Як вирішувати лінійні тригонометричні рівняння. Тригонометричні рівняння. Розв'язати тригонометричні рівняння


Співвідношення між основними тригонометричними функціями – синусом, косінусом, тангенсом та котангенсом – задаються тригонометричними формулами. Оскільки зв'язків між тригонометричними функціями досить багато, цим пояснюється і розмаїття тригонометричних формул. Одні формули пов'язують тригонометричні функції однакового кута, інші функції кратного кута, треті дозволяють знизити ступінь, четверті виразити всі функції через тангенс половинного кута, і т.д.

У цій статті ми по порядку перерахуємо всі основні тригонометричні формули, Яких достатньо для вирішення переважної більшості задач тригонометрії. Для зручності запам'ятовування та використання групуватимемо їх за призначенням і заноситимемо в таблиці.

Навігація на сторінці.

Основні тригонометричні тотожності

Основні тригонометричні тотожності задають зв'язок між синусом, косинусом, тангенсом та котангенсом одного кута. Вони випливають із визначення синуса, косинуса, тангенсу та котангенсу, а також поняття одиничного кола. Вони дозволяють висловити одну тригонометричну функціючерез будь-яку іншу.

Детальний опис цих формул тригонометрії, їх висновок та приклади застосування дивіться у статті .

Формули наведення




Формули наведеннявипливають із властивостей синуса, косинуса, тангенсу і котангенсу, тобто, вони відображають властивість періодичності тригонометричних функцій, властивість симетричності, а також властивість зсуву на даний кут. Ці тригонометричні формули дозволяють від роботи з довільними кутами переходити до роботи з кутами в межах від нуля до 90 градусів.

Обгрунтування цих формул, мнемонічне правило їх запам'ятовування і приклади їх застосування можна вивчити у статті .

Формули додавання

Тригонометричні формули складанняпоказують, як тригонометричні функції суми чи різниці двох кутів виражаються через тригонометричні функції цих кутів. Ці формули є базою для виведення наступних нижче тригонометричних формул.

Формули подвійного, потрійного тощо. кута



Формули подвійного, потрійного тощо. кута (їх ще називають формулами кратного кута) показують, як тригонометричні функції подвійних, потрійних і т.д. кутів () виражаються через тригонометричні функції одинарного кута. Їх висновок виходить з формулах складання.

Більш детальна інформація зібрана у статті формули подвійного, потрійного тощо. кута.

Формули половинного кута

Формули половинного кутапоказують, як тригонометричні функції половинного кута виражаються через косинус цілого кута. Ці тригонометричні формули випливають із формул подвійного кута.

Їх висновок та приклади застосування можна переглянути у статті.

Формули зниження ступеня


Тригонометричні формули зниження ступеняпокликані сприяти переходу від натуральних ступенівтригонометричних функцій до синусів і косинусів у першому ступені, але кратних кутів. Іншими словами, вони дозволяють знижувати ступеня тригонометричних функцій до першої.

Формули суми та різниці тригонометричних функцій


Основне призначення формул суми та різниці тригонометричних функційполягає в переході до виконання функцій, що дуже корисно при спрощенні тригонометричних виразів. Зазначені формули також широко використовуються при вирішенні тригонометричних рівнянь, так як дозволяють розкладати на множники суму та різницю синусів і косінусів.

Формули твору синусів, косінусів та синуса на косинус


Перехід від твору тригонометричних функцій до суми чи різниці здійснюється за допомогою формул твору синусів, косінусів та синусу на косинус.

Універсальна тригонометрична підстановка

Огляд основних формул тригонометрії завершуємо формулами, що виражають тригонометричні функції через тангенс половинного кута. Така заміна отримала назву універсальної тригонометричної підстановки. Її зручність у тому, що це тригонометричні функції виражаються через тангенс половинного кута раціонально без коренів.

Список литературы.

  • Алгебра:Навч. для 9 кл. середовищ. шк./Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова; За ред. С. А. Теляковського.- М.: Просвітництво, 1990.- 272 с.: Іл.- ISBN 5-09-002727-7
  • Башмаков М. І.Алгебра та початку аналізу: Навч. для 10-11 кл. середовищ. шк. - 3-тє вид. - М: Просвітництво, 1993. - 351 с.: іл. - ISBN 5-09-004617-4.
  • Алгебрата початку аналізу: Навч. для 10-11 кл. загальноосвіт. установ / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудніцин та ін; За ред. А. Н. Колмогорова. - 14-те вид. - М.: Просвітництво, 2004. - 384 с.: Іл. - ISBN 5-09-013651-3.
  • Гусєв В. А., Мордкович А. Г.Математика (посібник для вступників у технікуми): Навч. посібник.- М.; Вищ. шк., 1984.-351 с., іл.

Copyright by cleverstudents

Усі права захищені.
Охороняється законом про авторське право. Жодну частину сайту, включаючи внутрішні матеріали та зовнішнє оформлення, не можна відтворювати у будь-якій формі або використовувати без попереднього письмового дозволу правовласника.


Приклади:

\(2\sin(⁡x) = \sqrt(3)\)
tg\((3x)=-\) \(\frac(1)(\sqrt(3))\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

Як вирішувати тригонометричні рівняння:

Будь-яке тригонометричне рівняння потрібно прагнути звести до одного з видів:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

де \(t\) - вираз з іксом, \(a\) - число. Такі тригонометричні рівняння називаються найпростішими. Їх легко вирішувати за допомогою () або спеціальних формул:


Інфографіку про вирішення найпростіших тригонометричних рівнянь дивись тут: , і .

приклад . Розв'яжіть тригонометричне рівняння \(\sin⁡x=-\)\(\frac(1)(2)\).
Рішення:

Відповідь: \(\left[ \begin(gathered)x=-\frac(π)(6)+2πk, \\ x=-\frac(5π)(6)+2πn, \end(gathered)\right.\) \(k, n∈Z\)

Що означає кожен символ у формулі коренів тригонометричних рівнянь дивись у .

Увага!Рівняння \(\sin⁡x=a\) та \(\cos⁡x=a\) не мають рішень, якщо \(a ϵ (-∞;-1)∪(1;∞)\). Тому що синус і косинус при будь-яких ікс більші або рівні \(-1\) і менше або рівні \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

приклад . Розв'язати рівняння \(\cos⁡x=-1,1).
Рішення: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Відповідь : рішень немає.


приклад . Розв'яжіть тригонометричне рівняння tg\(⁡x=1\).
Рішення:

Розв'яжемо рівняння за допомогою числового кола. Для цього:
1) Побудуємо коло)
2) Побудуємо осі (x) і (y) і вісь тангенсів (вона проходить через точку ((0; 1)) паралельно осі (y)).
3) На осі тангенсів відзначимо точку (1).
4) З'єднаємо цю точку та початок координат – прямий.
5) Зазначимо точки перетину цього прямого та числового кола.
6)Підпишемо значення цих точок: \(\frac(π)(4)\) ,\(\frac(5π)(4)\)
7) Запишемо всі значення цих точок. Оскільки вони знаходяться одна від одної на відстані рівно в \(π\), то всі значення можна записати однією формулою:

Відповідь: \(x=\)\(\frac(π)(4)\) \(+πk\), \(k∈Z\).

приклад . Розв'яжіть тригонометричне рівняння \(\cos⁡(3x+\frac(π)(4))=0\).
Рішення:


Знову скористаємося числовим колом.
1) Побудуємо коло, осі (x) і (y).
2) На осі косинусів (вісь \(x\)) відзначимо \(0\).
3) Проведемо перпендикуляр до осі косінусів через цю точку.
4) Зазначимо точки перетину перпендикуляра та кола.
5) Підпишемо значення цих точок: \(-\) \(\frac(π)(2)\),\(\frac(π)(2)\).
6) Випишемо все значення цих точок і прирівняємо їх до косинуса (до того що всередині косинуса).

\(3x+\)\(\frac(π)(4)\) \(=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac(π)(4)\) \(=\)\(\frac(π)(2)\) \(+2πk\) \(3x+\)\(\frac( π)(4)\) \(=-\)\(\frac(π)(2)\) \(+2πk\)

8) Як завжди в рівняннях виражатимемо (x).
Не забувайте ставитися до чисел з (π), так само до (1), (2), (frac(1) (4)) і т.п. Це такі ж числа, як і решта. Жодної числової дискримінації!

\(3x=-\)\(\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\) \(3x=-\)\ (\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\)
\(3x=\)\(\frac(π)(4)\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac(3π)(4)\) \(+2πk\) \(|:3\)
\(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\)

Відповідь: \(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\) , \(k∈Z\).

Зводити тригонометричні рівняння до найпростіших – завдання творче, тут потрібно використовувати і , і особливі методи розв'язків рівнянь:
- Метод (найпопулярніший в ЄДІ).
- Метод.
- метод допоміжних аргументів.


Розглянемо приклад розв'язання квадратно-тригонометричного рівняння

приклад . Розв'яжіть тригонометричне рівняння \(2\cos^2⁡x-5\cos⁡x+2=0\)
Рішення:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Зробимо заміну \(t=\cos⁡x).

Наше рівняння перетворилося на типове. Можна його вирішити за допомогою.

\ (D = 25-4 \ cdot 2 \ cdot 2 = 25-16 = 9 \)

\(t_1=\)\(\frac(5-3)(4)\) \(=\)\(\frac(1)(2)\) ; \(t_2=\)\(\frac(5+3)(4)\) \(=2\)

Робимо зворотну заміну.

\(\cos⁡x=\)\(\frac(1)(2)\); \(\cos⁡x=2\)

Перше рівняння вирішуємо за допомогою числового кола.
Друге рівняння немає рішень т.к. \(\cos⁡x∈[-1;1]\) і двом бути рівним не може ні за яких іксів.

Запишемо всі числа, що лежать у цих точках.

Відповідь: \(x=±\)\(\frac(π)(3)\) \(+2πk\), \(k∈Z\).

Приклад розв'язання тригонометричного рівняння з дослідженням ОДЗ:

Приклад(ЄДІ) . Розв'яжіть тригонометричне рівняння \(=0\)

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Є дріб і є котангенс – отже треба записати. Нагадаю, що котангенс це фактично дріб:

ctg\(x=\)\(\frac(\cos⁡x)(\sin⁡x)\)

Тому ОДЗ для ctg\(x\): \(\sin⁡x≠0).

ОДЗ: ctg \ (x ≠ 0 \); \(\sin⁡x≠0\)

\(x≠±\)\(\frac(π)(2)\) \(+2πk\); \(x≠πn\); \(k, n∈Z\)

Зазначимо «нерішення» на числовому колі.

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Позбавимося рівняння від знаменника, помноживши його на ctg (x). Ми можемо це зробити, оскільки написали вище, що ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡(2x)=0\)

Застосуємо формулу подвійного кута для синуса: \(\sin⁡(2x)=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

Якщо у вас руки потягнулися поділити на косинус - обсмикніть їх! Ділити на вираз зі змінною можна, якщо воно точно не дорівнює нулю (наприклад, такі: \(x^2+1,5^x\)). Натомість винесемо \(\cos⁡x\) за дужки.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

«Розщепимо» рівняння на два.

\(\cos⁡x=0); \(2\cos⁡x-2\sin⁡x=0\)

Перше рівняння з розв'язком за допомогою числового кола. Друге рівняння поділимо на \(2\) і перенесемо \(\sin⁡x\) у праву частину.

\(x=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

Коріння, яке вийшло не входить до ОДЗ. Тому їх у відповідь записувати не будемо.
Друге рівняння типове. Поділимо його на \(\sin⁡x\) (\(\sin⁡x=0\) не може бути рішенням рівняння тому що в цьому випадку \(\cos⁡x=1\) або \(\cos⁡ x = -1 \)).

Знову використовуємо коло.


\(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\)

Це коріння не виключається ОДЗ, тому можна його записувати у відповідь.

Відповідь: \(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\).

Тригонометричні рівняння – тема не найпростіша. Аж надто вони різноманітні.) Наприклад, такі:

sin 2 x + cos3x = ctg5x

sin(5x+π /4) = ctg(2x-π /3)

sinx + cos2x + tg3x = ctg4x

І тому подібне...

Але в цих (і всіх інших) тригонометричних монстрів є дві загальні та обов'язкові ознаки. Перший - ви не повірите - в рівняннях присутні тригонометричні функції. Другий: всі вирази з іксом знаходяться всередині цих функцій.І лише там! Якщо ікс з'явиться десь зовні,наприклад, sin2x + 3x = 3,це вже буде рівняння змішаного типу. Такі рівняння потребують індивідуального підходу. Тут ми їх не розглядатимемо.

Злі рівняння в цьому уроці ми теж вирішувати не будемо.) Тут ми розбиратимемося з найпростішими тригонометричними рівняннями.Чому? Та тому, що рішення будь-якихТригонометричних рівнянь складається з двох етапів. На першому етапі зле рівняння шляхом різних перетворень зводиться до простого. З другого краю - вирішується це найпростіше рівняння. Інакше – ніяк.

Так що якщо на другому етапі у вас проблеми - перший етап особливого сенсу не має.)

Як виглядають елементарні тригонометричні рівняння?

sinx = а

cosx = а

tgx = а

ctgx = а

Тут а позначає будь-яке число. Будь-яке.

До речі, всередині функції може бути не чистий ікс, а якийсь вираз, типу:

cos(3x+π /3) = 1/2

тощо. Це ускладнює життя, але на методі розв'язання тригонометричного рівняння ніяк не позначається.

Як розв'язувати тригонометричні рівняння?

Тригонометричні рівняння можна вирішувати двома шляхами. Перший шлях: з використанням логіки та тригонометричного кола. Цей шлях ми розглянемо тут. Другий шлях – з використанням пам'яті та формул – розглянемо у наступному уроці.

Перший шлях зрозумілий, надійний, і його важко забути.) Він хороший для розв'язання і тригонометричних рівнянь, і нерівностей, і будь-яких хитрих нестандартних прикладів. Логіка сильніша за пам'ять!)

Вирішуємо рівняння за допомогою тригонометричного кола.

Включаємо елементарну логіку та вміння користуватися тригонометричним колом. Чи не вмієте!? Однак... Важко вам у тригонометрії доведеться...) Але не біда. Загляньте в уроки "Тригонометричне коло...... Що це таке?" та "Відлік кутів на тригонометричному колі". Там просто все. На відміну від підручників...)

Ах, ви в курсі!? І навіть освоїли "Практичну роботу з тригонометричним колом"!? Прийміть вітання. Ця тема буде вам близька і зрозуміла.) Що особливо тішить, тригонометричному колу байдуже, яке рівняння ви вирішуєте. Синус, косинус, тангенс, котангенс - йому все одно. Принцип рішення один.

Ось і беремо будь-яке елементарне тригонометричне рівняння. Хоча б це:

cosx = 0,5

Потрібно знайти ікс. Якщо говорити людською мовою, потрібно знайти кут (ікс), косинус якого дорівнює 0,5.

Як ми використовували коло раніше? Ми малювали на ньому ріг. У градусах чи радіанах. І одразу бачили тригонометричні функції цього кута. Зараз вчинимо навпаки. Намалюємо на колі косинус, що дорівнює 0,5 і відразу побачимо кут. Залишиться тільки записати відповідь.) Так-так!

Малюємо коло і відзначаємо косинус, що дорівнює 0,5. На осі косинусів, зрозуміло. Ось так:

Тепер намалюємо кут, який дає нам косинус. Наведіть курсор мишки на малюнок (або торкніться картинки на планшеті), та побачитецей самий кут х.

Косинус якого кута дорівнює 0,5?

х = π /3

cos 60°= cos( π /3) = 0,5

Дехто скептично хмикне, так... Мовляв, чи варто було коло городити, коли і так все ясно... Можна, звичайно, хмикати...) Але річ у тому, що це помилкова відповідь. Точніше, недостатній. Знавці кола розуміють, що тут ще ціла купа кутів, які теж дають косинус, що дорівнює 0,5.

Якщо провернути рухливий бік ОА на повний обіг, точка А потрапить у вихідне становище. З тим же косинус, рівним 0,5. Тобто. кут змінитьсяна 360° або 2π радіан, а косинус – ні.Новий кут 60 ° + 360 ° = 420 ° також буде рішенням нашого рівняння, т.к.

Таких повних обертів можна накрутити безліч… І всі ці нові кути будуть рішеннями нашого тригонометричного рівняння. І їх треба якось записати у відповідь. Усі.Інакше рішення не вважається, так...)

Математика вміє це робити просто та елегантно. В одній короткій відповіді записувати безлічрішень. Ось як це виглядає для нашого рівняння:

х = π /3 + 2π n, n ∈ Z

Розшифрую. Все-таки писати осмисленоприємніше, ніж тупо малювати якісь загадкові літери, правда?)

π /3 - це той самий кут, який ми побачилина колі та визначилиза таблицею косінусів.

- Це один повний оборот у радіанах.

n - кількість повних, тобто. цілихоборотів. Зрозуміло, що n може бути 0, ±1, ±2, ±3.... і так далі. Що й вказано коротким записом:

n ∈ Z

n належить ( ) безлічі цілих чисел ( Z ). До речі, замість літери n цілком можуть вживатися літери k, m, t і т.д.

Цей запис означає, що ви можете взяти будь-яке ціле n . Хоч -3, хоч 0, хоч +55. Яке бажаєте. Якщо підставіть це число в запис відповіді, отримайте конкретний кут, який обов'язково буде вирішенням нашого суворого рівняння.

Або, іншими словами, х = π /3 - це єдиний корінь із нескінченної множини. Щоб отримати все інше коріння, достатньо до π /3 додати будь-яку кількість повних оборотів ( n ) у радіанах. Тобто. 2π n радіан.

Все? Ні. Я спеціально насолоду розтягую. Щоб запам'яталося краще.) Ми отримали лише частину відповідей до нашого рівняння. Цю першу частину рішення я запишу ось як:

х 1 = π /3 + 2π n, n ∈ Z

х 1 - не один корінь, це ціла серія коренів, записана у короткій формі.

Але є ще кути, які теж дають косинус, що дорівнює 0,5!

Повернемося до нашої картинки, якою записували відповідь. Ось вона:

Наводимо мишку на картинку та бачимоще один кут, який також дає косинус 0,5.Як ви вважаєте, чому він дорівнює? Трикутнички однакові... Так! Він дорівнює куту х , Тільки відкладений у негативному напрямку. Це кут -х. Але ікс ми вже вирахували. π /3 або 60 °. Отже, можна сміливо записати:

х 2 = - π /3

Ну і, зрозуміло, додаємо всі кути, які виходять через повні оберти:

х 2 = - π /3 + 2π n, n ∈ Z

Ось тепер все.) По тригонометричному колі ми побачили(хто розуміє, звичайно) всекути, що дають косинус, рівний 0,5. І записали ці кути у короткій математичній формі. У відповіді вийшло дві нескінченні серії коренів:

х 1 = π /3 + 2π n, n ∈ Z

х 2 = - π /3 + 2π n, n ∈ Z

Це правильна відповідь.

Сподіваюся, загальний принцип розв'язання тригонометричних рівняньза допомогою кола зрозумілий. Зазначаємо на колі косинус (синус, тангенс, котангенс) із заданого рівняння, малюємо відповідні йому кути та записуємо відповідь.Звичайно, треба збагнути, що за кути ми побачилина колі. Іноді це не так очевидно. Ну так я й казав, що тут логіка потрібна.)

Наприклад розберемо ще одне тригонометричне рівняння:

Прошу врахувати, що число 0,5 - це не єдине можливе число в рівняннях!) Просто мені його писати зручніше, ніж коріння та дроби.

Працюємо за загальним принципом. Малюємо коло, відзначаємо (на осі синусів, звичайно!) 0,5. Малюємо відразу всі кути, що відповідають цьому синусу. Отримаємо таку картину:

Спочатку знаємося з кутом х у першій чверті. Згадуємо таблицю синусів та визначаємо величину цього кута. Справа нехитра:

х = π /6

Згадуємо про повні оберти і з чистою совістю записуємо першу серію відповідей:

х 1 = π /6 + 2π n, n ∈ Z

Половина справи зроблено. А ось тепер треба визначити другий кут...Це хитріші, ніж у косинусах, так... Але логіка нас врятує! Як визначити другий кут через х? Так легко! Трикутнички на картинці однакові, і червоний кут х дорівнює куту х . Тільки відрахований він від кута в негативному напрямку. Тому і червоний.) А нам відповіді потрібен кут, відрахований правильно, від позитивної півосі ОХ, тобто. від кута 0 градусів.

Наводимо курсор на малюнок і все бачимо. Перший кут прибрав, щоб не ускладнював картинку. Цікавий нас кут (намальований зеленим) дорівнюватиме:

π - х

Ікс ми знаємо, це π /6 . Отже, другий кут буде:

π - π /6 = 5π /6

Знову згадуємо про добавку повних обертів та записуємо другу серію відповідей:

х 2 = 5π /6 + 2π n, n ∈ Z

Ось і все. Повноцінна відповідь складається з двох серій коріння:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Рівняння з тангенсом і котангенсом можна легко вирішувати за тим самим загальним принципом розв'язання тригонометричних рівнянь. Якщо, звичайно, знаєте, як намалювати тангенс та котангенс на тригонометричному колі.

У наведених вище прикладах я використовував табличне значення синуса та косинуса: 0,5. Тобто. одне з тих значень, які учень знати зобов'язаний.А тепер розширимо наші можливості на всі інші значення.Вирішувати, так вирішувати!)

Отже, нехай нам треба вирішити таке тригонометричне рівняння:

Такого значення косинуса у коротких таблицях немає. Холоднокровно ігноруємо цей страшний факт. Малюємо коло, відзначаємо на осі косінусів 2/3 і малюємо відповідні кути. Отримуємо таку картинку.

Розбираємось, для початку, з кутом у першій чверті. Знати б, чому дорівнює ікс, одразу відповідь записали б! Не знаємо... Провал!? Спокій! Математика своїх у біді не кидає! Вона на цей випадок вигадала арккосинуси. Чи не в курсі? Даремно. З'ясуйте, Це набагато простіше, ніж ви думаєте. За цим посиланням жодного складного заклинання щодо "зворотних тригонометричних функцій" немає... Зайве це в цій темі.

Якщо ви знаєте, досить сказати собі: "Ікс - це кут, косинус якого дорівнює 2/3". І відразу, чисто за визначенням арккосинусу, можна записати:

Згадуємо про додаткові звороти та спокійно записуємо першу серію коренів нашого тригонометричного рівняння:

х 1 = arccos 2/3 + 2π n, n ∈ Z

Фактично автоматично записується і друга серія коренів, для другого кута. Все те саме, тільки ікс (arccos 2/3) буде з мінусом:

х 2 = - arccos 2/3 + 2π n, n ∈ Z

І всі справи! Це правильна відповідь. Навіть простіше, ніж із табличними значеннями. До речі, найуважніші помітять, що ця картинка з рішенням через арккосинус нічим, по суті, не відрізняється від картинки для рівняння cos x = 0,5.

Саме так! Загальний принцип на те і загальний! Я спеціально намалював дві майже однакові картинки. Коло показує нам кут х за його косинус. Табличний це косинус, чи ні – колу невідомо. Що це за кут, π /3, або арккосинус який - це вже вирішувати.

З синусом та сама пісня. Наприклад:

Знову малюємо коло, відзначаємо синус, що дорівнює 1/3, малюємо кути. Виходить така картина:

І знову картинка майже та сама, що й для рівняння sinx = 0,5.Знову починаємо з кута першої чверті. Чому дорівнює ікс, якщо його синус дорівнює 1/3? Чи не питання!

Ось і готова перша пачка коренів:

х 1 = arcsin 1/3 + 2π n, n ∈ Z

Розбираємось з другим кутом. У прикладі з табличним значенням 0,5 він дорівнював:

π - х

Так і тут він буде такий самий! Тільки ікс інший, arcsin 1/3. Ну і що! Можна сміливо записувати другу пачку коренів:

х 2 = π - arcsin 1/3 + 2π n, n ∈ Z

Це абсолютно правильна відповідь. Хоча й не дуже звично. Зате зрозуміло, сподіваюся.)

Ось так вирішуються тригонометричні рівняння за допомогою кола. Цей шлях наочний і зрозумілий. Саме він рятує у тригонометричних рівняннях з відбором коренів на заданому інтервалі, у тригонометричних нерівностях – ті взагалі вирішуються практично завжди по колу. Коротше, в будь-яких завданнях, які трохи складніші за стандартні.

Чи застосуємо знання на практиці?)

Розв'язати тригонометричні рівняння:

Спочатку простіше, прямо з цього уроку.

Тепер складніше.

Підказка: тут доведеться поміркувати над колом. Особисто.)

А тепер зовні прості... Їх ще окремими випадками називають.

sinx = 0

sinx = 1

cosx = 0

cosx = -1

Підказка: тут треба збагнути по колу, де дві серії відповідей, а де одна... І як замість двох серій відповідей записати одну. Та так, щоб жоден корінь із нескінченної кількості не загубився!)

Ну і зовсім прості):

sinx = 0,3

cosx = π

tgx = 1,2

ctgx = 3,7

Підказка: тут треба знати, що таке арксінус, арккосинус? Що таке Арктангенс, Арккотангенс? Найпростіші визначення. Зате згадувати жодних табличних значень не треба!)

Відповіді, зрозуміло, безладно):

х 1= arcsin0,3 + 2π n, n ∈ Z
х 2= π - arcsin0,3 + 2

Чи не все виходить? Буває. Прочитайте урок ще раз. Тільки вдумливо(є таке застаріле слово...) І за посиланнями походьте. Основні посилання - про світ. Без нього в тригонометрії – як дорогу переходити із зав'язаними очима. Іноді виходить.)

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Найпростішими тригонометричними рівняннями називають рівняння

Cos(x)=a, sin(x)=a, tg(x)=a, ctg(x)=a

Рівняння cos(x) = a

Пояснення та обґрунтування

  1. Коріння рівняння cosx = а. При | a | > 1 рівняння немає коріння, оскільки | cosx |< 1 для любого x (прямая y = а при а >1 або при а< -1 не пересекает график функцииy = cosx).

Нехай | а |< 1. Тогда прямая у = а пересекает график функции

у = cos x. На проміжку функція y = cos x зменшується від 1 до -1. Але спадна функція приймає кожне своє значення тільки в одній точці її області визначення, тому рівняння cos x = а має на цьому проміжку тільки один корінь, який за визначенням арккосинусу дорівнює: x 1 = arccos а (і для цього кореня cos x = а).

Косинус - парна функціятому на проміжку [-п; 0] рівняння cos x = а також має лише один корінь - число, протилежне x 1, тобто

x 2 = -arccos а.

Таким чином, на проміжку [-п; п] (довжиною 2п) рівняння cos x = а при | а |< 1 имеет только корни x = ±arccos а.

Функція y = cos x періодична з періодом 2п, тому решта всіх корінь відрізняється від знайдених на 2пп (n € Z). Отримуємо наступну формулу коренів рівняння cos x = а при

x = ± arccos а + 2пп, n £ Z.

  1. Часткові випадки розв'язання рівняння cosx = а.

Корисно пам'ятати спеціальні записи коренів рівняння cos x = а при

а = 0, а = -1, а = 1, які можна легко отримати, використовуючи як орієнтир одиничне коло.

Оскільки косинус дорівнює абсцисі відповідної точки одиничного кола, Отримуємо, що cos x = 0 тоді і тільки тоді, коли відповідною точкою одиничного кола є точка A або точка B.

Аналогічно cos x = 1 тоді і тільки тоді, коли відповідною точкою одиничного кола є точка C, отже,

x = 2πп, k € Z.

Також cos х = -1 тоді і тільки тоді, коли відповідною точкою одиничного кола є точка D, таким чином, х = п + 2пn,

Рівняння sin(x) = a

Пояснення та обґрунтування

  1. Коріння рівняння sinx= а. При | а | > 1 рівняння немає коріння, оскільки | sinx |< 1 для любого x (прямая y = а на рисунке при а >1 або при а< -1 не пересекает график функции y = sinx).

Концепція рішення тригонометричних рівнянь.

  • Для розв'язання тригонометричного рівняння перетворіть його на одне або кілька основних тригонометричних рівнянь. Рішення тригонометричного рівняння зрештою зводиться до вирішення чотирьох основних тригонометричних рівнянь.
  • Розв'язання основних тригонометричних рівнянь.

    • Існують 4 види основних тригонометричних рівнянь:
    • sin x = a; cos x = a
    • tg x = a; ctg x = a
    • Розв'язання основних тригонометричних рівнянь передбачає розгляд різних положень «х» на одиничному колі, а також використання таблиці перетворення (або калькулятора).
    • Приклад 1. Sin x = 0,866. Використовуючи таблицю перетворення (або калькулятор) ви отримаєте відповідь: х = π/3. Одиничне коло дає ще одну відповідь: 2π/3. Запам'ятайте, що всі тригонометричні функції є періодичними, тобто їх значення повторюються. Наприклад, періодичність sin x та cos x дорівнює 2πn, а періодичність tg x та ctg x дорівнює πn. Тому відповідь записується так:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Приклад 2. х = -1/2. Використовуючи таблицю перетворення (або калькулятор) ви отримаєте відповідь: х = 2π/3. Поодиноке коло дає ще одну відповідь: -2π/3.
    • x1 = 2π/3 + 2π; х2 = -2π/3 + 2π.
    • Приклад 3. tg(x - π/4) = 0.
    • Відповідь: х = π/4 + πn.
    • Приклад 4. ctg 2x = 1732.
    • Відповідь: х = π/12 + πn.
  • Перетворення, що використовуються під час вирішення тригонометричних рівнянь.

    • Для перетворення тригонометричних рівнянь використовуються перетворення алгебри (розкладання на множники, приведення однорідних членіві т.д.) та тригонометричні тотожності.
    • Приклад 5. Використовуючи тригонометричні тотожності, рівняння sin x + sin 2x + sin 3x = 0 перетворюється на рівняння 4cos x*sin (3x/2)*cos (x/2) = 0. Таким чином, потрібно вирішити наступні основні тригонометричні рівняння: cos x = 0; sin (3x/2) = 0; cos(x/2) = 0.
    • Знаходження кутів по відомим значеннямфункцій.

      • Перед вивченням методів розв'язання тригонометричних рівнянь необхідно навчитися знаходити кути за відомими значеннями функцій. Це можна зробити за допомогою таблиці перетворення чи калькулятора.
      • Приклад: х = 0,732. Калькулятор дасть відповідь x = 42,95 градусів. Одиничне коло дасть додаткові кути, косинус яких також дорівнює 0,732.
    • Відкладіть рішення на одиничному колі.

      • Ви можете відкласти рішення тригонометричного рівняння на одиничному колі. Рішення тригонометричного рівняння на одиничному колі є вершинами правильного багатокутника.
      • Приклад: Рішення x = π/3 + πn/2 на одиничному колі є вершинами квадрата.
      • Приклад: Рішення x = π/4 + πn/3 на одиничному колі є вершинами правильного шестикутника.
    • Методи розв'язання тригонометричних рівнянь.

      • Якщо це тригонометричне рівняння містить лише одну тригонометричну функцію, розв'яжіть це рівняння як основне тригонометричне рівняння. Якщо це рівняння включає дві або більше тригонометричні функції, то існують 2 методи розв'язання такого рівняння (залежно від можливості його перетворення).
        • Метод 1.
      • Перетворіть це рівняння на рівняння виду: f(x)*g(x)*h(x) = 0, де f(x), g(x), h(x) - основні тригонометричні рівняння.
      • Приклад 6. 2cos x + sin 2x = 0. (0< x < 2π)
      • Рішення. Використовуючи формулу подвійного кута sin 2x = 2*sin х*соs х, замініть sin 2x.
      • 2соs х + 2*sin х*соs х = 2cos х*(sin х + 1) = 0. Тепер розв'яжіть два основні тригонометричні рівняння: соs х = 0 і (sin х + 1) = 0.
      • Приклад 7. cos x + cos 2x + cos 3x = 0. (0< x < 2π)
      • Рішення: Використовуючи тригонометричні тотожності, перетворіть це рівняння на рівняння виду: cos 2x(2cos x + 1) = 0. Тепер розв'яжіть два основні тригонометричні рівняння: cos 2x = 0 і (2cos x + 1) = 0.
      • Приклад 8. sin x - sin 3x = cos 2x. (0< x < 2π)
      • Рішення: Використовуючи тригонометричні тотожності, перетворіть дане рівняння на рівняння виду: -cos 2x*(2sin x + 1) = 0. Тепер розв'яжіть два основні тригонометричні рівняння: cos 2x = 0 і (2sin x + 1) = 0.
        • Метод 2.
      • Перетворіть це тригонометричне рівняння на рівняння, що містить лише одну тригонометричну функцію. Потім замініть цю тригонометричну функцію на деяку невідому, наприклад, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t і т.д.).
      • Приклад 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0< x < 2π).
      • Рішення. У даному рівняннізамініть (cos^2 x) на (1 - sin^2 x) (відповідно до тотожності). Перетворене рівняння має вигляд:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Замініть sin x на t. Тепер рівняння має вигляд: 5t^2 - 4t - 9 = 0. Це квадратне рівняння, Що має два корені: t1 = -1 та t2 = 9/5. Другий корінь t2 не задовольняє області значень функції (-1< sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Приклад 10. tg x + 2 tg^2 x = ctg x + 2
      • Рішення. Замініть tg x на t. Перепишіть вихідне рівняння у такому вигляді: (2t + 1)(t^2 - 1) = 0. Тепер знайдіть t, а потім знайдіть х для t = tg х.


  • Читайте також: