Определенный интеграл метод симпсона пример. Как вычислить определенный интеграл по формуле Симпсона? Метод ячеек. Вычисление кратных интегралов.»

В этом методе предлагается подынтегральную функцию на частичном отрезке аппроксимировать параболой, проходящей через точки
(x j , f (x j )), где j = i -1; i -0.5; i , то есть подынтегральную функцию аппроксимируем интерполяционным многочленом Лагранжа второй степени:

Проведя интегрирование, получим:

Это и есть формула Симпсона или формула парабол. На отрезке
[a, b ] формула Симпсона примет вид

Графическое представление метода Симпсона показано на рис. 2.4.

Рис. 10.4. Метод Симпсона

Избавимся в выражении (2.16) от дробных индексов, переобозначив переменные:

Тогда формула Симпсона примет вид

Погрешность формулы (2.18) оценивается следующим выражением:

где h·n = b - a , . Таким образом, погрешность формулы Симпсона пропорциональна O (h 4 ).

Замечание. Следует отметить, что в формуле Симпсона отрезок интегрирования обязательно разбивается на четное число интервалов.

10.5. Вычисление определенных интегралов методами
Монте–Карло

Рассматриваемые ранее методы называются детерминированными , то есть лишенными элемента случайности.

Методы Монте–Карло (ММК) – это численные методы решения математических задач с помощью моделирования случайных величин. ММК позволяют успешно решать математические задачи, обусловленные вероятностными процессами. Более того, при решении задач, не связанных с какими-либо вероятностями, можно искусственно придумать вероятностную модель (и даже не одну), позволяющую решать эти задачи. Рассмотрим вычисление определенного интеграла

При вычислении этого интеграла по формуле прямоугольников интервал [a, b ] разбиваем на N одинаковых интервалов, в серединах которых вычислялись значения подынтегральной функции. Вычисляя значения функции в случайных узлах, можно получить более точный результат:

Здесь γ i - случайное число, равномерно распределенное на интервале
. Погрешность вычисления интеграла ММК ~ , что значительно больше, чем у ранее изученных детерминированных методов.

На рис. 2.5 представлена графическая реализация метода Монте-Карло вычисления однократного интеграла со случайными узлами (2.21) и (2.22).


(2.23)

Рис. 10.6. Интегрирование методом Монте-Карло (2-й случай)

Как видно на рис. 2.6, интегральная кривая лежит в единичном квадрате, и если мы сумеем получать пары случайных чисел, равномерно распределенных на интервале , то полученные значения (γ 1, γ 2) можно интерпретировать как координаты точки в единичном квадрате. Тогда, если этих пар чисел получено достаточно много, можно приблизительно считать, что
. Здесь S – число пар точек, попавших под кривую, а N – общее число пар чисел.

Пример 2.1. Вычислить следующий интеграл:

Поставленная задача была решена различными методами. Полученные результаты сведены в табл. 2.1.

Таблица 2.1

Замечание. Выбор табличного интеграла позволил нам сравнить погрешность каждого метода и выяснить влияние числа разбиений на точность вычислений.

11 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ
И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ

Формула

Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке :

где , и - значения функции в соответствующих точках (на концах отрезка и в его середине).

Погрешность

При условии, что у функции на отрезке существует четвёртая производная, погрешность , согласно найденной Джузеппе Пеано формуле равна:

В связи с тем, что значение зачастую неизвестно, для оценки погрешности используется следующее неравенство:

Представление в виде метода Рунге-Кутты

Формулу Симпсона можно представить в виде таблицы метода Рунге-Кутты следующим образом:

Составная формула (формула Котеса)

Для более точного вычисления интеграла, интервал разбивают на отрезков одинаковой длины и применяют формулу Симпсона на каждом из них. Значение исходного интеграла является суммой результатов интегрирования на всех отрезках.

где - величина шага, а - узлы интегрирования, границы элементарных отрезков, на которых применяется формула Симпсона. Обычно для равномерной сетки данную формулу записывают в других обозначениях (отрезок разбит на узлов) в виде

Также формулу можно записать используя только известные значения функции, то есть значения в узлах:

где означает что индекс меняется от единицы с шагом, равным двум. Следует обратить внимание на удвоение коэффициента перед суммой. Это связано с тем, что в данном случае роль промежуточных узлов играют исходные узлы интегрирования.

Общая погрешность при интегрировании по отрезку с шагом (при этом, в частности, , ) определяется по формуле :

.

При невозможности оценить погрешность с помощью максимума четвёртой производной (например, на заданном отрезке она не существует, либо стремится к бесконечности), можно использовать более грубую оценку:

.

Примечания

Литература

  • Костомаров Д. П., Фаворский А. П. «Вводные лекции по численным методам»
  • Петров И. Б., Лобанов А. И. Лекции по вычислительной математике

Wikimedia Foundation . 2010 .

  • Western Union
  • Патагонский попугай

Смотреть что такое "Формула Симпсона" в других словарях:

    СИМПСОНА ФОРМУЛА - (формула парабол) формула для приближенного вычисления определенных интегралов (квадратурная формула), Названа по имени Т. Симпсона (1743) … Большой Энциклопедический словарь

    СИМПСОНА ФОРМУЛА - (формула парабол), формула для приближённого вычисления определ. интегралов (квадратурная формула), имеющая вид где А = (b а)/2n, fk = f(a + kh), k = 0, 1, 2, ..., 2n. Названа по имени Т. Симпсона (1743) …

    Симпсона формула - формула для приближённого вычисления определённых интегралов, имеющая вид: , где h = (b а)/2n; fi, = f (a + ih), i = 0, 1, 2,..., 2n. С. ф. называют иногда формулой парабол, т. к. вывод этой формулы основан на… … Большая советская энциклопедия

    Симпсона формула - формула парабол, формула для приближённого вычисления определённых интегралов (квадратурная формула), имеющая вид, где h = (b–a)/2n, fk = f(а + kh), k = 0, 1, 2, ..., 2n. Названа по имени Т. Симпсона (1743). * * * СИМПСОНА ФОРМУЛА СИМПСОНА… … Энциклопедический словарь

    Формула прямоугольников

    Формула трапеций - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    СИМПСОНА ФОРМУЛА - частный случай Ньютона Котеса квадратурной формулы, в к рой берутся три узла: Пусть промежуток [а, b]разбит на пчастичных промежутков , i=0, 1, 2, ..., n 1, длины h=(b а)/п, при этом n считается четным числом, и для вычисления интеграла … Математическая энциклопедия

    Симпсона формула - … Википедия

    Метод Симпсона - Формула Симпсона относится к приёмам численного интегрирования. Получила название в честь британского математика Томаса Симпсона (1710 1761). Рассмотрим отрезок . Пусть известны значения вещественной функции f(x) в точках a, (a+b)/2, b.… … Википедия

    КВАДРАТУРНАЯ ФОРМУЛА - формула, служа щая для приближённого вычисления определ. интегралов по значениям подынтегральной функции в конечном числе точек. Примеры К. ф. прямоугольников формула, трапеций формула, Симпсона формула … Естествознание. Энциклопедический словарь

Отрезок интегрирования разобьем на четное число элементарных отрезков равной длины точкамис шагом
(
). На каждом отрезке
подынтегральную функцию аппроксимируем многочленом второй степени, которая на этом отрезке имеет вид
. Заметим, чтоi принимает здесь только нечетные значения от 1 до
. Таким образом, подынтегральная функция аппроксимируется совокупностью квадратных многочленов или сплайном второй степени.

Вычислим произвольный интеграл из правой части.

Коэффициенты ,имогут быть найдены из условия интерполяции, то есть из уравнений

,

Заметим, что точка является серединой отрезка
, следовательно
. Подставим это выражение во второе уравнение интерполяции:

.

Умножим это уравнение на 4 и сложим с остальными:

Последнее выражение в точности совпадает с выражением, стоящим в квадратных скобках формулы (5.1). Следовательно,

А значит,

Таким образом, формула Симпсона имеет вид:

Оценка погрешности квадратурных формул.

Оценим погрешность при использования метода средних прямоугольников в предположении, что функция
бесконечно дифференцируема.

Разложим подынтегральную функцию
в ряд Тейлора в окрестности точки,
.

Последний ряд содержит лишь нечетные степени x . Тогда

При малой величине шага h основной вклад в погрешность R будет вносить величина
, называемая главным членом погрешностиR .

Применим метод средних прямоугольников к функции
на отрезке
с шагомh . Тогда

.

Итак,
, где
– постоянная величина. Погрешность в приближенном равенстве
есть величина бесконечно малая высшего порядка по сравнению спри
.

Степень шага h , которой пропорционален остаток R , называется порядком точности метода интегрирования. Метод средних прямоугольников имеет второй порядок точности.

Оценим погрешность при использовании метода трапеций также в предположении, что функция
бесконечно дифференцируема.

Разложим подынтегральную функцию в ряд Тейлора в окрестности точки (
).

Главный член погрешности R :

.

Применяя метод левых прямоугольников к функции
на отрезке
с шагомh , получаем

.

Итак, метод трапеций также имеет второй порядок точности.

Аналогично можно показать, что методы левых и правых прямоугольников имеют первый, метод Симпсона – четвертый порядок точности.

Лекция 17.

«Правило Рунге практической оценки погрешности.

Понятие об адаптивных алгоритмах.

Особые случаи численного интегрирования.

Метод ячеек. Вычисление кратных интегралов.»

Правило Рунге практической оценки погрешности.

Пусть некоторый метод интегрирования имеет порядок точности k , то есть
, где– погрешность,A – коэффициент, зависящий от метода интегрирования и подынтегральной функции, h – шаг разбиения. Тогда

а при шаге

,

Выведенная формула называется первой формулой Рунге. Она имеет большое практическое значение. Если нужно вычислить интеграл с точностью , то мы должны вычислять приближенные значения интеграла, удваивая число элементарных отрезков, пока не добьемся выполнения неравенства

Тогда, пренебрегая бесконечно малыми величинами, можно считать, что

Если мы хотим получить более точное значение искомого интеграла, то за уточненное значение J мы можем принять вместо
сумму

.

Это вторая формула Рунге. К сожалению, погрешность этого уточненного значения остается неопределенной, но обычно она на порядок выше, чем точность первоначального метода (когда за значение J мы принимаем
).

Для примера рассмотрим метод трапеций. Как было показано выше, порядок точности k этого метода равен 2.

где
. По второй формуле Рунге

где
есть приближенное значение интеграла найденное методом Симпсона с шагом. Так как порядок этого метода равен 4, то в данном примере применение второй формулы Рунге увеличило порядок точности на 2.

Разобьем отрезок интегрирования [а , b ] на четное число n равных частей с шагом h . На каждом отрезке [х 0, х 2], [х 2, х 4],..., [x i-1, x i+1],..., [x n-2, x n] подынтегральную функцию f (х ) заменим интерполяционным многочленом второй степени:

Коэффициенты этих квадратных трехчленов можно найти из условий равенства многочлена в точках соответствующим табличным данным . В качестве можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки :

Сумму элементарных площадей и (рис. 3.3) можно вычислить с помощью определенного интеграла. Учитывая равенства получаем

-

Рис. 3.3. Иллюстрация к методу Симпсона

Проведя такие вычисления для каждого элементарного отрезка , просуммируем полученные выражения:

Данное выражение для S принимается в качестве значения определенного интеграла:

(3.35)

Полученное соотношение называется формулой Симпсона или формулой парабол .

Эту формулу можно получить и другими способами, например двукратным применением метода трапеций при разбиениях отрезка [а , b ] на части с шагами h и 2h или комбинированием формул прямоугольников и трапеций (см. разд. 3.2.6).

Иногда формулу Симпсона записывают с применением полуцелых индексов. В этом случае число отрезков разбиения п произвольно (не обязательно четно), и формула Симпсона имеет вид

(3.36)

Легко видеть, что формула (3.36) совпадет с (3.35), если формулу (3.35) применить для числа отрезков разбиения 2n и шага h /2.

Пример . Вычислить по методу Симпсона интеграл

Значения функции при n = 10, h = 0.1 приведены в табл. 3.3. Применяя формулу (3.35), находим

Результат численного интегрирования с использованием метода Симпсона оказался совпадающим с точным значением (шесть значащих цифр).

Один из возможных алгоритмов вычисления определенного интеграла по методу Симпсона показан на рис. 3.4. В качестве исходных данных задаются границы отрезка интегрирования [а , b ],погрешность ε, а также формула для вычисления значений подынтегральной функции у = f (x ) .

Рис. 3.4. Алгоритм метода Симпсона

Первоначально отрезок разбивается на две части с шагом h =(b - a)/2. Вычисляется значение интеграла I 1. Потом число шагов удваивается, вычисляется значение I 2 с шагом h /2. Условие окончание счета принимается в виде . Если это условие не выполнено, происходит новое деление шага пополам и т.д.

Отметим, что представленный на рис. 3.4 алгоритм не является оптимальным: при вычислении каждого приближения I 2 не используются значения функции f (x ), уже найденные на предыдущем этапе. Более экономичные алгоритмы будут рассмотрены в разд. 3.2.7.

Для построения формулы Симпсона предварительно рассмотрим такую задачу: вычислить площадь S криволинейной трапеции, ограниченной сверху графиком параболы y = Ax 2 + Bx + C, слева прямой х = - h, справа прямой x = h и снизу отрезком [-h; h]. Пусть парабола проходит через три точки (рис.8): D(-h; y 0) E(0; y 1) и F(h; y 2), причем х 2 - х 1 = х 1 - х 0 = h. Следовательно,

x 1 = x 0 + h = 0; x 2 = x 0 + 2h.

Тогда площадь S равна интегралу:

Выразим эту площадь через h, y 0 , y 1 и y 2 . Для этого вычислим коэффициенты параболы А, В, С. Из условия, что парабола проходит через точки D, E и F, имеем:

Решая эту систему, получаем: C = y 1 ; A =

Подставляя эти значения А и С в (3), получаем искомую площадь

Перейдем теперь к выводу формулы Симпсона для вычисления интеграла

Для этого отрезок интегрирования разобьем на 2n равных частей длиной

В точках деления (рис.4).а = х 0 , х 1 , х 2 , ...,х 2n-2 , x 2n-1 , x 2n = b,

Вчисляем значения подынтегральной функции f: y 0 , y 1 , y 2 , ...,y 2n-2 , y 2n-1 , y 2n , де y i = f(x i), x i = a + ih (i = 0, 1, 2,...,2n).

На отрезке подынтегральную функцию заменяем параболой, проходящей через точки (x 0 ; y 0), (x 1 ; y 1) и (x 2 ; y 2), и для вычисления приближенного значения интеграла от х 0 до х 2 воспользуемся формулой (4). Тогда (на рис. 4 заштрихованная площадь):

Аналогично находим:

................................................

Сложив полученные равенства, имеем:

Формула (5) называется обобщенной формулой Симпсона или формулой парабол , так как при ее выводе график подынтегральной функции на частичном отрезке длины 2h заменяется дугой параболы.

Задание на работу:

1. По указанию преподавателя или в соответствии с вариантом из Таблицы 4 заданий (см. Приложение) взять условия – подынтегральную функцию, пределы интегрирования.

2. Составить блок-схему программы и программу, которая должна:

Запросить точность вычисления определенного интеграла, нижний и верхний пределы интегрирования;

Вычислить заданный интеграл методами: для вариантов 1,4,7, 10… - правых, для вариантов 2,5,8,… - средних; для вариантов 2,5,8,… - левых прямоугольников. Вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления;

Вычислить заданный интеграл методом трапеций (для четных вариантов) и методом Симпсона (для нечетных вариантов).

Вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления;

Вывести значения контрольной функции для заданного значения аргумента и сравнить с вычисленными значениями интеграла. Сделать выводы.


Контрольные вопросы

1. Что такое определенный интеграл?

2. Почему наряду с аналитическими методами используются численные методы вычисления определенных интегралов.

3. В чем заключается сущность основных численных методов вычисления определенных интегралов.

4. Влияние количества разбиений на точность вычисления определенного интеграла численными методами.

5. Как вычислить интеграл любым методом с заданной точностью?



Читайте также: