Методы определения масс небесных тел. Как определяют массу космических объектов? Как определить массу планеты по большой полуоси

Закон всемирного тяготения Ньютона позволяет измерить одну из важнейших физических характеристик небесного тела - его массу.

Массу можно определить:

а) из измерений силы тяжести на поверхности данного тела (гравиметрический способ),

б) по третьему уточнённому закону Кеплера,

в) из анализа наблюдаемых возмущений, производимых небесным телом в движениях других небесных тел.

1. Первый способ применяется на Земле.

На основании закона тяготения ускорение g на поверхности Земли:

где m - масса Земли, а R - её радиус.

g и R измеряются на поверхности Земли. G = const.

С принятыми сейчас значениями g, R, G получается масса Земли:

m = 5,976 .1027г = 6 .1024кг.

Зная массу и объём, можно найти среднюю плотность. Она равна 5,5 г/см3.

2. По третьему закону Кеплера можно определить соотношение между массой планеты и массой Солнца, если у планеты есть хотя бы один спутник и известны его расстояние от планеты и период обращения вокруг неё.

где M, m, mc- массы Солнца, планеты и её спутника, T и tc- периоды обращений планеты вокруг Солнца и спутника вокруг планеты, а и ас - расстояния планеты от Солнца и спутника от планеты соответственно.

Из уравнения следует

Отношение М/m для всех планет очень велико; отношение же m/mc, очень мало (кроме Земли и Луны, Плутона и Харона) и им можно пренебречь.

Соотношение М/m можно легко найти из уравнения.

Для случая Земли и Луны нужно сначала определить массу Луны. Это сделать очень сложно. Решается задача путём анализа возмущений в движении Земли, которые вызывает Луна.

3. По точным определениям видимых положений Солнца в его долготе были обнаружены изменения с месячным периодом, называемые "лунным неравенством". Наличие этого факта в видимом движении Солнца указывает на то, что центр Земли описывает небольшой эллипс в течение месяца вокруг общего центра масс "Земля - Луна", расположенного внутри Земли, на расстоянии 4650 км. от центра Земли.

Положение центра масс Земля-Луна было найдено также из наблюдений малой планеты Эрос в 1930 - 1931 гг.

По возмущениям в движениях искусственных спутников Земли отношение масс Луны и Земли получилось 1/81,30.

В 1964 году Международный астрономический союз принял его как const.

Из уравнения Кеплера получаем для Солнца массу = 2.1033г., что в 333000 раза превосходит земную.

Массы планет, не имеющих спутников, определены по возмущениям, которые они вызывают в движении Земли, Марса, астероидов, комет, по возмущениям, производимым ими друг на друга.

Одним из ярких примеров триумфа закона всемирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.

Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе. Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.

Таким же образом 14 марта 1930 г. была открыта планета Плутон. Открытие Нептуна, сделанное, по выражению Энгельса, на "кончике пера", является убедительнейшим доказательством справедливости закона всемирного тяготения Ньютона.

При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

Силы всемирного тяготения - самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела.

Определение массы небесных тел

Закон всемирного тяготения Ньютона позволяет измерить одну из важнейших физических характеристик небесного тела -- его массу.

Массу небесного тела можно определить:

а) из измерений силы тяжести на поверхности данного тела (гравиметрический способ);

б) по третьему (уточненному) закону Кеплера;

в) из анализа наблюдаемых возмущений, производимых небесным телом в движениях других небесных тел.

Первый способ применим пока только к Земле, и заключается в следующем.

На основании закона тяготения ускорение силы тяжести на поверхности Земли легко находится из формулы (1.3.2).

Ускорение силы тяжести g (точнее, ускорение составляющей силы тяжести, обусловленной только силой притяжения), так же как и радиус Земли R ,определяется из непосредственных измерений на поверхности Земли. Постоянная тяготения G достаточно точно определена из опытов Кэвендиша и Йолли, хорошо известных в физике.

С принятыми в настоящее время значениями величин g, R и G по формуле (1.3.2) получается масса Земли. Зная массу Земли и ее объем, легко найти среднюю плотность Земли. Она равна 5,52 г/см 3

Третий, уточненный закон Кеплера позволяет определить соотношение между массой Солнца и массой планеты, если у последней имеется хотя бы один спутник и известны его расстояние от планеты и период обращения вокруг нее.

Действительно, движение спутника вокруг планеты подчиняется тем же законам, что и движение планеты вокруг Солнца и, следовательно, третье уравнение Кеплера может быть записано в этом случае так:

где М - масса Солнца, кг;

т - масса планеты, кг;

m c - масса спутника, кг;

Т - период обращения планеты вокруг Солнца, с;

t c - период обращения спутника вокруг планеты, с;

a - расстояния планеты от Солнца, м;

а с -- расстояния спутника от планеты, м;

Разделив числитель и знаменатель левой части дроби этого уравнения па т и решив его относительно масс, получим

Отношение для всех планет очень велико; отношение же наоборот, мало (кроме Земли и ее спутника Луны) и им можно пренебречь. Тогда в уравнении (2.2.2) останется только одно неизвестное отношение, которое легко из него определяется. Например, для Юпитера определенное таким способом обратное отношение равно 1: 1050.

Так как масса Луны, единственного спутника Земли, сравнительно с земной массой достаточно большая, то отношением в уравнении (2.2.2) пренебрегать нельзя. Поэтому для сравнения массы Солнца с массой Земли необходимо предварительно определить массу Луны. Точное определение массы Луны является довольно трудной задачей, и решается она путем анализа тех возмущений в движении Земли, которые вызываются Луной.

Под влиянием лунного притяжения Земля должна описывать в течение месяца эллипс вокруг общего центра масс системы Земля -- Луна.

По точным определениям видимых положений Солнца в его долготе были обнаружены изменения с месячным периодом, называемые “лунным неравенством”. Наличие “лунного неравенства” в видимом движении Солнца указывает на то, что центр Земли действительно описывает небольшой эллипс в течение месяца вокруг общего центра масс “Земля -- Луна”, расположенного внутри Земли, на расстоянии 4650 км от центра Земли. Это позволило определить отношение массы Луны к массе Земли, которое оказалось равным. Положение центра масс системы “Земля -- Луна” было найдено также из наблюдений малой планеты Эрос в 1930--1931 гг. Эти наблюдения дали для отношения масс Луны и Земли величину. Наконец, по возмущениям в движениях искусственных спутников Земли отношение масс Луны и Земли получилось равным. Последнее значение наиболее точное, и в 1964 г. Международный астрономический союз принял его как окончательное в числе других астрономических постоянных. Это значение подтверждено в 1966 г. вычислением массы Луны по параметрам обращения ее искусственных спутников.

С известным отношением масс Луны и Земли из уравнения (2.26) получается, что масса Солнца M ? в 333 000 раз больше массы Земли, т.е.

Mз = 2 10 33 г.

Зная массу Солнца и отношение этой массы к массе любой другой планеты, имеющей спутника, легко определить массу этой планеты.

Массы планет, не имеющих спутников (Меркурий, Венера, Плутон), определяются из анализа тех возмущений, которые они производят в движении других планет или комет. Так, например, массы Венеры и Меркурия определены по, тем возмущениям, которые они вызывают в движении Земли, Марса, некоторых малых планет (астероидов) и кометы Энке - Баклунда, а также по возмущениям, производимым ими друг на друга.

земля планета вселенная гравитация

Масса - одна из важнейших характеристик небесных тел. Но как можно определить массу небесного тела? Ньютон доказал, что более точная формула третьего закона Кеплера такова:

где М 1 и М 2 - массы каких-либо небесных тел, а m 1 , и m 2 - соответственно массы их спутников. В частности, планеты являются спутниками Солнца. Мы видим, что уточненная формула этого закона отличается от приближенной наличием множителя, содержащего массы Если под М 1 = М 2 = М понимать массу Солнца, а под m 1 и m 2 - массы двух разных планет, то отношение

будет мало отличаться от единицы, так как m 1 и m 2 очень малы по сравнению с массой Солнца. При этом точная формула не будет заметно отличаться от приближенной.

Уточненный третий закон Кеплера позволяет определить массы планет, имеющих спутников, и массу Солнца. Чтобы определить массу Солнца, перепишем формулу этого закона в следующем виде, сравнивая движение Луны вокруг Земли с движением Земли вокруг Солнца:

где T з и а з - период обращения Земли (год) и большая полуось ее орбиты, Т л и а л - период обращения Луны вокруг Земли и большая полуось ее орбиты, M с - масса Солнца, M з - масса Земли, m л - масса Луны. Масса Земли ничтожна сравнительно с массой Солнца, а масса Луны мала (1:81) сравнительно с массой Земли. Поэтому вторые слагаемые в суммах можно отбросить, не делая большой ошибки. Решив уравнение относительно M с /M з имеем:

Эта формула позволяет определить массу Солнца, выраженную в массах Земли. Она составляет около 333 000 масс Земли.

Для сравнения масс Земли и другой планеты, например Юпитера, надо в исходной формуле индекс 1 отнести к движению Луны вокруг Земли массой М 1 а 2 - к движению любого спутника вокруг Юпитера массой М 2 .

Массы планет, не имеющих спутников, определяют по тем возмущениям, которые они своим притяжением производят в движении соседних с ними планет или в движении комет и астероидов.

  1. Определите массу Юпитера сравнением системы Юпитера со спутником с системой Земля - Луна, если первый спутник Юпитера отстоит от него на 422 000 км и имеет период обращения 1,77 сут. Данные для Луны должны быть вам известны.
  2. Вычислите, на каком расстоянии от Земли на линии Земля - Луна находятся те точки, в которых притяжения Землей и Луной одинаковы, зная, что расстояние между Луной и Землей равно 60 радиусам Земли, а массы Земли и Луны относятся как 81: 1.

Массу Солнца можно найти из условия, что тяготение Земли к Солнцу проявляется в качестве центростремительной силы, удерживающей Землю на ее орбите (орбиту Земли для упрощения мы будем считать окружностью)

Здесь масса Земли, среднее расстояние Земли от Солнца. Обозначая продолжительность года в секундах через имеем. Таким образом

откуда, подставляя числовые значения , находим массу Солнца:

Ту же формулу можно применить для вычисления массы какой-либо планеты, имеющей спутника. В этом случае среднее расстояние спутника от планеты, время его обращения вокруг планеты, масса планеты. В частности, по расстоянию Луны от Земли и числу секунд в месяце указанным способом можно определить массу Земли.

Массу Земли можно определить также, приравнивая вес какого-либо тела к тяготению этого тела к Земле, за вычетом той составляющей тяготения, которая проявляется динамически, сообщая данному телу, участвующему в суточном вращении Земли, соответствующее центростремительное ускорение (§ 30). Необходимость указанной поправки отпадает, если для такого вычисления массы Земли мы воспользуемся тем ускорением тяжести, которое наблюдается на полюсах Земли Тогда, обозначив через средний радиус Земли и через массу Земли, имеем:

откуда масса Земли

Если среднюю плотность земного шара обозначить через то, очевидно, Отсюда средняя плотность земного шара получается равной

Средняя плотность минеральных пород верхних слоев Земли равна примерно Стало быть, ядро земного шара должно иметь плотность, значительно превышающую

Исследование вопроса о плотности Земли на различных глубинах было предпринято Лежандром и продолжено многими учеными. По выводам Гутенберга и Гаалька (1924 г.) на различных глубинах имеют место примерно следующие значения плотности Земли:

Давление внутри земного шара, на большой глубине, по-видимому громадно. Многие геофизики считают, что уже на глубине давление должно достигать атмосфер, на квадратный сантиметр В ядре Земли, на глубине около 3000 и более километров давление, возможно, достигает 1-2 млн. атмосфер.

Что касается температуры а глубине земного шара, то достоверно, что она выше (температура лавы). В шахтах и буровых скважинах температура повышается в среднем на один градус на каждые Предполагают, что на глубине около температура доходит до 1500-2000° и далее остается постоянной.

Рис. 50. Относительные размеры Солнца и планет.

Полная теория движения планет, излагаемая в небесной механике, позволяет вычислить массу планеты по наблюдениям того влияния, которое данная планета оказывает на движение какой-либо другой планеты. В начале прошлого столетия были известны планеты Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран. Было замечено, что движение Урана обнаруживает некоторые «неправильности», которые указывали на то, что за Ураном находится ненаблюденная планета, влияющая на движение Урана. В 1845 г. французский ученый Леверье и независимо от него англичанин Адаме, исследовав движение Урана, вычислили массу и местоположение планеты, которую еще никто не наблюдал. Только после этого планета была найдена на небе как раз в том месте, которое было указано вычислениями; эта планета была названа Нептуном.

В 1914 г. астроном Ловелл аналогичным путем предсказал существование еще одной планеты, находящейся еще дальше от Солнца, чем Нептун. Только в 1930 г. эта планета была найдена и названа Плутоном.

Основные сведения о больших планетах

(см. скан)

В приведенной таблице содержатся основные сведения о девяти больших планетах солнечной системы. Рис. 50 иллюстрирует относительные размеры Солнца и планет.

Кроме перечисленных больших планет, известно около 1300 весьма малых планет, так называемых астероидов (или планетоидов) Их орбиты в основном находятся между орбитами Марса и Юпитера.

Delitant 75 · 03-10-2014

Массы небесных тел (методы определения)
В основе определения масс небесных тел лежит закон всемирного тяготения, выражаемый ф-лой:
$F=Gcdot{{mathfrak M}_1{mathfrak M}_2over {r^2}}$ (1)
где F - сила взаимного притяжения масс ${mathfrak M}_1$ и ${mathfrak M}_2$, пропорциональная их произведению и обратно пропорциональная квадрату расстояния r между их центрами. В астрономии часто (но не всегда) можно пренебречь размерами самих небесных тел по сравнению с разделяющими их расстояниями, отличием их формы от точной сферы и уподоблять небесные тела материальным точкам, в к-рых сосредоточена вся их масса.
Коэффициент пропорциональности G =$6,67cdot 10^{-8} mbox{см}^3cdot mbox{г}^{-1}cdot mbox{с}^{-2}$ наз. гравитационной постоянной или постоянной тяготения. Её находят из физического эксперимента с крутильными весами, позволяющими определить силу гравитац. взаимодействия тел известной массы.
В случае свободного падения тел сила F, действующая на тело, равна произведению массы тела ${mathfrak M}$ на ускорение свободного падения g. Ускорение g может быть определено, напр., по периоду T колебаний вертикального маятника: $T=2pisqrt{l/g}$, где l - длина маятника. На широте 45o и на уровне моря g= 9,806 м/с2.
Подстановка выражения для сил земного притяжения $F={mathfrak M}cdot g$ в ф-лу (1) приводит к зависимости $g=G{mathfrak M}_oplus/R_oplus^2$, где ${mathfrak M}_oplus$ - масса Земли, а $R_oplus$ - радиус земного шара. Таким путём была определена масса Земли ${mathfrak M}_oplusapprox 6,0cdot 10^{27}$ г. Определение массы Земли явл. первым звеном в цепи определений масс др. небесных тел (Солнца, Луны, планет, а затем и звёзд). Массы этих тел находят, опираясь либо на 3-й закон Кеплера (см. Кеплера законы), либо на правило: расстояния к.-л. масс от общего центра масс обратно пропорциональны самим массам. Это правило позволяет определить массу Луны. Из измерений точных координат планет и Солнца найдено, что Земля и Луна с периодом в один месяц движутся вокруг барицентра - центра масс системы Земля - Луна. Расстояние центра Земли от барицентра равно 0,730 $R_oplus$ (он расположен внутри земного шара). Ср. расстояние цeнтpa Луны от центра Земли составляет 60,08 $R_oplus$. Отсюда отношение расстояний центров Луны и Земли от барицентра равно 1/81,3. Поскольку это отношение обратно отношению масс Земли и Луны, масса Луны
${mathfrak M}_Л={mathfrak M}_oplus/81,3approx 7,35cdot 10^{25}$ г.
Массу Солнца можно определить, применив 3-й закон Кеплера к движению Земли (вместе с Луной) вокруг Солнца и движению Луны вокруг Земли:
${a_oplus^3over {T_oplus^2({mathfrak M}_odot+{mathfrak M}_oplus)}}={a_{Л}^3over {T_{Л}^2({mathfrak M}_oplus+{mathfrak M}_{Л})}}$ , (2)
где а - большие полуоси орбит, T - периоды (звёздные или сидерические) обращения. Пренебрегая ${mathfrak M}_oplus$ по сравнению с ${mathfrak M}_odot$, получим отношение ${mathfrak M}_odot/({mathfrak M}_oplus+{mathfrak M}_{Л})$, равное 329390. Отсюда ${mathfrak M}_odotapprox 3,3cdot 10^{33}$ г, или ок. $3,3cdot 10^5 {mathfrak M}_oplus$.
Аналогичным путём определяют массы планет, имеющих спутников. Массы планет, не имеющих спутников, определяют по возмущениям, к-рые они оказывают на движение соседних с ними планет. Теория возмущённого движения планет позволила заподозрить существование тогда неизвестных планет Нептуна и Плутона, найти их массы, предсказать их положение на небе.
Массу звезды (помимо Солнца) можно определить со сравнительно высокой надёжностью только в том случае, если она явл. физ. компонентом визуально-двойной звезды (см. Двойные звезды), расстояние до к-рой известно. Третий закон Кеплера в этом случае даёт сумму масс компонентов (в ед. ${mathfrak M}_odot$):
${mathfrak M}_1+{mathfrak M}_2={(a"")^3over {(pi"")^3}}cdot {1over{P^2}}$ ,
где а"" -большая полуось (в секундах дуги) истинной орбиты спутника вокруг главной (обычно более яркой) звезды, к-рую в этом случае считают неподвижной, Р - период обращения в годах, $pi""$ - параллакс системы (в секундах дуги). Величина $a""/pi""$ даёт большую полуось орбиты в а. е. Если можно измерить угловые расстояния $ ho$ компонентов от общего центра масс, то их отношение даст величину, обратную отношению масс: $ ho_1/ ho_2={mathfrak M}_2/{mathfrak M}_1$. Найденная сумма масс и их отношение позволяют получить массу каждой звезды в отдельности. Если компоненты двойной имеют примерно одинаковый блеск и сходные спектры, то полусумма масс $({mathfrak M}_1+{mathfrak M}_2)/2$ даёт верную оценку массы каждого компонента и без дополнит. определения их отношения.
Для др. типов двойных звезд (затменно-двойных и спектрально-двойных) имеется ряд возможностей приблизительно определить массы звёзд или оценить их нижний предел (т.е. величины, меньше которых не могут быть их массы).
Совокупность данных о массах компонентов примерно ста двойных звёзд разных типов позволила обнаружить важную статистич. зависимость между их массами и светимостями (см. Масса-светимость зависимость). Она даёт возможность оценивать массы одиночных звёзд по их светимостям (иначе говоря, по их абс. звёздным величинам). Абс. звёздные величины М определяются по ф-ле: M = m + 5 + 5 lg $pi$ - A(r) , (3) где m - видимая звёздная величина в выбранном оптич. диапазоне (в определённой фотометрич. системе, напр. U, В или V; см. Астрофотометрия), $pi$ - параллакс и A(r) - величина межзвёздного поглощения света в том же оптич. диапазоне в данном направлении до расстояния $r=1/pi$.
Если параллакс звезды не измерен, то приближённое значение абс. звёздной величины можно определить по её спектру. Для этого необходимо, чтобы спектрограмма позволяла не только узнать спектральный класс звезды, но и оценить относительные интенсивности нек-рых пар спектр. линий, чувствительных к "эффекту абс. величины". Иначе говоря, сначала необходимо определить класс светимости звезды - принадлежность к одной из последовательностей на диаграмме спектр-светимость (см. Герцшпрунга-Ресселла диаграмма), а по классу светимости - её абс. величину. По полученной таким образом абс. величине можно найти массу звезды, воспользовавшись зависимостью масса-светимость (этой зависимости не подчиняются лишь белые карлики и пульсары).
Ещё один метод оценки массы звезды связан с измерением гравитац. красного смещения спектр. линий в её поле тяготения. В сферически-симметричном поле тяготения оно эквивалентно доплеровскому красному смещению $Delta v_r=0,635 {mathfrak M}/R$, где ${mathfrak M}$ - масса звезды в ед. массы Солнца, R - радиус звезды в ед. радиуса Солнца, а $Delta v_r$ выражено в км/с. Это соотношение было проверено по тем белым карликам, к-рые входят в состав двойных систем. Для них были известны радиусы, массы и истинные лучевые скорости vr, являющиеся проекциями орбитальной скорости.
Невидимые (тёмные) спутники, обнаруженные около нек-рых звёзд по наблюдённым колебаниям положения звезды, связанным с её движением около общего центра масс (см. Невидимые спутники звезд), имеют массы меньше 0,02 ${mathfrak M}_odot$. Они, вероятно, не явл. самосветящимися телами и больше похожи на планеты.
Из определений масс звёзд выяснилось, что они заключены примерно в пределах от 0,03 ${mathfrak M}_odot$ до 60 ${mathfrak M}_odot$. Наибольшее количество звёзд имеют массы от 0,3 ${mathfrak M}_odot$ до 3 ${mathfrak M}_odot$. Ср. масса звезд в ближайших окрестностях Солнца $approx 0,5 {mathfrak M}_odot$, т.е. $approx$1033 г. Различие в массах звёзд оказывается много меньшим, чем их различие в светимостях (последнее может достигать десятков млн.). Сильно отличаются и радиусы звёзд. Это приводит к разительному различию их ср. плотностей: от $5cdot 10^{-5}$ до $3cdot 10^5$ г/см3 (ср. плотность Солнца 1,4 г/см3).
Массу рассеянного звёздного скопления можно определить, сложив массы всех его членов, светимости к-рых определяют по их видимому блеску и расстоянию до скопления, а массы - по зависимости масса-светимость.
Массу шарового звёздного скопления далеко не всегда можно оценить путём подсчёта звёзд, т.к. в центральной области большинства таких скоплений изображения отдельных звёзд на фотографиях, полученных с оптимальной экспозицией, сливаются в одно светящееся пятно. Есть методы оценки общей массы всего скопления, основанные на статистич. принципах. Так, напр., применение теоремы о вириале (см. Вириала теорема) позволяет оценить массу скопления ${mathfrak M}_{ск}$ (в ${mathfrak M}_odot$) по радиусу скопления r (пк) и ср. квадратич. отклонению $ar{(Delta v)^2}$ лучевой скорости отдельных звёзд (в км/с) от ср. её значения (т.е. от лучевой скорости скопления как целого):
${mathfrak M}_{ск}approx 800 ar{(Delta v)^2}cdot r$ .
Если же подсчёт звёзд - членов шарового скопления возможен, то общую массу скопления можно определить как сумму произведений ${mathfrak M}_i cdot varphi(M_i)$, где $varphi(M_i)$ - функция светимости этого скопления, т.е. число звёзд, приходящихся на различные интервалы абс. звёздных величин Mi (обычно их подсчитывают в интервалах, равных 1m), a ${mathfrak M}_i$ - масса, соответствующая данной абс. звёздной величине Mi по зависимости масса-светимость. Т.о., общая масса скопления ${mathfrak M}_{ск}=sumlimits_i {mathfrak M}_icdot varphi(M_i)$, где сумма взята от самых ярких до самых слабых членов скопления.
Метод определения массы Галактики ${mathfrak M}_Г$ исходит из факта вращения Галактики. Устойчивость вращения позволяет предположить, что центростремит. ускорение для каждой звезды, в частности для Солнца, определяется притяжением вещества Галактики в пределах солнечной орбиты. Солнце притягивается к галактич. центру с силой $F_0=G{mathfrak M}_0{mathfrak M}_odot/R_0^2$, где R0 - расстояние Солнца от ядра Галактики, равное $3cdot 10^{22}$ см. Сила F0 сообщает Солнцу ускорение $g_0=G{mathfrak M}_0/R_0^2$, к-рое равно центробежному ускорению Солнца $v_0^2/R_0$ (без учёта влияния внеш. части Галактики и при условии эллипсоидальности поверхностей равной плотности по внутр. её части). Собственная галактич. скорость Солнца (т.н. круговая скорость на расстоянии R0 от центра) $v_0approx$220 км/с, отсюда $g_0=v_0^2/R_0approx 1,6cdot 10^{-8}$ см/с2. Масса Галактики, без учёта её частей, внешних по отношению к галактической траектории Солнца, ${mathfrak M}_Гapprox g_0R_0/Gapprox 2,2cdot 10^{44}$ г. Масса Галактики в сферич. объёме с радиусом $approx$15 кпк, согласно подобным расчётам, равна $approx 1,5cdot 10^{11} {mathfrak M}_odot$. При этом учитывается также масса всей диффузной (рассеянной) материи в Галактике.
Масса спиральной галактики может быть определена по результатам изучения её вращения, напр. из анализа кривой лучевых скоростей, измеренных в различных точках большой оси видимого эллипса галактики. В каждой точке галактики центростремит. сила пропорциональна массе более близких к центру галактики областей и зависит от закона изменения плотности галактики с удалением от её центра. Спектроскопич. наблюдения в оптич. диапазоне позволили построить кривые вращения спиральных галактик до расстояний 20-25 кпк от центра (а у ряда галактик высокой светимости до 40 кпк и более). Вплоть до этих расстояний круговая скорость не уменьшается с увеличением R, т.е. масса галактики продолжает расти с расстоянием. Т.о., в галактиках имеется скрытая масса. Масса невидимого (несветящегося) вещества галактик может в 10 и более раз превосходить массу светящегося вещества; предположительно, скрытая масса может существовать в форме очень слабых маломассивных звёзд или чёрных дыр или в форме элементарных частиц (напр., нейтрино, если они обладают массой покоя).
Для медленно вращающихся галактик, какими явл., напр., эллиптич. галактики, трудно получить кривые лучевых скоростей, но зато можно по расширению спектр. линии оценить ср. скорость звёзд в системе и, сопоставив её с истинными размерами галактики, определить её массу. Чем больше ср. скорость звёзд, тем больше должна быть масса галактики (при одинаковых размерах). Зависимость между массой, размерами галактики и ср. скоростью звёзд вытекает из условия стационарности системы.
Ещё один способ оценки массы галактик-компонентов двойных систем аналогичен методу оценки масс компонентов спектрально-двойных звёзд (ошибка не превышает 20%). Используют также установленную статистич. зависимость между массой и интегр. светимостью галактик различного типа (своего рода зависимость масса-светимость для галактик). Светимость определяется по видимой интегр. звёздной величине и расстоянию, к-рое оценивается по красному смещению линий в спектре. Ср. масса галактик, входящих в скопление галактик, оценивается по числу галактик скопления и его общей массе, к-рую статистически определяют по дисперсии лучевых скоростей галактик, подобно тому как оценивается общая масса звёздного скопления на основе теоремы о вириале.
Известные ныне массы галактик заключены в пределах от ~105${mathfrak M}_odot$ (т.н. карликовые галактики) до 1012${mathfrak M}_odot$ (сверхгигантские эллиптич. галактики, напр. галактика М 87), т.е. отношение масс галактик доходит до 107.
Точность определения масс астрономич. объектов зависит от точности определения всех величин, входящих в соответствующие ф-лы. Масса Земли определена с погрешностью $pm$0,05%, масса Луны $pm$0,1%. Погрешность определения массы Солнца также составляет $pm$0,1%, она зависит от точности определения астрономической единицы (ср. расстояния до Солнца). Вообще, в значит. степени точность определения массы зависит от точности измерения расстояния до космического объекта, в случае двойных звёзд - от расстояния между ними, от линейных размеров тел и т.д. Массы планет известны с погрешностью от $pm$0,05 до $pm$0,7%. Массы звёзд определены с погрешностью от 20 до 60%. Неуверенность определения масс галактик можно характеризовать коэфф. 2-5 (масса может быть в неск. раз больше или меньше), если надёжно определено расстояние до них.
Лит.:
Струве О., Линде Б., Пилланс Э., Элементарная астрономия, пер. с англ., 2 изд., М., 1967; Сагитов М.У., Постоянная тяготения и масса Земли, М., 1969; Климишин И.А., Релятивистская астрономия, М., 1983.
(П.Г. Куликовский)



Читайте также: