Сфингомиелины. Сфинголипиды, их биосинтез и биологическая роль Какое утверждение для сфингомиелина является неверным

Сфинголипиды. В основном они находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Сфингомиелины обнаружены также в ткани почек, печени и других органов. При гидролизе сфингомиелины образуют одну молекулу жирной кислоты, одну молекулу двухатомного ненасыщенного спирта сфингозина, одну молекулу азотистого основания (чаще это холин) и одну молекулу фосфорной кислоты. Общую формулу сфингомиелинов можно представить так:


Общий план построения молекулы сфингомиелина в определенном отношении напоминает строение глицерофосфолипидов. Молекула сфин-гомиелина содержит как бы полярную «головку», которая несет одновременно и положительный (остаток холина), и отрицательный (остаток фосфорной кислоты) заряды, и два неполярных «хвоста» (длинная алифатическая цепь сфингозина и ацильный радикал жирной кислоты). В некоторых сфингомиелинах, например выделенных из мозга и селезенки, вместо сфингозина найден спирт дигидросфингозин (восстановленный сфингозин):


7.6 Стероиды

Все рассмотренные липиды принято называть омыляемыми, поскольку при их щелочном гидролизе образуются мыла. Однако имеются липиды, которые не гидролизуются с освобождением жирных кислот . К таким липидам относятся стероиды. Стероиды – широко распространенные в природе соединения. Они часто обнаруживаются в ассоциации с жирами. Их можно отделить от жира путем омыления (они попадают в неомыляемую фракцию). Все стероиды в своей структуре имеют ядро , образованное гидрированным фенантреном (кольца А, В и С) и циклопентаном (кольцо D) (рис. 24):


Рисунок 24 - Обобщенное стероидное ядро
К стероидам относятся, например, гормоны коркового вещества надпочечников, желчные кислоты, витамины группы D, сердечные гликозиды и другие соединения. В организме человека важное место среди стероидов занимают стерины (стеролы), т.е. стероидные спирты. Главным представителем стеринов является холестерин (холестерол).

Ввиду сложного строения и асимметрии молекулы стероиды имеют много потенциальных стереоизомеров. Каждое из шестиуглеродных колец (кольца А, В и С) стероидного ядра может принимать две различные пространственные конформации – конформацию «кресла» либо «лодки».

Холестерин – источник образования в организме млекопитающих желчных кислот, а также стероидных гормонов (половых и кортикоидных). Холестерин, а точнее продукт его окисления – 7-дегидрохолестерин, под действием УФ-лучей в коже превращается в витамин D 3 . Таким образом, физиологическая функция холестерина многообразна .

Холестерин находится в животных, но не в растительных жирах. В растениях и дрожжах содержатся близкие по структуре к холестерину соединения, в том числе эргостерин.

Эргостерин – предшественник витамина D. После воздействия на эргостерин УФ-лучами он приобретает свойство оказывать противорахитное действие (при раскрытии кольца В).

Восстановление двойной связи в молекуле холестерина приводит к образованию копростерина (копростанола). Копростерин находится в составе фекалий и образуется в результате восстановления бактериями кишечной микрофлоры двойной связи в холестерине между атомами С 5 и С 6 .

Указанные стерины в отличие от холестерина очень плохо всасываются в кишечнике и потому обнаруживаются в тканях человека в следовых количествах.

8 Химия углеводов

Впервые термин «углеводы» был предложен профессором Дерптского (ныне Тартуского) университета К.Г. Шмидтом в 1844 г. В то время предполагали, что все углеводы имеют общую формулу C m (H 2 O) n , т.е. углевод + вода. Отсюда название «углеводы». Например, глюкоза и фруктоза имеют формулу С(Н 2 О) 6 , тростниковый сахар (сахароза) C 12 (H 2 O) 11 , крахмал [С 6 (Н 2 О) 5 ] n и т.д. В дальнейшем оказалось , что ряд соединений, по своим свойствам относящихся к классу углеводов, содержат водород и кислород в несколько иной пропорции, чем указано в общей формуле (например, дезоксирибоза С 5 Н 10 О 4). В 1927 г. Международная комиссия по реформе химической номенклатуры предложила термин «углеводы» заменить термином «глициды», однако старое название «углеводы» укоренилось и является общепризнанным.

Химия углеводов занимает одно из ведущих мест в истории развития органической химии. Тростниковый сахар можно считать первым органическим соединением, выделенным в химически чистом виде. Произведенный в 1861 г. A.M. Бутлеровым синтез (вне организма) углеводов из формальдегида явился первым синтезом представителей одного из трех основных классов веществ (белки, липиды, углеводы), входящих в состав живых организмов. Химическая структура простейших углеводов была выяснена в конце XIX в. в результате фундаментальных исследований Э. Фишера. Значительный вклад в изучение углеводов внесли отечественные ученые А.А. Колли, П.П. Шорыгин, Н.К. Кочетков и др. В 20-е годы нынешнего столетия работами английского исследователя У. Хеуорса были заложены основы структурной химии полисахаридов. Со второй половины XX в. происходит стремительное развитие химии и биохимии углеводов, обусловленное их важным биологическим значением.

Церамиды –самый простой тип сфинголипидов, состоящих из сфингозина (или некоторых его производных) и жирной кислоты(являются важным липидным компонентом клеточной мембраны)

Формула сфингомиелина:
Сфингомиелин
- это тип сфинголипида, который находится в клеточной мембране животных. Особенно этим фосфолипидом богата миелиновая оболочка аксонов нервных клеток.
Сфингомиелин представляет собой единственный фосфолипид человека, основа которого не включает глицериновый остаток. Сфингомиелин состоит из сфингозина, соединённого сложноэфирной связью с полярной группой. Полярная группа может быть фосфохолин или фосфоэтаноламин. Ко второму углероду сфингозина за счёт амидной связи присоединена жирная кислота.

2.Реакция образования ацетона.
Ацето́н
- органическое вещество, имеющее формулу CH 3 -C(O)-CH 3 , простейший представитель насыщенных кетонов.
Ацетон, который образуется при неферментативном декарбоксилировании ацетоацетата, в организме не используется. Он выводится с выдыхаемым воздухом, секретом потовых желёз и мочой. В норме концентрация ацетона в крови мала и обычными реакциями не определяется.

Кетоновые тела синтезируются в печени, легко проходят через митохондриальные и клеточные мембраны и поступают в кровь. Кровью они транспортируются во все другие ткани. Используются только ацетоацетат и бета-гидроксибутират.

3. Дать общую характеристику строения ацилсинтетазы и ее активных центров.
Реакции синтеза жирных кислот с участием этого фермента.

В биосинтезе насыщенных жирных кислот участвуют два ферментных комплекса: ацетил-КоА карбоксилаза и ацилсинтетаза.
Синтетаза ЖК содержит 7 активных центров.

Ацилсинтетазный мультиферментный комплекс содержит ацилпереносящий белок (АПБ) в качестве своеобразного ядра,активный центр представлен фосфопантотеином . Другими ферментами комплекса являются β-кетоацилсинтетаза (КС) – самый крупный домен ацилсинтетеазы (N-концевой), его ферментная активность обеспечивает единственную необратимую реакцию всего процесса, ацилтрансфераза (АТ) – переносит кислотный остаток с Ацил-КоА на HS-группупантотеиновой части АПБ-домена, β-кетоацилредуктаза (КР) , В-гидроксиацилдегидратаза (ГД) , еноилредуктаза (ЕР) и ацилтрансацетилаза (АТ).

После этого ацил-АПБ вступает в новый цикл синтеза. К свободной SH-группе ацилпереносящего белка присоединяется новая молекула малонил-КоА. Затем происходит отщепление ацильного остатка, и он переносится на малонильный остаток с одновременным декарбоксилированием, и цикл реакций повторяется.

Таким образом, углеводородная цепочка будущей жирной кислоты постепенно растет (за каждый цикл – на два углеродных атома). Это происходит до момента, пока она не удлинится до 16 углеродных атомов (в случае синтеза пальмитиновой кислоты) или более (синтез других жирных кислот). Вслед за этим происходит тиолиз, и образуется в готовом виде активная форма жирной кислоты – ацил-КоА.

2.1.2 Сфинголипиды (сфингофосфолипиды)

Сфингомиелины. Это наиболее распространенные сфинголипиды. В основном они находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Сфингомиелины обнаружены так же в тканях почек печени и других органов. При гидролизе сфингомиелины образуют одну молекулу жирной кислоты одну молекулу двухатомного ненасыщенного спирта сфингозина одну молекулу азотистого основания и одну молекулу фосфорной кислоты. Общую формулу сфингомиелинов можно представить так:


Общий план построения молекулы сфингомиелина в определенном отношении напоминает строение глицерофосфолипидов. Молекула сфингомиелинов содержит как бы полярную «головку», которая несет одновременно, и положительный (остаток холина), и отрицательный (остаток фосфорной кислоты) заряды и два неполярных «хвоста» (длинные алифатическая цепь сфингозина и ацильный радикал жирной кислоты).

2.2 Гликолипиды (гликосфинголипиды)

Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в мозге. Главной формой гликолипидов в животных тканях являются гликосфинголипиды. Последние содержат церамид, состоящий из спирта сфингозина и остатка жирной кислоты, и один или несколько остатков сахаров.

Простейшими гликосфинголипидами являются галактозилцерамиды и глюкозилцерамиды.

Галактозилцерамиды - главные сфинголипиды мозга и других нервных тканей, но в небольших количествах встречаются и во многих других тканях. В состав галактозилцерамидов входит гексоза (обычно это D-галактоза), которая связана эфирной связью с гидроксильной группой аминоспирта сфингозина. Кроме того, в составе галактозилцерамида имеется жирная кислота. Чаще всего это лигноцериновая, нервоновая или цереброновая кислота, т. е. жирные кислоты, имеющие 24 углеродных атома. Существуют сульфогалактозилцерамиды, которые отличаются от галактозилцерамидов наличием остатка серной кислоты, присоединенного к третьему углеродному атому гексозы. В мозге млекопитающих сульфогалактозилцерамиды в основном находятся в белом веществе, при этом содержание их в мозге намного ниже, чем галактозилцерамидов.

Глюкозилцерамиды - это простые гликосфинголипиды, представлены в тканях, отличных от нервной, причем главным образом глюкозилпцрамидами. В небольших количествах они имеются в ткани мозга. В отличие от галактозилцерамидов у них вместо остатка галактозы имеется остаток глюкозы.

Более сложными гликосфинголипидами являются ганглиозиды, образующиеся из гликозилцерамидов. Ганглиозиды дополнительно содержат одну или несколько молекул сиаловой кислоты. В тканях человека доминирующей сиаловой кислотой является нейраминовая. Кроме того, вместо остатка глюкозы они чаще содержат сложный олигосахарид. Ганглиозиды в больших количествах находятся в нервной ткани. Они, по-видимому, выполняют рецепторные и другие функции. Одним из простейших ганглиозидов является гаметозид выделенный из стромы эритроцитов. Он содержит церамид одну молекулу глюкозы одну молекулу N- ацетилнейраминовой кислоты.

2.3 Стероиды

Все рассмотренные липиды принято называть омыляемыми, поскольку при их щелочном гидролизе образуются мыла. Однако имеются липиды, которые не гидролизуются с освобождением жирных кислот. К таким липидам относятся стероиды. Стероиды - широко распространенные в природе соединения. Они часто обнаруживаются в ассоциации с жирами. Их можно отделить от жира путем омыления (они попадают в неомыляемую фракцию). Все стероиды в своей структуре имеют ядро, образованное гидрированным фенантреном (кольца А, В и С) и циклопентаном (кольцо D).

Фенантрен Пергидрофенантрен Общая структурная основа стероидов.

К стероидам относятся, например, гормоны коркового вещества надпочечников, желчные кислоты, витамины группы D, сердечные гликозиды и другие соединения. В организме человека важное место среди стероидов занимают стерины (стеролы), т. е. стероидные спирты. Главным представителем стеринов является холестерин (холестерол).

Ввиду сложного строения и асимметрии молекулы стероиды имеют много потенциальных стереоизомеров. Каждое из шестиуглеродных колец (кольца А, В и С) стероидного ядра может принимать две различные пространственные конформации - конформацию «кресла» либо «лодки».

В природных стероидах, в том числе и в холестерине, все кольца в форме «кресла», что является более устойчивой конформацией. В свою очередь по отношению друг к другу кольца могут находиться в цис- или транс-положениях.

Холестерин. Как отмечалось, среди стероидов выделяется группа соединений, получивших название стеринов (стеролов). Для стеринов характерно наличие гидроксильной группы в положении 3, а также боковой цепи в положении 17. У важнейшего представителя стеринов - холестерина - все кольца находятся в транс-положении; кроме того, он имеет двойную связь между 5-м и 6-м углеродными атомами. Следовательно, холестерин является ненасыщенным спиртом. Кольцевая структура холестерина отличается значительной жесткостью, тогда как боковая цепь - относительной подвижностью. Итак, холестерин содержит спиртовую гидроксильную группу при С-3 и разветвленную алифатическую цепь из 8 атомов углерода при С-17. Химическое название холестерина 3-гидрокси-5,6-холестин. Гидроксильная группа при С-3 может быть эстерифицирована высшей жирной кислотой, при этом образуются эфиры холестерина (холестериды).

Холестерин - источник образования в организме млекопитающих желчных кислот, а также стероидных гормонов. Физиологические функции холестерина многообразны.





Охрана окружающей среды Заключение Рисунок 2 – Сетевой график дипломной работы 2.1 Объекты исследования Объектом исследования в дипломной работе являлись микроорганизмы, выделенные из различных природных жиров: нерпичьего (Н), нерпичьего, выращенного на среде с шёрстным жиром (Нв), шерстного (В) и микроорганизмы, выделенные из...

В составе липидов кроме обычных кислот, своеобразные, характерные только для этих микроорганизмов миколовые кислоты, представляющие собой высокомолекулярные b-гидроксикислоты с длинной алифатической цепью в a-положении. ЖКС липидов мицелиальных грибов во многом идентичен составу растительных масел. В связи с этим грибные липиды могут найти применение в различных отраслях народного хозяйства (...

Водяной бане 10 мин. Запах мчсного бульона определяют в процессе нагревания до 80-85С. Степень прозрачности бульона устанавливают визуально в цилиндре диаметром 20 мм. Химические исследования. К химическим исследованиям мяса птицы относятся определение количества летучих жирных кислот, определение аммиака и солей аммония, реакция на пероксидазу с бензидином, определение кислотного и пероксидного...





Внимание на выше сказанное, целесообразнее внедрять технические мероприятия на предприятии, что в свою очередь будет благотворно влиять на финансовые результаты РУП «Гомельский ОТКЗ жировой - комбинат» ГЛАВА3 ПУТИ УЛУЧШЕНИЯ ФИНАНСОВОГО СОСТОЯНИЯ НА РУП «ГОМЕЛЬСКИЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ЖИРОВОЙ КОМБИНАТ» 3.1 Мероприятие по внедрению более дешевого и менее энергетически...

глицерофосфолипиды. Структурная основа глицерофосфолипидов - глицерол. Глицерофосфолипиды молекулы, в которых две жирные кислоты связаны сложноэфирной связью с глицеролом в первой и второй позициях; в третьей позиции находится остаток фосфорной кислоты, к которому, в свою очередь, могут быть присоединены различные заместители, чаще всего аминоспирты. Если в третьем положении имеется только фосфорная кислота, то глицерофосфолипид называется фосфатидной кислотой. Её остаток называют "фосфатидил" ; он входит в название остальных глицерофосфолипидов, после которого указывают название заместителя атома водорода в фосфорной кислоте, например фосфатидилэтаноламин, фосфатидилхолин и т.д. Фосфатидная кислота в свободном состоянии в организме содержится в небольшом количестве), но является промежуточным продуктом на пути синтеза как три-ацилглицеролов, так и глицерофосфолипидов. У глицерофосфолипидов, как и у триацилгли-церолов, во второй позиции находятся преимущественно полиеновые кислоты; в молекуле фосфатидилхолина, входящего в структуру мембран, это чаще всего арахидоновая кислота. Жирные кислоты фосфолипидов мембран отличаются от других липидов человека преобладанием полиеновых кислот (до 80-85%), что обеспечивает жидкое состояние гидрофобного слоя, необходимое для функционирования белков, входящих в структуру мембран.

Общая формула глицерофосфолипидоввыглядит так:

В отличие от триглицеридов в молекулефосфатидилхолинаодна из трехгидроксильных группглицеринасвязана не с жирной, а сфосфорной кислотой. Кроме того,фосфорная кислотав свою очередь соединена эфирной связью сазотистым основанием–холином[НО-СН 2 -СН 2 -N + (CH 3) 3 ]. Таким образом, вмолекулефосфатидил-холина соединеныглицерин,высшие жирные кислоты,фосфорная кислотаихолин:

Фосфатидилэтаноламины . Основное различие между фосфатидилхоли-нами ифосфатидилэтаноламинами– наличие в составе последнихазотистого основанияэтаноламина(HO-CH 2 -CH 2 -N + H 3):

Из глицерофосфолипидовворганизмеживотных и высших растений в наибольшем количестве встречаютсяфосфатидилхолиныи фосфатидил-этаноламины. Эти 2 группыглицерофосфолипидовметаболически связаны друг с другом и являются главными липидными компонентамимембранклеток.

Фосфатидилсерины . Вмолекулефосфатидилсеринаазотистым соединением служит остатокаминокислотысерина

Фосфатидилсериныраспространены гораздо менее широко, чем фос-фатидилхолины и фосфоэтаноламины, и их значение определяется в основном тем, что они участвуют в синтезефосфатидилэтаноламинов.

Фосфатидилинозитолы. Этилипидыотносятся к группе производных фосфатиднойкислоты, но не содержатазота. Радикалом (R 3) в этом подклассеглицерофосфолипидовявляется шестиуглеродный циклическийспиртинозитол:

Фосфатидилинозитолы довольно широко распространены в природе. Они обнаружены у животных, растений и микроорганизмов. В животноморганизменайдены в мозге,печении легких.

Вопрос 36.Сфинголипиды. Строение и роль.

Сфинголипиды

Аминоспирт сфингозин, состоящий из 18 атомов углерода, содержит гидроксильные группы и аминогруппу. Сфингозин образует большую группу липидов, в которых жирная кислота связана с ним через аминогруппу. Продукт взаимодействия сфингозина и жирной кислоты называют "церамид" ). В церамидах жирные кислоты связаны необычной (амидной) связью, а гидроксильные группы способны взаимодействовать с другими радикалами. Церамиды отличаются радикалами жирных кислот, входящих в их состав. Обычно это жирные кислоты с большой длиной цепи - от 18 до 26 атомов углерода. Существует 3 основных типа сфинголипидов:

Церамиды - это наиболее простые сфинголипиды. Они содержат только сфингозин, соединённый с жирнокислотным ацильным остатком.

Сфингомиелины содержат заряженную полярную группу, такую как фосфохолин или фосфоэтаноламин.

Гликосфинголипиды содержат церамид, эстерифицированный по 1-гидрокси-группе остатком сахара. В зависимости от сахара гликосфинголипиды подразделяются нацереброзиды и ганглиозиды.

Цереброзиды содержат в качестве остатка сахара глюкозу или галактозу.

Ганглиозиды содержат трисахарид, причём один из них всегда сиаловая кислота.

Биол. роль сфинголипидов разнообразна. Известно, что они участвуют в формировании мембранных структур аксонов, синапсов и др. клеток нервной ткани, опосредуют в организме механизмы узнавания, рецепторные взаимодействия, межклеточные контакты и др. жизненно важные процессы.

Это наиболее распространенные сфинголипиды. В основном они находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Сфингомиелины обнаружены также в ткани почек, печени и других органов. При гидролизе сфингомиелиныобразуют одну молекулу жирной кислоты, одну молекулу двухатомного ненасыщенного спирта сфингозина, одну молекулу азотистого основания(чаще это холин) и одну молекулу фосфорной кислоты. Общую формулу сфингомиелинов можно представить так:

Вопрос 37. Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в мозге. Главной формой гликолипидов в животных тканяхявляются гликосфинголипиды. Последние содержат церамид, состоящий из спирта сфингозина и остатка жирной кислоты, и один или несколько остатков сахаров. Простейшими гликосфинголипидами являются галактозилцерамиды и глюкозилцерамиды.

Галактозилцерамиды – главные сфинголипиды мозга и других нервных тканей, но в небольших количествах встречаются и во многих других тканях. В состав галактозилцерамидов входит гексоза (обычно это D-галактоза), которая связана эфирной связью с гидроксильной группой аминоспиртасфингозина. Кроме того, в составе галактозилцерамида имеется жирная кислота. Чаще всего это лигноцериновая, нервоновая или це-реброноваякислота, т.е. жирные кислоты, имеющие 24 углеродных атома.

Существуют сульфогалактозилцерамиды, которые отличаются от га-лактозилцерамидов наличием остатка серной кислоты, присоединенного к третьему углеродному атому гексозы. В мозге млекопитающих сульфо-галактозилцерамиды в основном находятся в белом веществе, при этом содержание их в мозге намного ниже, чем галактозилцерамидов.

Глюкозилцерамиды – простые гликосфинголипиды, представлены в тканях, отличных от нервной, причем главным образом глюкозил-церамидами. В небольших количествах они имеются в ткани мозга. В отличие от галактозилцерамидов у них вместо остатка галактозы имеется остаток глюкозы. Более сложными гликосфинголипидами являются ганглиозиды, образующиеся из гликозилцерамидов. Ганглиозиды дополнительно содержат одну или несколько молекул сиаловой кислоты. В тканях человека доминирующей сиаловой кислотой является нейраминовая. Кроме того, вместо остаткаглюкозы они чаще содержат сложный олигосахарид. Ганглиозиды в больших количествах находятся в нервной ткани. Они, по-видимому, выполняют рецепторные и другие функции. Одним из простейших ганглиозидов является гематозид, выделенный из стромы эритроцитов. Он содержит церамид(ацилсфингозин), одну молекулу глюкозы, одну молекулу N-ацетилнейраминовой кислоты.

Вопрос 38. ХОЛЕСТЕРОЛ - важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций.В организме человека это основной стероид, остальные стероиды - его производные. Растения, грибы и дрожжи не синтезируют холестерол, но образуют разнообразные фитостеролы и микостеролы, не усваиваемые организмом человека. Бактерии не способны синтезировать стероиды. Холестерол входит в состав мембран и влияет на структуру бислоя, увеличивая её жёсткость. Из холестерола синтезируются жёлчные кислоты, стероидные гормоны и витамин D3. Нарушение обмена холестерола приводит к развитию атеросклероза. Холестерол представляет собой молекулу, содержащую 4 конденсированных кольца, обозначаемые латинскими буквами А, В, С, D, разветвлённую боковую цепь из 8 углеродных атомов в положении 17, 2 "ангулярные" метильные группы (18 и 19) и гидроксильную группу в положении 3. Присоединение жирных кислот сложноэфирной связью к гидроксильной группе приводит к образованию эфиров холестерола. В неэтерифицированной форме холестерол входит в состав мембран различных клеток. Гидроксильная группа холестерола обращена к водному слою, а жёсткая гидрофобная часть молекулы погружена во внутренний гидрофобный слой мембраны. В крови 2/3 холестерола находится в этерифицированной форме и 1/3 - в виде свободногохолестерола. Эфиры холестерола служат формой его депонирования в некоторых клетках (например, печени, коры надпочечников, половых желёз). Из этих депо холестерол используется для синтеза жёлчных кислот и стероидных гормонов.

Сфингомиелин

Первая часть слова "сфинго" свидетельствует о том, что в состав молекулы входит вместо глицерина двухатомный ненасыщенный спирт - сфингозин. Наиболее широко распространенным в организме представителем этой группы соединений является сфингомиелин Сфингомиелин обнаружен в мембранах растительных и животных клеток; особенно богата сфингофосфолипидами нервная ткань, и в частности, мозг.

Характерной особенностью фосфолипидов является их дифильность, то есть способность растворяться как в водной среде, так и в нейтральных липидах. Это обусловлено наличием у фосфолипидов выраженных полярных свойств. При рН 7,0 их фосфатная группа всегда несет отрицательный заряд. Азотсодержащие группировки в составе фосфатидилхолина (холин) и фосфатидилэтаноламина (этаноламин) при рН 7,0 несут положительный заряд. Таким образом, при рН 7,0 эти глицерофосфолипиды представляют собой биполярные цвиттерионы и их суммарный заряд равен нулю. Остаток серина в молекуле фосфатидилсерина содержит -аминогруппу и карбоксильную группу. Следовательно, при рН 7,0 молекула фосфатидилсерина имеет две отрицательно и одну положительно заряженных группы и несет суммарный отрицательный заряд.

В то же время, радикалы жирных кислот в составе фосфолипидов не имеют электрического заряда в водной среде и таким образом обусловливают гидрофобность части молекулы фосфолипида. Наличие полярности за счет заряда полярных групп обусловливают гидрофильность. Поэтому на поверхности раздела масло-вода фосфолипиды располагаются таким образом, чтобы полярные группы находились в водной фазе, а неполярные группы - в масляной. За счет этого в водной среде они образуют бимолекулярный слой, а при достижении некоторой критической концентрации - мицеллы.]

На этом основано участие фосфолипидов в построении биологических мембран.

Обработка находящегося в водной среде дифильного липида ультразвуком приводит к образованию липосом. Липосома представляет собой замкнутый липидный бислой, внутри которого оказывается часть водной среды. Липосомы находят применение в клинике, косметологии в качестве своеобразных контейнеров и переносчиков лекарств, питательных веществ к определенным органам и для комбинированного действия на кожу.

Функциональная роль фосфолипидов не ограничивается их участием в построении биомембран. Так, они являются регуляторами активности ферментов. К примеру, фосфатидилхолин, фосфатидилсерин, сфингомиелин активируют или ингибируют активность ферментов, катализирующих процессы свертывания крови. Регуляторная функция липидов заключается в том, что ряд гормонов (половые, гормоны коры надпочечников) являются производными липидов. Кроме того фосфолипиды

Выполняют детергентную функцию в кишечнике и желчном пузыре. Они являются важным структурным компонентом желчи, наряду со свободным холестеролом и с желчными кислотами. Изменение соотношения любого из этих компонентов приводит к осаждению и формированию желчных камней. Фосфолипиды - это также важный компонент смешанных мицелл, которые образуются в ходе переваривания липидов.

Является источником арахидоновой кислоты - предшественника эйкозаноидов

Являются источниками вторичных мессенджеров - диацилглицерола и инозитолтрифосфата, о чем уже упоминалось выше

Обеспечивают прикрепление белков к мембране. Некоторые внеклеточные белки прикрепляются к внешней стороне плазматической мембраны за счет образования ковалентных связей с фосфатидилинозитолом. Примером таких белков могут служить ферменты: щелочная фосфатаза, липопротеин липаза, холинэстераза.

Принимают участие в формировании транспортных форм других липидов

Могут выполнять энергетическую функцию

Явяляются компонентом сурфактанта легких (см. ниже)



Читайте также: