Komplex exponenciális egyenlőtlenségek és megoldási módszerek. Exponenciális egyenlőtlenségek. Mi az exponenciális függvény

Ebben a leckében megvizsgáljuk a különféle exponenciális egyenlőtlenségeket, és megtanuljuk, hogyan oldjuk meg őket a legegyszerűbb megoldási technikával. exponenciális egyenlőtlenségek

1. Exponenciális függvény definíciója és tulajdonságai

Emlékezzünk vissza az exponenciális függvény definíciójára és alapvető tulajdonságaira. Az összes exponenciális egyenlet és egyenlőtlenség megoldása ezeken a tulajdonságokon alapul.

Exponenciális függvény az alak függvénye, ahol az alap a fok, és itt x a független változó, argumentum; y a függő változó, függvény.

Rizs. 1. Az exponenciális függvény grafikonja

A grafikon a növekvő és a csökkenő kitevőket mutatja, illusztrálva az exponenciális függvényt egynél nagyobb, illetve egynél kisebb, de nullánál nagyobb bázissal.

Mindkét görbe áthalad a ponton (0;1)

Az exponenciális függvény tulajdonságai:

Tartomány: ;

Értéktartomány: ;

A funkció monoton, vel növekszik, vel csökken.

A monoton függvény minden egyes értékét egyetlen argumentumértékkel veszi fel.

Amikor az argumentum mínuszról plusz végtelenre növekszik, a függvény nulláról plusz végtelenre növekszik, azaz az argumentum adott értékeihez monoton növekvő függvényünk van (). Éppen ellenkezőleg, amikor az argumentum mínuszról plusz végtelenre nő, a függvény végtelenről nullára csökken, azaz az argumentum adott értékeihez monoton csökkenő függvényünk van ().

2. A legegyszerűbb exponenciális egyenlőtlenségek, megoldási módszer, példa

A fentiek alapján bemutatunk egy módszert egyszerű exponenciális egyenlőtlenségek megoldására:

Az egyenlőtlenségek feloldásának technikája:

Egyenlítse ki a fokok alapjait;

Hasonlítsa össze a mutatókat úgy, hogy megtartja vagy megváltoztatja az egyenlőtlenség jelét az ellenkezőjére.

Az összetett exponenciális egyenlőtlenségek megoldása általában abból áll, hogy a legegyszerűbb exponenciális egyenlőtlenségekre redukáljuk őket.

Alapfokozat több mint egy, ami azt jelenti, hogy az egyenlőtlenség jele megmarad:

A jobb oldalt alakítsuk át a fok tulajdonságainak megfelelően:

A fokozat alapja kisebb egynél, az egyenlőtlenség előjelét meg kell fordítani:

A másodfokú egyenlőtlenség megoldásához megoldjuk a megfelelő másodfokú egyenletet:

Vieta tételével megtaláljuk a gyököket:

A parabola ágai felfelé irányulnak.

Így van megoldásunk az egyenlőtlenségre:

Könnyen kitalálható, hogy a jobb oldal egy hatványként ábrázolható, amelynek kitevője nulla:

A fokszám alapja nagyobb egynél, az egyenlőtlenség jele nem változik, kapjuk:

Emlékezzünk vissza az ilyen egyenlőtlenségek megoldásának technikájára.

Tekintsük a tört-racionális függvényt:

Megtaláljuk a definíciós tartományt:

A függvény gyökereinek megkeresése:

A függvénynek egyetlen gyöke van,

Kiválasztjuk az állandó előjelű intervallumokat, és meghatározzuk a függvény előjeleit minden intervallumon:

Rizs. 2. Az előjel állandóságának intervallumai

Így megkaptuk a választ.

Válasz:

3. Standard exponenciális egyenlőtlenségek megoldása

Tekintsük az egyenlőtlenségeket azonos mutatókkal, de eltérő alapokon.

Az exponenciális függvény egyik tulajdonsága, hogy az argumentum bármely értékéhez szigorúan pozitív értékeket vesz fel, ami azt jelenti, hogy exponenciális függvényre osztható. Osszuk el az adott egyenlőtlenséget a jobb oldalával:

A fokozat alapja nagyobb egynél, az egyenlőtlenség jele megmarad.

Illusztráljuk a megoldást:

A 6.3. ábra a függvények és a grafikonokat mutatja. Nyilvánvaló, hogy ha az argumentum nagyobb, mint nulla, akkor a függvény grafikonja magasabb, ez a függvény nagyobb. Ha az argumentumértékek negatívak, a függvény lejjebb megy, kisebb. Ha az argumentum egyenlő, a függvények egyenlőek, ami azt jelenti adott pont megoldása is az adott egyenlőtlenségre.

Rizs. 3. Illusztráció például 4

Alakítsuk át az adott egyenlőtlenséget a fok tulajdonságai szerint:

Íme néhány hasonló kifejezés:

Osszuk fel mindkét részt:

Most folytatjuk a megoldást a 4. példához hasonlóan, mindkét részt elosztjuk a következővel:

A fokozat alapja nagyobb egynél, az egyenlőtlenség jele megmarad:

4. Exponenciális egyenlőtlenségek grafikus megoldása

6. példa - Oldja meg az egyenlőtlenséget grafikusan:

Nézzük meg a bal és a jobb oldalon lévő függvényeket, és készítsünk mindegyikhez grafikont.

A függvény exponenciális, és növekszik a teljes definíciós tartományban, azaz az argumentum összes valós értékénél.

A függvény lineáris, és a teljes definíciós tartományban csökken, azaz az argumentum összes valós értékére.

Ha ezek a függvények metszik egymást, vagyis a rendszernek van megoldása, akkor egy ilyen megoldás egyedi és könnyen kitalálható. Ehhez egész számok felett iterálunk ()

Könnyen belátható, hogy ennek a rendszernek a gyökere:

Így a függvények grafikonjai egy pontban metszik egymást egy argumentummal egyenlő.

Most választ kell kapnunk. Az adott egyenlőtlenség jelentése az, hogy a kitevőnek nagyobbnak vagy egyenlőnek kell lennie, mint lineáris függvény, vagyis hogy magasabb legyen vagy egybeessen vele. A válasz egyértelmű: (6.4. ábra)

Rizs. 4. Illusztráció például 6

Tehát különféle standard exponenciális egyenlőtlenségek megoldását vizsgáltuk. Ezután áttérünk a bonyolultabb exponenciális egyenlőtlenségek vizsgálatára.

Bibliográfia

Mordkovich A. G. Algebra és a matematikai elemzés kezdetei. - M.: Mnemosyne. Muravin G. K., Muravin O. V. Algebra és a matematikai elemzés kezdetei. - M.: Túzok. Kolmogorov A. N., Abramov A. M., Dudnitsyn Yu. P. és munkatársai: Algebra és a matematikai elemzés kezdetei. - M.: Felvilágosodás.

Math. md. Matematika-ismétlés. com. Diffur. kemsu. ru.

Házi feladat

1. Algebra és az elemzés kezdetei, 10-11. osztály (A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn) 1990, 472., 473. sz.;

2. Oldja meg az egyenlőtlenséget:

3. Oldja meg az egyenlőtlenséget.

Sokan azt gondolják, hogy az exponenciális egyenlőtlenségek bonyolult és érthetetlen dolgok. És hogy ezek megoldásának megtanulása szinte nagy művészet, amit csak a Kiválasztottak képesek felfogni...

Teljes hülyeség! Az exponenciális egyenlőtlenségek egyszerűek. És mindig egyszerűen megoldódnak. Hát, szinte mindig. :)

Ma ezt a témát kívül-belül megvizsgáljuk. Ez a lecke nagyon hasznos lesz azok számára, akik csak most kezdik megérteni ezt a részt. iskolai matematika. Kezdjük azzal egyszerű feladatokatés áttérünk az összetettebb kérdésekre. Ma nem lesz nehéz munka, de amit most olvasni fog, az elegendő lesz a legtöbb egyenlőtlenség megoldásához mindenféle teszten és teszten. önálló munkavégzés. És ezen a vizsgádon is.

Mint mindig, kezdjük a meghatározással. Az exponenciális egyenlőtlenség minden olyan egyenlőtlenség, amely exponenciális függvényt tartalmaz. Más szóval, ez mindig a forma egyenlőtlenségére redukálható

\[((a)^(x)) \gt b\]

Ahol $b$ szerepe lehet egy hétköznapi szám, vagy esetleg valami keményebb. Példák? Igen, kérem:

\[\begin(align) & ((2)^(x)) \gt 4;\quad ((2)^(x-1))\le \frac(1)(\sqrt(2));\ quad ((2)^(((x)^(2))-7x+14)) \lt 16; \\ & ((0,1)^(1-x)) \lt 0,01;\quad ((2)^(\frac(x)(2))) \lt ((4)^(\frac (4) )(x))). \\\vége(igazítás)\]

Szerintem egyértelmű a jelentés: van exponenciális függvény$((a)^(x))$, összehasonlítják valamivel, majd megkérik, hogy találjon $x$-t. Különösen klinikai esetekben a $x$ változó helyett valamilyen $f\left(x \right)$ függvényt tehetnek be, és ezzel egy kicsit bonyolítják az egyenlőtlenséget. :)

Természetesen bizonyos esetekben az egyenlőtlenség súlyosabbnak tűnhet. Például:

\[((9)^(x))+8 \gt ((3)^(x+2))\]

Vagy akár ez:

Általánosságban elmondható, hogy az ilyen egyenlőtlenségek bonyolultsága nagyon eltérő lehet, de végül mégis az egyszerű $((a)^(x)) \gt b$ konstrukcióra redukálódnak. És valahogy kitaláljuk egy ilyen konstrukciót (különösen klinikai esetekben, amikor semmi sem jut eszünkbe, a logaritmusok segítenek nekünk). Ezért most megtanítjuk, hogyan kell megoldani az ilyen egyszerű konstrukciókat.

Egyszerű exponenciális egyenlőtlenségek megoldása

Vegyünk egy nagyon egyszerű dolgot. Például ez:

\[((2)^(x)) \gt 4\]

Nyilvánvalóan a jobb oldali szám átírható kettő hatványaként: $4=((2)^(2))$. Így az eredeti egyenlőtlenség nagyon kényelmes formában átírható:

\[((2)^(x)) \gt ((2)^(2))\]

És most viszket a kezem, hogy „áthúzzam” a hatványok alapjaiban szereplő ketteseket, hogy megkapjam a $x \gt 2$ választ. Mielőtt azonban bármit is áthúznánk, emlékezzünk a kettő erejére:

\[((2)^(1))=2;\quad ((2)^(2))=4;\quad ((2)^(3))=8;\quad ((2)^( 4))=16;...\]

Mint látjuk, mint nagyobb szám a kitevőben van, annál nagyobb a kimeneti szám. – Köszönöm, Cap! - kiált fel az egyik diák. Különbözik? Sajnos előfordul. Például:

\[((\left(\frac(1)(2) \right))^(1))=\frac(1)(2);\quad ((\left(\frac(1)(2) \ jobb))^(2))=\frac(1)(4);\quad ((\left(\frac(1)(2) \right))^(3))=\frac(1)(8 );...\]

Itt is minden logikus: minél nagyobb a fokszám, annál többszörösére szorozódik a 0,5-ös szám önmagával (azaz osztódik fele). Így a kapott számsorozat csökken, és az első és a második sorozat közötti különbség csak az alapban van:

  • Ha az $a \gt 1$ fok alapja, akkor a $n$ kitevő növekedésével a $((a)^(n))$ szám is növekedni fog;
  • És fordítva, ha $0 \lt a \lt 1$, akkor a $n$ kitevő növekedésével a $((a)^(n))$ szám csökkenni fog.

Ezeket a tényeket összegezve megkapjuk a legfontosabb állítást, amelyen az exponenciális egyenlőtlenségek teljes megoldása alapul:

Ha $a \gt 1$, akkor a $((a)^(x)) \gt ((a)^(n))$ egyenlőtlenség ekvivalens a $x \gt n$ egyenlőtlenséggel. Ha $0 \lt a \lt 1$, akkor a $((a)^(x)) \gt ((a)^(n))$ egyenlőtlenség ekvivalens a $x \lt n$ egyenlőtlenséggel.

Más szóval, ha az alap nagyobb egynél, egyszerűen eltávolíthatja - az egyenlőtlenség jele nem változik. És ha az alap kisebb, mint egy, akkor azt is el lehet távolítani, de ugyanakkor meg kell változtatni az egyenlőtlenség jelét.

Kérjük, vegye figyelembe, hogy nem vettük figyelembe az $a=1$ és $a\le 0$ opciókat. Mert ezekben az esetekben bizonytalanság merül fel. Tegyük fel, hogyan kell megoldani egy $((1)^(x)) \gt 3$ alakú egyenlőtlenséget? Egy minden hatalomnak megint ad egyet – soha nem kapunk hármat vagy többet. Azok. nincsenek megoldások.

Negatív okokból minden még érdekesebb. Vegyük például ezt az egyenlőtlenséget:

\[((\left(-2 \right))^(x)) \gt 4\]

Első pillantásra minden egyszerű:

Jobb? De nem! Elég, ha $x$ helyett pár páros és pár páratlan számot helyettesít, hogy megbizonyosodjon arról, hogy a megoldás hibás. Nézd meg:

\[\begin(align) & x=4\Jobbra ((\left(-2 \right))^(4))=16 \gt 4; \\ & x=5\Jobbra ((\bal(-2 \jobbra))^(5))=-32 \lt 4; \\ & x=6\Jobbra ((\bal(-2 \jobbra))^(6))=64 \gt 4; \\ & x=7\Jobbra ((\bal(-2 \jobbra))^(7))=-128 \lt 4. \\\end(igazítás)\]

Amint látja, a jelek váltakoznak. De van több is törthatványokés egyéb ón. Hogyan lehetne például kiszámítani a $((\left(-2 \right))^(\sqrt(7)))$ (mínusz kettő hét hatványa)? Semmiképpen!

Ezért a határozottság kedvéért feltételezzük, hogy minden exponenciális egyenlőtlenségben (és mellesleg egyenletekben is) $1\ne a \gt 0$. És akkor minden nagyon egyszerűen megoldódik:

\[((a)^(x)) \gt ((a)^(n))\Jobbra \left[ \begin(align) & x \gt n\quad \left(a \gt 1 \right), \\ & x \lt n\quad \left(0 \lt a \lt 1 \jobbra). \\\end(igazítás) \jobbra.\]

Általánosságban emlékezzünk a fő szabályra: ha egy exponenciális egyenletben az alap nagyobb egynél, egyszerűen eltávolíthatja azt; és ha az alap egynél kisebb, akkor azt is el lehet távolítani, de az egyenlőtlenség jele megváltozik.

Példák megoldásokra

Tehát nézzünk meg néhány egyszerű exponenciális egyenlőtlenséget:

\[\begin(align) & ((2)^(x-1))\le \frac(1)(\sqrt(2)); \\ & ((0,1)^(1-x)) \lt 0,01; \\ & ((2)^(((x)^(2))-7x+14)) \lt 16; \\ & ((0,2)^(1+((x)^(2))))\ge \frac(1)(25). \\\vége(igazítás)\]

Az elsődleges feladat minden esetben ugyanaz: az egyenlőtlenségeket a legegyszerűbb $((a)^(x)) \gt ((a)^(n))$ alakra redukálni. Pontosan ezt fogjuk most tenni az egyes egyenlőtlenségekkel, ugyanakkor megismételjük a fokok és az exponenciális függvények tulajdonságait. Akkor gyerünk!

\[((2)^(x-1))\le \frac(1)(\sqrt(2))\]

Mit lehet itt csinálni? Nos, a bal oldalon már van egy jelző kifejezés - semmit sem kell megváltoztatni. De a jobb oldalon van valami baromság: tört, és még gyök is a nevezőben!

Emlékezzünk azonban a törtekkel és hatványokkal való munka szabályaira:

\[\begin(align) & \frac(1)(((a)^(n)))=((a)^(-n)); \\ & \sqrt[k](a)=((a)^(\frac(1)(k))). \\\vége(igazítás)\]

Mit jelent? Először is könnyen megszabadulhatunk a törttől, ha negatív kitevőjű hatványsá alakítjuk. Másodszor pedig, mivel a nevezőnek van gyöke, jó lenne hatványsá alakítani - ezúttal törtkitevővel.

Alkalmazzuk ezeket a műveleteket egymás után az egyenlőtlenség jobb oldalára, és nézzük meg, mi történik:

\[\frac(1)(\sqrt(2))=((\left(\sqrt(2) \right))^(-1))=((\left(((2)^(\frac( 1)(3))) \jobbra))^(-1))=((2)^(\frac(1)(3)\cdot \left(-1 \jobbra)))=((2)^ (-\frac(1)(3)))\]

Ne felejtsük el, hogy amikor egy fokot hatványra emelünk, ezeknek a fokoknak a kitevői összeadódnak. És általában, ha exponenciális egyenletekkel és egyenlőtlenségekkel dolgozunk, feltétlenül ismerni kell a hatványokkal való munka legegyszerűbb szabályait:

\[\begin(align) & ((a)^(x))\cdot ((a)^(y))=((a)^(x+y)); \\ & \frac(((a)^(x)))(((a)^(y)))=((a)^(x-y)); \\ & ((\left(((a)^(x)) \jobbra))^(y))=((a)^(x\cdot y)). \\\vége(igazítás)\]

Valójában csak az utolsó szabályt alkalmaztuk. Ezért az eredeti egyenlőtlenségünket a következőképpen írjuk át:

\[((2)^(x-1))\le \frac(1)(\sqrt(2))\Jobbra ((2)^(x-1))\le ((2)^(-\ frac(1)(3)))\]

Most megszabadulunk a kettőtől az alapnál. Mivel 2 > 1, az egyenlőtlenség jele változatlan marad:

\[\begin(align) & x-1\le -\frac(1)(3)\Jobbra x\le 1-\frac(1)(3)=\frac(2)(3); \\ & x\in \left(-\infty ;\frac(2)(3) \right]. \\\end(align)\]

Ez a megoldás! A fő nehézség egyáltalán nem az exponenciális függvényben van, hanem az eredeti kifejezés megfelelő átalakításában: óvatosan és gyorsan kell a legegyszerűbb formájába hozni.

Tekintsük a második egyenlőtlenséget:

\[((0,1)^(1-x)) \lt 0,01\]

Is-is. Itt a tizedes törtek várnak ránk. Amint azt már sokszor mondtam, minden hatványos kifejezésben meg kell szabadulni a tizedesjegyektől – gyakran csak így lehet gyors és egyszerű megoldást találni. Itt megszabadulunk a következőktől:

\[\begin(align) & 0.1=\frac(1)(10);\quad 0.01=\frac(1)(100)=((\left(\frac(1)(10) \ right))^ (2)); \\ & ((0,1)^(1-x)) \lt 0,01\Jobbra ((\left(\frac(1)(10) \right))^(1-x)) \lt ( (\left(\frac(1)(10) \right))^(2)). \\\vége(igazítás)\]

Itt is megvan a legegyszerűbb egyenlőtlenség, és még 1/10-es alappal is, azaz. egynél kevesebb. Nos, eltávolítjuk az alapokat, miközben a jelet „kevesebbről” „többre” változtatjuk, és megkapjuk:

\[\begin(align) & 1-x \gt 2; \\ & -x \gt 2-1; \\ & -x \gt 1; \\& x \lt -1. \\\vége(igazítás)\]

Megkaptuk a végső választ: $x\in \left(-\infty ;-1 \right)$. Figyelem: a válasz pontosan egy halmaz, és semmi esetre sem $x \lt -1$ alakú konstrukció. Mert formálisan egy ilyen konstrukció egyáltalán nem halmaz, hanem egyenlőtlenség a $x$ változóhoz képest. Igen, nagyon egyszerű, de nem ez a válasz!

Fontos jegyzet. Ezt az egyenlőtlenséget más módon is meg lehetne oldani – mindkét oldalt egynél nagyobb bázisú hatalommá redukálva. Nézd meg:

\[\frac(1)(10)=((10)^(-1))\Jobbra ((\bal(((10)^(-1)) \jobbra))^(1-x)) \ lt ((\left(((10)^(-1)) \jobbra))^(2))\Jobbra ((10)^(-1\cdot \left(1-x \right))) \lt ((10)^(-1\cdot 2))\]

Egy ilyen transzformáció után ismét egy exponenciális egyenlőtlenséget kapunk, de 10 > 1 alappal. Ez azt jelenti, hogy egyszerűen áthúzhatjuk a tízet - az egyenlőtlenség előjele nem változik. Kapunk:

\[\begin(align) & -1\cdot \left(1-x \right) \lt -1\cdot 2; \\ & x-1 \lt -2; \\ & x \lt -2+1=-1; \\ & x \lt -1. \\\vége(igazítás)\]

Amint látja, a válasz pontosan ugyanaz volt. Ugyanakkor megkíméltük magunkat a jel megváltoztatásának szükségességétől, és általában emlékezni kell minden szabályra. :)

\[((2)^(((x)^(2))-7x+14)) \lt 16\]

Azonban ne hagyja, hogy ez megijessze. Nem számít, mi szerepel a mutatókban, maga az egyenlőtlenség megoldásának technológiája ugyanaz marad. Ezért először jegyezzük meg, hogy 16 = 2 4. Írjuk át az eredeti egyenlőtlenséget ennek a ténynek a figyelembevételével:

\[\begin(align) & ((2)^(((x)^(2))-7x+14)) \lt ((2)^(4)); \\ & ((x)^(2))-7x+14 \lt 4; \\ & ((x)^(2))-7x+10 \lt 0. \\\end(igazítás)\]

Hurrá! Megkaptuk a szokásosat másodfokú egyenlőtlenség! A jel nem változott sehol, mivel az alap kettő - egynél nagyobb szám.

Függvény nullai a számegyenesen

Elrendezzük a $f\left(x \right)=((x)^(2))-7x+10$ függvény előjeleit - nyilván a grafikonja egy parabola lesz felfelé ágakkal, tehát lesznek pluszok ” az oldalakon. Minket az a régió érdekel, ahol a függvény nullánál kisebb, pl. $x\in \left(2;5 \right)$ a válasz az eredeti problémára.

Végül vegyünk egy másik egyenlőtlenséget:

\[((0,2)^(1+((x)^(2))))\ge \frac(1)(25)\]

Ismét egy exponenciális függvényt látunk, amelynek alapjában tizedes tört található. Alakítsuk át ezt a törtet közönséges törtté:

\[\begin(align) & 0.2=\frac(2)(10)=\frac(1)(5)=((5)^(-1))\Jobbra \\ & \Jobbra ((0 ,2 )^(1+((x)^(2))))=((\bal(((5)^(-1)) \jobbra))^(1+((x)^(2) )) )=((5)^(-1\cdot \left(1+((x)^(2)) \right)))\end(align)\]

Ebben az esetben a korábban megadott megjegyzéssel éltünk - a további megoldásunk egyszerűsítése érdekében az alapot 5 > 1-re csökkentettük. Tegyük ugyanezt a jobb oldallal is:

\[\frac(1)(25)=((\left(\frac(1)(5) \right))^(2))=((\left(((5)^(-1)) \ jobb))^(2))=((5)^(-1\cpont 2))=((5)^(-2))\]

Írjuk át az eredeti egyenlőtlenséget mindkét transzformáció figyelembevételével:

\[((0,2)^(1+((x)^(2))))\ge \frac(1)(25)\Jobbra ((5)^(-1\cdot \left(1+) ((x)^(2)) \jobbra)))\ge ((5)^(-2))\]

Az alap mindkét oldalon megegyezik, és meghaladja az egyet. Nincsenek más kifejezések a jobb és a bal oldalon, ezért egyszerűen „áthúzzuk” az ötösöket, és egy nagyon egyszerű kifejezést kapunk:

\[\begin(align) & -1\cdot \left(1+((x)^(2)) \right)\ge -2; \\ & -1-((x)^(2))\ge -2; \\ & -((x)^(2))\ge -2+1; \\ & -((x)^(2))\ge -1;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))\le 1. \\\end(igazítás)\]

Itt óvatosabbnak kell lenni. Sok diák szeret egyszerűen kivonatolni Négyzetgyök az egyenlőtlenség mindkét oldaláról, és írjon valami ilyesmit: $x\le 1\Rightarrow x\in \left(-\infty ;-1 \right]$. Ezt semmi esetre sem szabad megtenni, mivel egy pontos négyzet gyöke modul, és semmi esetre sem az eredeti változó:

\[\sqrt(((x)^(2)))=\left| x\jobbra|\]

A modulokkal való munka azonban nem a legkellemesebb élmény, igaz? Szóval nem fogunk dolgozni. Ehelyett egyszerűen mozgassuk az összes tagot balra, és oldjuk meg a szokásos egyenlőtlenséget az intervallum módszerrel:

$\begin(align) & ((x)^(2))-1\le 0; \\ & \left(x-1 \right)\left(x+1 \right)\le 0 \\ & ((x)_(1))=1;\quad ((x)_(2)) =-1; \\\end(align)$

Ismét megjelöljük a kapott pontokat a számegyenesen, és megnézzük a jeleket:

Figyelem: a pontok árnyékoltak

Mivel egy nem szigorú egyenlőtlenséget oldottunk meg, a grafikonon minden pont árnyékolt. Ezért a válasz a következő lesz: $x\in \left[ -1;1 \right]$ nem intervallum, hanem szegmens.

Általánosságban szeretném megjegyezni, hogy az exponenciális egyenlőtlenségekben nincs semmi bonyolult. A ma végrehajtott összes átalakítás jelentése egy egyszerű algoritmuson alapul:

  • Keressük meg az alapot, amelyre az összes fokot csökkentjük;
  • Óvatosan hajtsa végre az átalakításokat, hogy megkapja a $((a)^(x)) \gt ((a)^(n))$ alakú egyenlőtlenséget. Természetesen a $x$ és $n$ változók helyett sokkal több is lehet összetett funkciók, de a jelentése nem változik;
  • Húzd át a fokok alapjait. Ebben az esetben az egyenlőtlenség jele megváltozhat, ha az alap $a \lt 1$.

Lényegében ez univerzális algoritmus megoldások minden ilyen egyenlőtlenségre. És minden más, amit ebben a témában elmondanak, csak konkrét technikák és trükkök, amelyek leegyszerűsítik és felgyorsítják az átalakulást. Most egy ilyen technikáról fogunk beszélni. :)

Racionalizálási módszer

Tekintsük az egyenlőtlenségek egy másik halmazát:

\[\begin(align) & ((\text( )\!\!\pi\!\!\text( ))^(x+7)) \gt ((\text( )\!\!\pi \!\!\text( ))^(((x)^(2))-3x+2)); \\ & ((\left(2\sqrt(3)-3 \right))^(((x)^(2))-2x)) \lt 1; \\ & ((\left(\frac(1)(3) \right))^(((x)^(2))+2x)) \gt ((\left(\frac(1)(9)) \jobbra))^(16-x)); \\ & ((\left(3-2\sqrt(2) \right))^(3x-((x)^(2)))) \lt 1. \\\end(igazítás)\]

Szóval mi olyan különleges bennük? Könnyűek. Bár, állj meg! A π számot emeljük valamilyen hatványra? Miféle ostobaság?

Hogyan lehet a $2\sqrt(3)-3$ számot hatványra emelni? Vagy $3-2\sqrt(2)$? A problémás írók nyilvánvalóan túl sok Hawthornt ittak, mielőtt leültek dolgozni. :)

Valójában semmi ijesztő ezekben a feladatokban. Hadd emlékeztesselek: az exponenciális függvény a $((a)^(x))$ formájú kifejezés, ahol az $a$ alap bármely pozitív szám egy kivételével. A π szám pozitív – ezt már tudjuk. A $2\sqrt(3)-3$ és a $3-2\sqrt(2)$ számok is pozitívak – ez könnyen belátható, ha nullával hasonlítja össze őket.

Kiderült, hogy mindezeket az „ijesztő” egyenlőtlenségeket nem oldják meg másként, mint a fent tárgyalt egyszerűek? És ugyanúgy megoldódnak? Igen, ez teljesen igaz. Példájuk alapján azonban egy olyan technikát szeretnék megfontolni, amely nagymértékben megtakarítja az önálló munkára és a vizsgákra fordított időt. Szó lesz a racionalizálás módszeréről. Szóval figyelem:

Bármely $((a)^(x)) \gt ((a)^(n))$ formájú exponenciális egyenlőtlenség egyenértékű a $\left(x-n \right)\cdot \left(a-1 \) egyenlőtlenséggel jobbra) \gt 0 $.

Ez az egész módszer :) Gondoltad volna, hogy lesz valami más játék? Semmi ilyesmi! De ez az egyszerű tény, szó szerint egy sorban leírva, nagyban leegyszerűsíti a munkánkat. Nézd meg:

\[\begin(mátrix) ((\text( )\!\!\pi\!\!\text( ))^(x+7)) \gt ((\text( )\!\!\pi\ !\!\text( ))^(((x)^(2))-3x+2)) \\ \Downarrow \\ \left(x+7-\left(((x)^(2)) -3x+2 \jobbra) \jobbra)\cdot \left(\text( )\!\!\pi\!\!\text( )-1 \right) \gt 0 \\\end(mátrix)\]

Tehát nincs több exponenciális függvény! És nem kell emlékeznie arra, hogy a jel megváltozik-e vagy sem. De felmerül egy új probléma: mit kezdjünk a \[\left(\text( )\!\!\pi\!\!\text( )-1 \right)\] rohadt szorzóval? Nem tudjuk, mi a π szám pontos értéke. A kapitány azonban a nyilvánvalóra utal:

\[\text( )\!\!\pi\!\!\text( )\kb. 3,14... \gt 3\Jobbra \text( )\!\!\pi\!\!\text( )- 1\gt 3-1=2\]

Általánosságban elmondható, hogy a π pontos értéke nem igazán vonatkozik ránk - csak az a fontos, hogy megértsük, hogy minden esetben $\text( )\!\!\pi\!\!\text( )-1 \gt 2 $, t.e. ez egy pozitív állandó, és ezzel oszthatjuk az egyenlőtlenség mindkét oldalát:

\[\begin(align) & \left(x+7-\left(((x)^(2))-3x+2 \right) \right)\cdot \left(\text( )\!\! \pi\!\!\text( )-1 \right) \gt 0 \\ & x+7-\left(((x)^(2))-3x+2 \right) \gt 0; \\ & x+7-((x)^(2))+3x-2 \gt 0; \\ & -((x)^(2))+4x+5 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))-4x-5 \lt 0; \\ & \left(x-5 \right)\left(x+1 \right) \lt 0. \\\end(igazítás)\]

Mint látható, egy bizonyos pillanatban mínusz eggyel kellett osztanunk - és az egyenlőtlenség előjele megváltozott. A végén kibővítettem a másodfokú trinomit Vieta tételével - nyilvánvaló, hogy a gyökök egyenlőek $((x)_(1))=5$ és $((x)_(2))=-1$ . Ezután mindent a klasszikus intervallum módszerrel oldanak meg:

Egyenlőtlenség megoldása intervallum módszerrel

Minden pontot eltávolítunk, mert az eredeti egyenlőtlenség szigorú. Minket a negatív értékű régió érdekel, ezért a válasz $x\in \left(-1;5 \right)$. Ez a megoldás. :)

Térjünk át a következő feladatra:

\[((\left(2\sqrt(3)-3 \right))^(((x)^(2))-2x)) \lt 1\]

Itt általában minden egyszerű, mert a jobb oldalon van egy egység. És ne feledjük, hogy az egy tetszőleges szám, amelyet nulla hatványra emelünk. Még akkor is, ha ez a szám irracionális kifejezés, a bal oldalon állva:

\[\begin(align) & ((\left(2\sqrt(3)-3 \right))^(((x)^(2))-2x)) \lt 1=((\left(2) \sqrt(3)-3 \jobbra))^(0)); \\ & ((\left(2\sqrt(3)-3 \right))^(((x)^(2))-2x)) \lt ((\left(2\sqrt(3)-3) \jobbra))^(0)); \\\vége(igazítás)\]

Nos, ésszerűsítsük:

\[\begin(align) & \left(((x)^(2))-2x-0 \right)\cdot \left(2\sqrt(3)-3-1 \right) \lt 0; \\ & \left(((x)^(2))-2x-0 \right)\cdot \left(2\sqrt(3)-4 \right) \lt 0; \\ & \left(((x)^(2))-2x-0 \right)\cdot 2\left(\sqrt(3)-2 \right) \lt 0. \\\end(align)\ ]

Már csak a jelek kitalálása van hátra. A $2\left(\sqrt(3)-2 \right)$ faktor nem tartalmazza a $x$ változót - ez csak egy konstans, és meg kell találnunk az előjelét. Ehhez vegye figyelembe a következőket:

\[\begin(mátrix) \sqrt(3) \lt \sqrt(4)=2 \\ \Downarrow \\ 2\left(\sqrt(3)-2 \right) \lt 2\cdot \left(2 -2 \jobbra)=0 \\\end(mátrix)\]

Kiderült, hogy a második tényező nem csak egy állandó, hanem egy negatív állandó! És ezzel osztva az eredeti egyenlőtlenség előjele az ellenkezőjére változik:

\[\begin(align) & \left(((x)^(2))-2x-0 \right)\cdot 2\left(\sqrt(3)-2 \right) \lt 0; \\ & ((x)^(2))-2x-0 \gt 0; \\ & x\left(x-2 \right) \gt 0. \\\end(igazítás)\]

Most minden teljesen nyilvánvalóvá válik. Gyökerek másodfokú trinomikus, jobb oldalon állva: $((x)_(1))=0$ és $((x)_(2))=2$. Jelöljük őket a számegyenesen, és megnézzük a $f\left(x \right)=x\left(x-2 \right)$ függvény előjeleit:

Az az eset, amikor oldalintervallumokra vagyunk kíváncsiak

A pluszjellel jelölt intervallumokra vagyunk kíváncsiak. Nincs más hátra, mint leírni a választ:

Térjünk át a következő példára:

\[((\left(\frac(1)(3) \right))^(((x)^(2))+2x)) \gt ((\left(\frac(1)(9) \) jobb))^(16-x))\]

Nos, itt minden teljesen nyilvánvaló: az alapok ugyanannyi hatványt tartalmaznak. Ezért mindent röviden leírok:

\[\begin(mátrix) \frac(1)(3)=((3)^(-1));\quad \frac(1)(9)=\frac(1)(((3)^( 2)))=((3)^(-2)) \\ \Downarrow \\ ((\left(((3)^(-1)) \right))^(((x)^(2) )+2x)) \gt ((\left(((3)^(-2)) \right))^(16-x)) \\\end(mátrix)\]

\[\begin(align) & ((3)^(-1\cdot \left(((x)^(2))+2x \jobbra))) \gt ((3)^(-2\cdot \ left(16-x \right))); \\ & ((3)^(-((x)^(2))-2x)) \gt ((3)^(-32+2x)); \\ & \left(-((x)^(2))-2x-\left(-32+2x \right) \right)\cdot \left(3-1 \right) \gt 0; \\ & -((x)^(2))-2x+32-2x \gt 0; \\ & -((x)^(2))-4x+32 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))+4x-32 \lt 0; \\ & \left(x+8 \right)\left(x-4 \right) \lt 0. \\\end(igazítás)\]

Amint látható, a transzformációs folyamat során negatív számmal kellett szorozni, így az egyenlőtlenség előjele megváltozott. A legvégén ismét alkalmaztam Vieta tételét a másodfokú trinomiális faktorálására. Ennek eredményeként a válasz a következő lesz: $x\in \left(-8;4 \right)$ - ezt bárki ellenőrizheti egy számegyenes rajzolásával, a pontok megjelölésével és a jelek megszámlálásával. Közben áttérünk a „halmazunk” utolsó egyenlőtlenségére:

\[((\left(3-2\sqrt(2) \right))^(3x-((x)^(2)))) \lt 1\]

Mint látható, a bázison ismét egy irracionális szám, a jobb oldalon pedig ismét egy egység található. Ezért az exponenciális egyenlőtlenségünket a következőképpen írjuk át:

\[((\left(3-2\sqrt(2) \right))^(3x-((x)^(2)))) \lt ((\left(3-2\sqrt(2) \) jobb))^(0))\]

Racionalizálást alkalmazunk:

\[\begin(align) & \left(3x-((x)^(2))-0 \right)\cdot \left(3-2\sqrt(2)-1 \right) \lt 0; \\ & \left(3x-((x)^(2))-0 \jobbra)\cdot \left(2-2\sqrt(2) \jobbra) \lt 0; \\ & \left(3x-((x)^(2))-0 \jobbra)\cdot 2\left(1-\sqrt(2) \right) \lt 0. \\\end(igazítás)\ ]

Az azonban teljesen nyilvánvaló, hogy $1-\sqrt(2) \lt 0$, mivel $\sqrt(2)\kb 1,4... \gt 1$. Ezért a második tényező ismét egy negatív állandó, amellyel az egyenlőtlenség mindkét oldala felosztható:

\[\begin(mátrix) \left(3x-((x)^(2))-0 \jobbra)\cdot 2\left(1-\sqrt(2) \right) \lt 0 \\ \Downarrow \ \\end(mátrix)\]

\[\begin(align) & 3x-((x)^(2))-0 \gt 0; \\ & 3x-((x)^(2)) \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))-3x \lt 0; \\ & x\left(x-3 \right) \lt 0. \\\end(igazítás)\]

Költözz másik bázisra

Külön probléma az exponenciális egyenlőtlenségek megoldása során a „helyes” alap keresése. Sajnos egy feladatnál első pillantásra nem mindig egyértelmű, hogy mit vegyünk alapul, és ennek mértéke szerint mit tegyünk.

De ne aggódj: itt nincs varázslat vagy „titkos” technológia. A matematikában minden olyan készség, amely nem algoritmizálható, könnyen fejleszthető gyakorlással. Ehhez azonban különböző bonyolultságú problémákat kell megoldania. Például így:

\[\begin(align) & ((2)^(\frac(x)(2))) \lt ((4)^(\frac(4)(x))); \\ & ((\left(\frac(1)(3) \right))^(\frac(3)(x)))\ge ((3)^(2+x)); \\ & ((\left(0,16 \right))^(1+2x))\cdot ((\left(6,25 \right))^(x))\ge 1; \\ & ((\left(\frac(27)(\sqrt(3)) \right))^(-x)) \lt ((9)^(4-2x))\cdot 81. \\\ vége(igazítás)\]

Nehéz? Ijedős? Könnyebb, mint egy csirkét az aszfalton ütni! Próbáljuk meg. Első egyenlőtlenség:

\[((2)^(\frac(x)(2))) \lt ((4)^(\frac(4)(x)))\]

Nos, szerintem itt minden világos:

Átírjuk az eredeti egyenlőtlenséget, mindent kettes alapra redukálva:

\[((2)^(\frac(x)(2))) \lt ((2)^(\frac(8)(x)))\Jobbra \left(\frac(x)(2)- \frac(8)(x) \right)\cdot \left(2-1 \right) \lt 0\]

Igen, igen, jól hallottad: csak a fent leírt racionalizálási módszert alkalmaztam. Most óvatosan kell dolgoznunk: van egy tört-racionális egyenlőtlenségünk (ennek van egy változója a nevezőben), tehát mielőtt valamit nullával egyenlővé tennénk, mindent a közös nevezőés megszabadulni az állandó tényezőtől.

\[\begin(align) & \left(\frac(x)(2)-\frac(8)(x) \right)\cdot \left(2-1 \right) \lt 0; \\ & \left(\frac(((x)^(2))-16)(2x) \right)\cdot 1 \lt 0; \\ & \frac(((x)^(2))-16)(2x) \lt 0. \\\end(igazítás)\]

Most a standard intervallum módszert használjuk. A számláló nullái: $x=\pm 4$. A nevező csak akkor megy nullára, ha $x=0$. Összesen három pontot kell bejelölni a számegyenesen (minden pont ki van tűzve, mert az egyenlőtlenség jele szigorú). Kapunk:


Több nehéz eset: három gyökér

Ahogy sejtheti, az árnyékolás azokat az intervallumokat jelöli, amelyekben a bal oldali kifejezés érvényesül negatív értékeket. Ezért a végső válasz egyszerre két intervallumot fog tartalmazni:

Az intervallumok végeit nem tartalmazza a válasz, mert az eredeti egyenlőtlenség szigorú volt. A válasz további ellenőrzésére nincs szükség. Ebben a tekintetben az exponenciális egyenlőtlenségek sokkal egyszerűbbek, mint a logaritmikusok: nincs ODZ, nincsenek korlátozások stb.

Térjünk át a következő feladatra:

\[((\left(\frac(1)(3) \right))^(\frac(3)(x)))\ge ((3)^(2+x))\]

Itt sincs semmi probléma, hiszen már tudjuk, hogy $\frac(1)(3)=((3)^(-1))$, így az egész egyenlőtlenség a következőképpen írható át:

\[\begin(align) & ((\left(((3)^(-1)) \right))^(\frac(3)(x)))\ge ((3)^(2+x ))\Jobbra ((3)^(-\frac(3)(x)))\ge ((3)^(2+x)); \\ & \left(-\frac(3)(x)-\left(2+x \right) \right)\cdot \left(3-1 \right)\ge 0; \\ & \left(-\frac(3)(x)-2-x \right)\cdot 2\ge 0;\quad \left| :\left(-2 \right) \right. \\ & \frac(3)(x)+2+x\le 0; \\ & \frac(((x)^(2))+2x+3)(x)\le 0. \\\end(align)\]

Figyelem: a harmadik sorban úgy döntöttem, hogy nem vesztegetem az időt apróságokra, és azonnal mindent elosztok (-2)-vel. Minul került az első zárójelbe (most mindenhol pluszok vannak), kettőt pedig konstans tényezővel csökkentették. Pontosan ezt kell tennie, amikor valódi kijelzőket készít független és tesztek— nem kell minden cselekvést és átalakulást leírni.

Ezután az intervallumok ismert módszere lép működésbe. Számláló nullák: de nincsenek. Mert a diszkrimináns negatív lesz. Viszont a nevező csak akkor áll vissza, ha $x=0$ - ugyanúgy, mint legutóbb. Nos, egyértelmű, hogy a $x=0$-tól jobbra a tört pozitív értékeket vesz fel, balra pedig negatív értékeket. Mivel minket a negatív értékek érdekelnek, a végső válasz: $x\in \left(-\infty ;0 \right)$.

\[((\left(0,16 \right))^(1+2x))\cdot ((\left(6,25 \right))^(x))\ge 1\]

Mit kell tenni a tizedes törtekkel az exponenciális egyenlőtlenségekben? Így van: szabaduljon meg tőlük, alakítsa át őket közönségessé. Itt fogjuk lefordítani:

\[\begin(align) & 0.16=\frac(16)(100)=\frac(4)(25)\jobbra nyíl ((\bal(0.16 \right))^(1+2x)) =((\ left(\frac(4)(25) \right))^(1+2x)); \\ & 6.25=\frac(625)(100)=\frac(25)(4)\Jobbra ((\left(6.25 \right))^(x))=((\left(\ frac(25)) (4)\jobbra)^(x)). \\\vége(igazítás)\]

Mit kaptunk tehát az exponenciális függvények alapjaiban? És kaptunk két kölcsönösen fordított számot:

\[\frac(25)(4)=((\left(\frac(4)(25) \right))^(-1))\jobbra nyíl ((\left(\frac(25)(4) \ jobb))^(x))=((\bal(((\bal(\frac(4)(25) \jobb))^(-1)) \jobb))^(x))=((\ balra(\frac(4)(25) \jobbra))^(-x))\]

Így az eredeti egyenlőtlenség a következőképpen írható át:

\[\begin(align) & ((\left(\frac(4)(25) \right))^(1+2x))\cdot ((\left(\frac(4)(25) \right) )^(-x))\ge 1; \\ & ((\left(\frac(4)(25) \right))^(1+2x+\left(-x \right)))\ge ((\left(\frac(4)(25)) \jobbra))^(0)); \\ & ((\left(\frac(4)(25) \right))^(x+1))\ge ((\left(\frac(4)(25) \right))^(0) ). \\\vége(igazítás)\]

Természetesen a hatványok azonos bázisú szorzásakor a kitevőik összeadódnak, ami a második sorban történt. Ezen kívül a jobb oldali egységet képviseltük, hatalomként is a 4/25-ös alapban. Már csak az ésszerűsítés marad hátra:

\[((\left(\frac(4)(25) \right))^(x+1))\ge ((\left(\frac(4)(25) \right))^(0)) \Rightarrow \left(x+1-0 \right)\cdot \left(\frac(4)(25)-1 \right)\ge 0\]

Vegye figyelembe, hogy $\frac(4)(25)-1=\frac(4-25)(25) \lt 0$, azaz. a második tényező egy negatív állandó, és ezzel osztva az egyenlőtlenség előjele megváltozik:

\[\begin(align) & x+1-0\le 0\Jobbra x\le -1; \\ & x\in \left(-\infty ;-1 \right]. \\\end(align)\]

Végül az utolsó egyenlőtlenség a jelenlegi „halmazból”:

\[((\left(\frac(27)(\sqrt(3)) \right))^(-x)) \lt ((9)^(4-2x))\cdot 81\]

Elvileg itt is egyértelmű a megoldás ötlete: az egyenlőtlenségben szereplő összes exponenciális függvényt a „3-as” bázisra kell redukálni. De ehhez egy kicsit trükköznie kell a gyökerekkel és az erőkkel:

\[\begin(align) & \frac(27)(\sqrt(3))=\frac(((3)^(3)))(((3)^(\frac(1)(3)) ))=((3)^(3-\frac(1)(3)))=((3)^(\frac(8)(3))); \\ & 9=((3)^(2));\quad 81=((3)^(4)). \\\vége(igazítás)\]

Ezeket a tényeket figyelembe véve az eredeti egyenlőtlenség a következőképpen írható át:

\[\begin(align) & ((\left(((3)^(\frac(8)(3))) \right))^(-x)) \lt ((\left(((3)) ^(2))\jobbra))^(4-2x))\cdot ((3)^(4)); \\ & ((3)^(-\frac(8x)(3))) \lt ((3)^(8-4x))\cdot ((3)^(4)); \\ & ((3)^(-\frac(8x)(3))) \lt ((3)^(8-4x+4)); \\ & ((3)^(-\frac(8x)(3))) \lt ((3)^(4-4x)). \\\vége(igazítás)\]

Ügyeljen a számítások 2. és 3. sorára: mielőtt bármit is tenne az egyenlőtlenséggel, feltétlenül hozza azt a formába, amelyről az óra elején beszéltünk: $((a)^(x)) \ lt ((a)^(n))$. Mindaddig, amíg néhány baloldali tényező, további állandók stb. vannak a bal vagy a jobb oldalon, nem hajtható végre az indokok racionalizálása vagy „áthúzása”.! Számtalan feladatot végeztek el hibásan, mert nem értik ezt az egyszerű tényt. Magam is folyamatosan figyelem ezt a problémát tanítványaimmal, amikor még csak most kezdjük az exponenciális és logaritmikus egyenlőtlenségek elemzését.

De térjünk vissza a feladatunkhoz. Próbáljunk meg ezúttal racionalizálás nélkül. Emlékezzünk: a fokszám alapja nagyobb, mint egy, így a hármasokat egyszerűen át lehet húzni - az egyenlőtlenség jele nem változik. Kapunk:

\[\begin(align) & -\frac(8x)(3) \lt 4-4x; \\ & 4x-\frac(8x)(3) \lt 4; \\ & \frac(4x)(3) \lt 4; \\ & 4x \lt 12; \\ & x \lt 3. \\\end(igazítás)\]

Ez minden. Végső válasz: $x\in \left(-\infty ;3 \right)$.

Stabil kifejezés elkülönítése és változó cseréje

Befejezésül négy további exponenciális egyenlőtlenség megoldását javaslom, ami a felkészületlen hallgatók számára már így is elég nehéz. Ahhoz, hogy megbirkózzon velük, emlékeznie kell a diplomákkal való munka szabályaira. Különösen a közös tényezők zárójelbe helyezése.

De a legfontosabb dolog az, hogy megtanuljuk megérteni, hogy pontosan mit lehet kivenni a zárójelekből. Az ilyen kifejezést stabilnak nevezik - új változóval jelölhető, és így megszabadulhat az exponenciális függvénytől. Tehát nézzük a feladatokat:

\[\begin(align) & ((5)^(x+2))+((5)^(x+1))\ge 6; \\ & ((3)^(x))+((3)^(x+2))\ge 90; \\ & ((25)^(x+1,5))-((5)^(2x+2)) \gt 2500; \\ & ((\left(0,5 \right))^(-4x-8))-((16)^(x+1,5)) \gt 768. \\\end(igazítás)\]

Kezdjük a legelső sorral. Írjuk ezt az egyenlőtlenséget külön:

\[((5)^(x+2))+((5)^(x+1))\ge 6\]

Vegye figyelembe, hogy $((5)^(x+2))=((5)^(x+1+1))=((5)^(x+1))\cdot 5$, tehát a jobb oldali oldala átírható:

Figyeljük meg, hogy az egyenlőtlenségben nincs más exponenciális függvény, kivéve a $((5)^(x+1))$. És általában a $x$ változó sehol máshol nem jelenik meg, ezért vezessünk be egy új változót: $((5)^(x+1))=t$. A következő konstrukciót kapjuk:

\[\begin(align) & 5t+t\ge 6; \\&6t\ge 6; \\ & t\ge 1. \\\end(igazítás)\]

Visszatérünk az eredeti változóhoz ($t=((5)^(x+1))$), és ugyanakkor ne feledjük, hogy 1=5 0 . Nekünk van:

\[\begin(align) & ((5)^(x+1))\ge ((5)^(0)); \\ & x+1\ge 0; \\ & x\ge -1. \\\vége(igazítás)\]

Ez a megoldás! Válasz: $x\in \left[ -1;+\infty \right)$. Térjünk át a második egyenlőtlenségre:

\[((3)^(x))+((3)^(x+2))\ge 90\]

Itt minden ugyanaz. Vegye figyelembe, hogy $((3)^(x+2))=((3)^(x))\cdot ((3)^(2))=9\cdot ((3)^(x))$ . Ezután a bal oldalt át lehet írni:

\[\begin(align) & ((3)^(x))+9\cdot ((3)^(x))\ge 90;\quad \left| ((3)^(x))=t \jobbra. \\&t+9t\ge 90; \\ & 10t\ge 90; \\ & t\ge 9\Rightarrow ((3)^(x))\ge 9\Rightarrow ((3)^(x))\ge ((3)^(2)); \\ & x\ge 2\Rightarrow x\in \left[ 2;+\infty \right). \\\vége(igazítás)\]

Körülbelül így kell megoldást készíteni a valódi tesztekhez és az önálló munkához.

Nos, próbáljunk meg valami bonyolultabbat. Például itt van az egyenlőtlenség:

\[((25)^(x+1,5))-((5)^(2x+2)) \gt 2500\]

Mi itt a probléma? Először is, a bal oldali exponenciális függvények alapjai különböznek: 5 és 25. Azonban 25 = 5 2, tehát az első tag átalakítható:

\[\begin(align) & ((25)^(x+1.5))=((\left(((5)^(2)) \right))^(x+1.5))= ((5) ^(2x+3)); \\ & ((5)^(2x+3))=((5)^(2x+2+1))=((5)^(2x+2))\cdot 5. \\\end(igazítás) )\]

Mint látható, először mindent ugyanarra az alapra hoztunk, majd azt vettük észre, hogy az első tag könnyen redukálható a másodikra ​​- csak bővíteni kell a kitevőt. Most már nyugodtan bevezethet egy új változót: $((5)^(2x+2))=t$, és a teljes egyenlőtlenség a következőképpen lesz átírva:

\[\begin(align) & 5t-t\ge 2500; \\&4t\ge 2500; \\ & t\ge 625=((5)^(4)); \\ & ((5)^(2x+2))\ge ((5)^(4)); \\ & 2x+2\ge 4; \\&2x\ge 2; \\ & x\ge 1. \\\end(igazítás)\]

És még egyszer: semmi nehézség! Végső válasz: $x\in \left[ 1;+\infty \right)$. Térjünk át a végső egyenlőtlenségre a mai leckében:

\[((\left(0,5 \right))^(-4x-8))-((16)^(x+1,5)) \gt 768\]

Természetesen az első dolog, amire figyelni kell, decimális az első fok tövében. Meg kell szabadulni tőle, és ugyanakkor az összes exponenciális függvényt ugyanarra az alapra kell vinni - a „2” számra:

\[\begin(align) & 0.5=\frac(1)(2)=((2)^(-1))\Jobbra ((\left(0.5 \right))^(-4x- 8))= ((\left(((2)^(-1)) \right))^(-4x-8))=((2)^(4x+8)); \\ & 16=((2)^(4))\jobbra nyíl ((16)^(x+1,5))=((\left(((2)^(4)) \jobbra))^( x+ 1,5))=((2)^(4x+6)); \\ & ((2)^(4x+8))-((2)^(4x+6)) \gt 768. \\\end(igazítás)\]

Remek, megtettük az első lépést – minden ugyanarra az alapra vezetett. Most ki kell választani stabil kifejezés. Vegye figyelembe, hogy $((2)^(4x+8))=((2)^(4x+6+2))=((2)^(4x+6))\cdot 4$. Ha bevezetünk egy új változót $((2)^(4x+6))=t$, akkor az eredeti egyenlőtlenség a következőképpen írható át:

\[\begin(align) & 4t-t \gt 768; \\ & 3t \gt 768; \\ & t \gt 256=((2)^(8)); \\ & ((2)^(4x+6)) \gt ((2)^(8)); \\ & 4x+6 \gt 8; \\ & 4x \gt 2; \\ & x \gt \frac(1)(2)=0,5. \\\vége(igazítás)\]

Természetesen felmerülhet a kérdés: hogyan fedeztük fel, hogy 256 = 2 8? Sajnos itt csak a kettő (és egyben a három és az öt) hatványait kell ismerni. Nos, vagy ossza el a 256-ot 2-vel (lehet osztani, mivel a 256 az páros szám), amíg meg nem kapjuk az eredményt. Valahogy így fog kinézni:

\[\begin(align) & 256=128\cdot 2= \\ & =64\cdot 2\cdot 2= \\ & =32\cdot 2\cdot 2\cdot 2= \\ & =16\cdot 2 \cdot 2\cdot 2\cdot 2= \\ & =8\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =4\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =((2)^(8)).\end(align )\]

Ugyanez a helyzet hárommal (a 9, 27, 81 és 243 számok a fokszámai), és a héttel (a 49 és 343 számokat is jó lenne megjegyezni). Nos, az ötösnek is vannak „szép” diplomái, amelyeket tudnod kell:

\[\begin(align) & ((5)^(2))=25; \\ & ((5)^(3))=125; \\ & ((5)^(4))=625; \\ & ((5)^(5))=3125. \\\vége(igazítás)\]

Természetesen, ha kívánja, ezeket a számokat visszaállíthatja az elméjében, ha egyszerűen egymás után megszorozza őket. Ha azonban több exponenciális egyenlőtlenséget kell megoldania, és mindegyik következő nehezebb, mint az előző, akkor az utolsó dolog, amire gondolni kell, néhány szám hatványa. És ebben az értelemben ezek a problémák összetettebbek, mint a „klasszikus” egyenlőtlenségek, amelyeket az intervallum módszerrel oldanak meg.

Remélem, ez a lecke segített a téma elsajátításában. Ha valami nem világos, kérdezze meg a megjegyzésekben. És találkozunk a következő órákon. :)

Óra és előadás a következő témában: "Exponenciális egyenletek és exponenciális egyenlőtlenségek"

Kiegészítő anyagok
Kedves felhasználók, ne felejtsék el megírni észrevételeiket, véleményeiket, kívánságaikat! Az összes anyagot egy vírusirtó program ellenőrizte.

Oktatási segédanyagok és szimulátorok az Integral webáruházban 11. évfolyamnak
Interaktív kézikönyv 9–11. osztályos „Trigonometria”
Interaktív kézikönyv 10–11. osztályosoknak "Logaritmusok"

Exponenciális egyenletek meghatározása

Srácok, tanulmányoztuk az exponenciális függvényeket, megtanultuk a tulajdonságaikat és grafikonokat építettünk, példákat elemeztünk olyan egyenletekre, amelyekben exponenciális függvényeket találtunk. Ma exponenciális egyenleteket és egyenlőtlenségeket fogunk tanulmányozni.

Meghatározás. A következő alakú egyenletek: $a^(f(x))=a^(g(x))$, ahol $a>0$, $a≠1$ exponenciális egyenleteknek nevezzük.

Felidézve az „Exponenciális függvény” témakörben tanulmányozott tételeket, bevezethetünk egy új tételt:
Tétel. Exponenciális egyenlet$a^(f(x))=a^(g(x))$, ahol $a>0$, $a≠1$ ekvivalens a $f(x)=g(x)$ egyenlettel.

Példák exponenciális egyenletekre

Példa.
Egyenletek megoldása:
a) $3^(3x-3)=27$.
b) $((\frac(2)(3)))^(2x+0,2)=\sqrt(\frac(2)(3))$.
c) $5^(x^2-6x)=5^(-3x+18)$.
Megoldás.
a) Jól tudjuk, hogy $27=3^3$.
Írjuk át az egyenletünket: $3^(3x-3)=3^3$.
A fenti tétel segítségével azt találjuk, hogy az egyenletünk a $3x-3=3$ egyenletre redukálódik, ezt az egyenletet megoldva $x=2$ egyenletet kapunk.
Válasz: $x=2$.

B) $\sqrt(\frac(2)(3))=((\frac(2)(3)))^(\frac(1)(5))$.
Ekkor az egyenletünk átírható: $((\frac(2)(3)))^(2x+0.2)=((\frac(2)(3)))^(\frac(1)(5) ) =((\frac(2)(3)))^(0,2)$.
$2х+0,2=0,2$.
$x=0$.
Válasz: $x=0$.

C) Az eredeti egyenlet ekvivalens a következő egyenlettel: $x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ és $x_2=-3$.
Válasz: $x_1=6$ és $x_2=-3$.

Példa.
Oldja meg az egyenletet: $\frac(((0.25))^(x-0.5))(\sqrt(4))=16*((0.0625))^(x+1)$.
Megoldás:
Végezzünk el egy sor műveletet egymás után, és hozzuk az egyenletünk mindkét oldalát ugyanarra az alapra.
Végezzünk el néhány műveletet a bal oldalon:
1) $((0,25))^(x-0,5)=((\frac(1)(4)))^(x-0,5)$.
2) $\sqrt(4)=4^(\frac(1)(2))$.
3) $\frac(((0.25))^(x-0.5))(\sqrt(4))=\frac(((\frac(1)(4)))^(x-0 ,5)) (4^(\frac(1)(2)))= \frac(1)(4^(x-0,5+0,5))=\frac(1)(4^x) =((\frac(1) (4)))^x$.
Menjünk tovább a jobb oldalra:
4) $16=4^2$.
5) $((0,0625))^(x+1)=\frac(1)((16)^(x+1))=\frac(1)(4^(2x+2))$.
6) 16 USD*((0,0625))^(x+1)=\frac(4^2)(4^(2x+2))=4^(2-2x-2)=4^(-2x )= \frac(1)(4^(2x))=((\frac(1)(4)))^(2x)$.
Az eredeti egyenlet ekvivalens a következő egyenlettel:
$((\frac(1)(4)))^x=((\frac(1)(4)))^(2x)$.
$x=2x$.
$x=0$.
Válasz: $x=0$.

Példa.
Oldja meg az egyenletet: $9^x+3^(x+2)-36=0$.
Megoldás:
Írjuk át az egyenletünket: $((3^2))^x+9*3^x-36=0$.
$((3^x))^2+9*3^x-36=0$.
Változtassuk meg a változókat, legyen $a=3^x$.
Újban változó egyenlet a következő formában lesz: $a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ és $a_2=3$.
Végezzük el a változók fordított változtatását: $3^x=-12$ és $3^x=3$.
Az utolsó órán ezt tanultuk demonstratív kifejezések csak pozitív értékeket vehet fel, ne feledje a grafikont. Ez azt jelenti, hogy az első egyenletnek nincs megoldása, a második egyenletnek egy megoldása van: $x=1$.
Válasz: $x=1$.

Emlékeztessünk az exponenciális egyenletek megoldására:
1. Grafikus módszer. Az egyenlet mindkét oldalát függvény formájában ábrázoljuk, és ezek grafikonjait felépítjük, megkeressük a gráfok metszéspontjait. (Az utolsó leckében ezt a módszert alkalmaztuk).
2. A mutatók egyenlőségének elve. Az elv azon alapul, hogy két azonos bázisú kifejezés akkor és csak akkor egyenlő, ha ezen bázisok fokai (kitevői) egyenlőek. $a^(f(x))=a^(g(x))$ $f(x)=g(x)$.
3. Változó helyettesítési módszer. Ezt a módszert akkor érdemes alkalmazni, ha az egyenlet változók helyettesítésekor leegyszerűsíti a formáját és sokkal könnyebben megoldható.

Példa.
Oldja meg az egyenletrendszert: $\begin (esetek) (27)^y*3^x=1, \\ 4^(x+y)-2^(x+y)=12. \end (esetek)$.
Megoldás.
Tekintsük a rendszer mindkét egyenletét külön-külön:
27 $^y*3^x=1$.
$3^(3y)*3^x=3^0$.
$3^(3y+x)=3^0$.
$x+3y=0$.
Tekintsük a második egyenletet:
$4^(x+y)-2^(x+y)=12$.
$2^(2(x+y))-2^(x+y)=12$.
Használjuk a változók váltás módszerét, legyen $y=2^(x+y)$.
Ekkor az egyenlet a következő alakot veszi fel:
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ és $y_2=-3$.
Térjünk át a kezdeti változókra, az első egyenletből $x+y=2$ kapjuk. A második egyenletnek nincs megoldása. Ekkor a kezdeti egyenletrendszerünk ekvivalens a következő rendszerrel: $\begin (esetek) x+3y=0, \\ x+y=2. \end (esetek)$.
Vonjuk ki a másodikat az első egyenletből, így kapjuk: $\begin (esetek) 2y=-2, \\ x+y=2. \end (esetek)$.
$\begin (esetek) y=-1, \\ x=3. \end (esetek)$.
Válasz: $(3;-1)$.

Exponenciális egyenlőtlenségek

Térjünk át az egyenlőtlenségekre. Az egyenlőtlenségek megoldásánál figyelni kell a végzettség alapjára. Az egyenlőtlenségek megoldása során két lehetséges forgatókönyv lehetséges az események alakulására.

Tétel. Ha $a>1$, akkor az $a^(f(x))>a^(g(x))$ exponenciális egyenlőtlenség ekvivalens a $f(x)>g(x)$ egyenlőtlenséggel.
Ha 0 dollár a^(g(x))$ ekvivalens a $f(x) egyenlőtlenséggel

Példa.
Egyenlőtlenségek megoldása:
a) $3^(2x+3)>81$.
b) $((\frac(1)(4)))^(2x-4) c) $(0,3)^(x^2+6x)≤(0,3)^(4x+15)$ .
Megoldás.
a) $3^(2x+3)>81$.
$3^(2x+3)>3^4$.
Egyenlőtlenségünk egyenlő az egyenlőtlenséggel:
$2x+3>4$.
$2x>1$.
$x>0,5 $.

B) $((\frac(1)(4)))^(2x-4) $((\frac(1)(4)))^(2x-4) Egyenletünkben az alap az, amikor a fok kisebb, mint 1, akkor Egy egyenlőtlenség ekvivalensre cserélésekor meg kell változtatni az előjelet.
$2x-4>2$.
$x>3 $.

C) Egyenlőtlenségünk egyenlő az egyenlőtlenséggel:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Használjuk az intervallum megoldási módszert:
Válasz: $(-∞;-5]U)

Olvassa el még: