'ladi - sin x.

Differensiallash qoidalariga asoslanib tangens va kotangens hosilalari uchun formulalarni olamiz:

t g " x = sin x cos x " = sin " x · cos x - sin x · cos " x cos 2 x = = cos x · cos x - sin x · (- sin x) cos 2 x = sin 2 x + cos 2 x cos 2 x = 1 cos 2 x c t g " x = cos x sin x " = cos " x · sin x - cos x · sin " x sin 2 x = = - sin x · sin x - cos x · cos x sin 2 x = - sin 2 x + cos 2 x sin 2 x = - 1 sin 2 x

Teskari trigonometrik funksiyalarning hosilalari

Teskari funksiyalarning hosilasi bo'limida arksinus, arkkosinus, arktangent va arkkotangens hosilalari formulalarini isbotlash haqida to'liq ma'lumot berilgan, shuning uchun biz bu erda materialni takrorlamaymiz.

Giperbolik funksiyalarning hosilalari

Dalil 7

Giperbolik sinus, kosinus, tangens va kotangensning hosilalari uchun formulalarni differentsiallash qoidasi va ko'rsatkichli funktsiya hosilasi formulasidan foydalanib olishimiz mumkin:

s h " x = e x - e - x 2 " = 1 2 e x " - e - x " = = 1 2 e x - - e - x = e x + e - x 2 = c h x c h " x = e x + e - x 2 " = 1 2 e x " + e - x " = = 1 2 e x + - e - x = e x - e - x 2 = s h x t h " x = s h x c h x " = s h " x · c h x - s h x · c h " x c h 2 x = c h 2 x - s h 2 x c h 2 x = 1 c h 2 x c t h " x = c h x s h x " = c h " x · s h x - c h x · s h " x s h 2 x = s h 2 x - c h 2 x s h 2 x = - 1 s h 2 x

Agar siz matnda xatolikni sezsangiz, uni belgilang va Ctrl+Enter tugmalarini bosing



Shuningdek o'qing: