Logaritamsko zbrajanje. Računanje logaritama, primjeri, rješenja. Zašto morate uzeti u obzir raspon prihvatljivih vrijednosti

Na temelju broja e: ln x = log e x.

Prirodni logaritam se široko koristi u matematici jer njegov izvod ima najjednostavniji oblik: (ln x)′ = 1/ x.

Na temelju definicije, baza prirodnog logaritma je broj e:
e ≅ 2,718281828459045...;
.

Graf funkcije y = u x.

Graf prirodnog logaritma (funkcije y = u x) dobiva se iz eksponencijalnog grafa zrcalna slika u odnosu na ravnu liniju y = x.

Prirodni logaritam je definiran za pozitivne vrijednosti varijable x. Monotono raste u svojoj domeni definicije.

Na x → 0 granica prirodnog logaritma je minus beskonačnost (-∞).

Kako je x → + ∞, granica prirodnog logaritma je plus beskonačno (+ ∞). Za veliki x, logaritam raste prilično sporo. Bilo koje funkcija snage x a s pozitivnim eksponentom a raste brže od logaritma.

Svojstva prirodnog logaritma

Područje definiranja, skup vrijednosti, ekstremi, porast, pad

Prirodni logaritam je monotono rastuća funkcija, tako da nema ekstrema. Glavna svojstva prirodnog logaritma prikazana su u tablici.

ln x vrijednosti

U 1 = 0

Osnovne formule za prirodne logaritme

Formule koje slijede iz definicije inverzne funkcije:

Glavno svojstvo logaritama i njegove posljedice

Formula za zamjenu baze

Bilo koji logaritam može se izraziti prirodnim logaritmom koristeći formulu supstitucije baze:

Dokazi ovih formula prikazani su u odjeljku "Logaritam".

Inverzna funkcija

Inverz prirodnog logaritma je eksponent.

Ako tada

Ako tada.

Derivacija ln x

Derivacija prirodnog logaritma:
.
Derivacija prirodnog logaritma modula x:
.
Derivat n-tog reda:
.
Izvođenje formula >>>

Sastavni

Integral se izračunava integracijom po dijelovima:
.
Tako,

Izrazi koji koriste složene brojeve

Razmotrimo funkciju kompleksne varijable z:
.
Izrazimo kompleksnu varijablu z preko modula r i argument φ :
.
Koristeći svojstva logaritma, imamo:
.
Ili
.
Argument φ nije jednoznačno definiran. Ako stavite
, gdje je n cijeli broj,
to će biti isti broj za različite n.

Stoga prirodni logaritam, kao funkcija kompleksne varijable, nije funkcija s jednom vrijednošću.

Proširenje niza potencija

Kada dođe do ekspanzije:

Reference:
U. Bronstein, K.A. Semendjajev, Priručnik iz matematike za inženjere i studente, “Lan”, 2009.

Logaritmi se, kao i svi brojevi, mogu zbrajati, oduzimati i transformirati na sve načine. Ali budući da logaritmi nisu baš obični brojevi, postoje ovdje pravila, koja se zovu glavna svojstva.

Ova pravila svakako morate znati - bez njih se ne može riješiti niti jedan ozbiljan logaritamski problem. Osim toga, vrlo ih je malo - sve možete naučiti u jednom danu. Pa krenimo.

Zbrajanje i oduzimanje logaritama

Razmotrimo dva logaritma s istim bazama: log a x i log a g. Zatim se mogu zbrajati i oduzimati, i:

  1. log a x+ log a g=log a (x · g);
  2. log a x− trupac a g=log a (x : g).

Dakle, zbroj logaritama jednak je logaritmu umnoška, ​​a razlika je jednaka logaritmu kvocijenta. Imajte na umu: ključna točka ovdje je identične osnove. Ako su razlozi drugačiji, ova pravila ne rade!

Ove formule pomoći će vam izračunati logaritamski izraz čak i kada se ne uzimaju u obzir njegovi pojedinačni dijelovi (pogledajte lekciju “Što je logaritam”). Pogledajte primjere i pogledajte:

Log 6 4 + log 6 9.

Budući da logaritmi imaju iste baze, koristimo formulu zbroja:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Zadatak. Odredi vrijednost izraza: log 2 48 − log 2 3.

Osnove su iste, koristimo formulu razlike:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Zadatak. Odredi vrijednost izraza: log 3 135 − log 3 5.

Opet su baze iste, tako da imamo:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Kao što vidite, izvorni izrazi sastoje se od "loših" logaritama koji se ne izračunavaju zasebno. No nakon transformacija dobivaju se posve normalni brojevi. Mnogi su izgrađeni na ovoj činjenici testni radovi. Da, izrazi slični testovima nude se ozbiljno (ponekad bez gotovo ikakvih promjena) na Jedinstvenom državnom ispitu.

Izdvajanje eksponenta iz logaritma

Sada malo zakomplicirajmo zadatak. Što ako je baza ili argument logaritma potencija? Tada se eksponent ovog stupnja može izvaditi iz znaka logaritma prema sljedećim pravilima:

Lako je vidjeti da posljednje pravilo slijedi prva dva. Ali bolje ga je ipak zapamtiti - u nekim će slučajevima to značajno smanjiti količinu izračuna.

Naravno, sva ova pravila imaju smisla ako se promatra ODZ logaritma: a > 0, a ≠ 1, x> 0. I još nešto: naučite primijeniti sve formule ne samo slijeva na desno, već i obrnuto, tj. Brojeve ispred znaka logaritma možete unijeti u sam logaritam. To je ono što se najčešće traži.

Zadatak. Odredi vrijednost izraza: log 7 49 6 .

Riješimo se stupnja u argumentu pomoću prve formule:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Zadatak. Pronađite značenje izraza:

[Natpis za sliku]

Imajte na umu da nazivnik sadrži logaritam čija su baza i argument točne potencije: 16 = 2 4 ; 49 = 7 2. Imamo:

[Natpis za sliku]

Mislim da posljednji primjer zahtijeva malo pojašnjenja. Gdje su nestali logaritmi? Do zadnjeg trenutka radimo samo s nazivnikom. Predstavili smo bazu i argument logaritma koji tamo stoji u obliku potencija i izvadili eksponente - dobili smo "trokatni" razlomak.

Sada pogledajmo glavnu frakciju. Brojnik i nazivnik sadrže isti broj: log 2 7. Budući da je log 2 7 ≠ 0, možemo smanjiti razlomak - 2/4 će ostati u nazivniku. Prema aritmetičkim pravilima, četvorka se može prenijeti u brojnik, što je i učinjeno. Rezultat je bio odgovor: 2.

Prijelaz na novi temelj

Govoreći o pravilima zbrajanja i oduzimanja logaritama, posebno sam naglasio da ona rade samo s istim bazama. Što ako su razlozi drugačiji? Što ako nisu točne potencije istog broja?

Formule za prijelaz na novi temelj dolaze u pomoć. Formulirajmo ih u obliku teorema:

Neka je zadan log logaritma a x. Zatim za bilo koji broj c takav da c> 0 i c≠ 1, vrijedi jednakost:

[Natpis za sliku]

Konkretno, ako stavimo c = x, dobivamo:

[Natpis za sliku]

Iz druge formule proizlazi da se baza i argument logaritma mogu zamijeniti, ali se u ovom slučaju cijeli izraz “okreće”, tj. logaritam se pojavljuje u nazivniku.

Ove se formule rijetko nalaze u običnim numeričkim izrazima. Koliko su zgodni moguće je procijeniti samo pri rješavanju logaritamskih jednadžbi i nejednadžbi.

Međutim, postoje problemi koji se uopće ne mogu riješiti osim prelaskom na novi temelj. Pogledajmo nekoliko od njih:

Zadatak. Odredite vrijednost izraza: log 5 16 log 2 25.

Imajte na umu da argumenti oba logaritma sadrže točne potencije. Izvadimo indikatore: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Sada "obrnimo" drugi logaritam:

[Natpis za sliku]

Budući da se umnožak ne mijenja preslagivanjem faktora, mirno smo pomnožili četiri i dva, a zatim se pozabavili logaritmima.

Zadatak. Odredite vrijednost izraza: log 9 100 lg 3.

Baza i argument prvog logaritma su egzaktne potencije. Zapišimo ovo i riješimo se indikatora:

[Natpis za sliku]

Sada se riješimo decimalnog logaritma prelaskom na novu bazu:

[Natpis za sliku]

Osnovni logaritamski identitet

Često je u procesu rješavanja potrebno predstaviti broj kao logaritam zadane baze. U ovom slučaju pomoći će nam sljedeće formule:

U prvom slučaju broj n postaje pokazatelj stupnja stajališta u argumentu. Broj n može biti apsolutno bilo što, jer je to samo vrijednost logaritma.

Druga formula zapravo je parafrazirana definicija. To je ono što se zove: osnovni logaritamski identitet.

Zapravo, što će se dogoditi ako broj b podići na takvu snagu da broj b ovoj moći daje broj a? Tako je: dobivate isti broj a. Ponovno pažljivo pročitajte ovaj odlomak - mnogi ljudi zapnu na njemu.

Poput formula za prelazak na novu bazu, osnovni logaritamski identitet ponekad je jedino moguće rješenje.

Zadatak. Pronađite značenje izraza:

[Natpis za sliku]

Imajte na umu da je log 25 64 = log 5 8 - jednostavno uzeo kvadrat iz baze i argumenta logaritma. Uzimajući u obzir pravila množenja potencije s istom bazom, dobivamo:

[Natpis za sliku]

Ako netko ne zna, ovo je bio pravi zadatak s Jedinstvenog državnog ispita :)

Logaritamska jedinica i logaritamska nula

U zaključku ću dati dva identiteta koja se teško mogu nazvati svojstvima - prije su posljedice definicije logaritma. Stalno se pojavljuju u problemima i, začudo, stvaraju probleme čak i “naprednim” učenicima.

  1. log a a= 1 je logaritamska jedinica. Zapamtite jednom zauvijek: logaritam prema bilo kojoj bazi a iz ove same baze jednako je jedan.
  2. log a 1 = 0 je logaritamska nula. Baza a može biti bilo što, ali ako argument sadrži jedinicu, logaritam je jednak nuli! Jer a 0 = 1 izravna je posljedica definicije.

To su sva svojstva. Svakako ih vježbajte u praksi! Preuzmite varalicu na početku lekcije, isprintajte je i riješite zadatke.

Kao što znate, kod množenja izraza s potencijama, njihovi eksponenti uvijek se zbrajaju (a b *a c = a b+c). Ovaj matematički zakon je izveo Arhimed, a kasnije, u 8. stoljeću, matematičar Virasen stvorio je tablicu cjelobrojnih eksponenata. Upravo su oni poslužili za daljnje otkriće logaritama. Primjeri korištenja ove funkcije mogu se naći gotovo posvuda gdje trebate pojednostaviti glomazno množenje jednostavnim zbrajanjem. Ako provedete 10 minuta čitajući ovaj članak, objasnit ćemo vam što su logaritmi i kako s njima raditi. Jednostavnim i pristupačnim jezikom.

Definicija u matematici

Logaritam je izraz sljedećeg oblika: log a b=c, to jest logaritam bilo kojeg nenegativan broj(to jest, bilo koje pozitivno) “b” po svojoj bazi “a” smatra se potencijom od “c” na koju se baza “a” mora podići da bi se u konačnici dobila vrijednost “b”. Analizirajmo logaritam koristeći primjere, recimo da postoji izraz log 2 8. Kako pronaći odgovor? Vrlo je jednostavno, trebate pronaći takvu potenciju da od 2 do tražene potencije dobijete 8. Nakon što malo izračunate u glavi, dobivamo broj 3! I to je istina, jer 2 na potenciju 3 daje odgovor kao 8.

Vrste logaritama

Za mnoge učenike i studente ova se tema čini kompliciranom i nerazumljivom, ali zapravo logaritmi nisu tako strašni, glavna stvar je razumjeti njihovo opće značenje i zapamtiti njihova svojstva i neka pravila. Postoje tri odvojene vrste logaritamskih izraza:

  1. Prirodni logaritam ln a, gdje je baza Eulerov broj (e = 2,7).
  2. Decimala a, gdje je baza 10.
  3. Logaritam bilo kojeg broja b na bazu a>1.

Svaki od njih rješava se na standardni način, uključujući pojednostavljenje, redukciju i naknadnu redukciju na jedan logaritam pomoću logaritamskih teorema. Da biste dobili točne vrijednosti logaritama, trebali biste se sjetiti njihovih svojstava i slijeda radnji prilikom njihovog rješavanja.

Pravila i neka ograničenja

U matematici postoji nekoliko pravila-ograničenja koja su prihvaćena kao aksiom, odnosno ne podliježu raspravi i istinita su. Na primjer, brojevi se ne mogu podijeliti s nulom, a također je nemoguće izvući korijen čak stupanj od negativnih brojeva. Logaritmi također imaju svoja pravila, nakon kojih možete lako naučiti raditi čak i s dugim i prostranim logaritamskim izrazima:

  • Baza "a" uvijek mora biti veća od nule, a ne jednaka 1, inače će izraz izgubiti svoje značenje, jer su "1" i "0" u bilo kojem stupnju uvijek jednake svojim vrijednostima;
  • ako je a > 0, tada je a b >0, ispada da i “c” mora biti veće od nule.

Kako riješiti logaritme?

Na primjer, dan je zadatak pronaći odgovor na jednadžbu 10 x = 100. To je vrlo jednostavno, potrebno je odabrati potenciju dizanjem broja deset na koji dobijemo 100. To je, naravno, 10 2 = 100.

Sada zamislimo ovaj izraz u logaritamskom obliku. Dobivamo log 10 100 = 2. Kod rješavanja logaritama sve radnje praktički konvergiraju da se nađe potencija kojoj je potrebno unijeti bazu logaritma da bi se dobio zadani broj.

Da biste točno odredili vrijednost nepoznatog stupnja, morate naučiti kako raditi s tablicom stupnjeva. Ovako izgleda:

Kao što vidite, neke eksponente možete pogoditi intuitivno ako imate tehnički um i znanje o tablici množenja. Međutim, za veće vrijednosti trebat će vam tablica snage. Mogu ga koristiti čak i oni koji ne znaju ništa o kompleksu matematičke teme. Lijevi stupac sadrži brojeve (baza a), gornji red brojeva je vrijednost potencije c na koju je podignut broj a. Na raskrižju ćelije sadrže brojčane vrijednosti koje su odgovor (a c =b). Uzmimo, na primjer, prvu ćeliju s brojem 10 i kvadriramo je, dobivamo vrijednost 100, koja je naznačena na sjecištu naše dvije ćelije. Sve je tako jednostavno i lako da će i najveći humanist razumjeti!

Jednadžbe i nejednadžbe

Ispada da je pod određenim uvjetima eksponent logaritam. Stoga se svaki matematički numerički izraz može napisati kao logaritamska jednakost. Na primjer, 3 4 =81 može se napisati kao logaritam baze 3 od 81 jednak četiri (log 3 81 = 4). Za negativne potencije pravila su ista: 2 -5 = 1/32 zapisujemo kao logaritam, dobivamo log 2 (1/32) = -5. Jedan od najfascinantnijih dijelova matematike je tema "logaritmi". U nastavku ćemo pogledati primjere i rješenja jednadžbi, odmah nakon proučavanja njihovih svojstava. Sada pogledajmo kako nejednadžbe izgledaju i kako ih razlikovati od jednadžbi.

Zadan je izraz sljedećeg oblika: log 2 (x-1) > 3 - jest logaritamska nejednakost, budući da je nepoznata vrijednost "x" pod predznakom logaritma. Također se u izrazu uspoređuju dvije količine: logaritam željenog broja na osnovicu dva veći je od broja tri.

Najvažnija razlika između logaritamskih jednadžbi i nejednadžbi je u tome što jednadžbe s logaritmima (npr. logaritam 2 x = √9) podrazumijevaju jedan ili više konkretnih odgovora. brojčane vrijednosti, dok su pri rješavanju nejednadžbe definirane kao regija prihvatljive vrijednosti, i prijelomne točke ove funkcije. Kao posljedica toga, odgovor nije jednostavan skup pojedinačni brojevi kao u odgovoru je jednadžba, a a je kontinuirani niz ili skup brojeva.

Osnovni teoremi o logaritmima

Prilikom rješavanja primitivnih zadataka pronalaženja vrijednosti logaritma, njegova svojstva možda neće biti poznata. Međutim, kada su u pitanju logaritamske jednadžbe ili nejednadžbe, prije svega, potrebno je jasno razumjeti i u praksi primijeniti sva osnovna svojstva logaritama. Kasnije ćemo pogledati primjere jednadžbi; pogledajmo prvo svako svojstvo detaljnije.

  1. Glavni identitet izgleda ovako: a logaB =B. Primjenjuje se samo kada je a veće od 0, nije jednako jedan, a B je veće od nule.
  2. Logaritam umnoška može se predstaviti u sljedeću formulu: log d (s 1 *s 2) = log d s 1 + log d s 2. U ovom slučaju preduvjet je: d, s 1 i s 2 > 0; a≠1. Možete dati dokaz za ovu logaritamsku formulu, s primjerima i rješenjem. Neka je log a s 1 = f 1 i log a s 2 = f 2, tada je a f1 = s 1, a f2 = s 2. Dobivamo da je s 1 * s 2 = a f1 *a f2 = a f1+f2 (svojstva od stupnjeva ), a zatim po definiciji: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, što je i trebalo dokazati.
  3. Logaritam kvocijenta izgleda ovako: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Teorem u obliku formule ima sljedeći oblik: log a q b n = n/q log a b.

Ova se formula naziva "svojstvo stupnja logaritma". Sliči svojstvima običnih stupnjeva, što i ne čudi, jer se sva matematika temelji na prirodnim postulatima. Pogledajmo dokaz.

Neka je log a b = t, ispada da je a t =b. Podignemo li oba dijela na potenciju m: a tn = b n ;

ali budući da je a tn = (a q) nt/q = b n, stoga je log a q b n = (n*t)/t, tada je log a q b n = n/q log a b. Teorem je dokazan.

Primjeri problema i nejednakosti

Najčešći tipovi zadataka o logaritmima su primjeri jednadžbi i nejednadžbi. Nalaze se u gotovo svim knjigama zadataka, a također su obavezan dio ispita iz matematike. Za upis na sveučilište ili polaganje prijemni ispiti u matematici treba znati pravilno rješavati takve zadatke.

Nažalost, ne postoji jedinstven plan ili shema za rješavanje i određivanje nepoznate vrijednosti logaritma, ali se određena pravila mogu primijeniti na svaku matematičku nejednadžbu ili logaritamsku jednadžbu. Prije svega, trebali biste saznati može li se izraz pojednostaviti ili dovesti do Opća pojava. Pojednostavite duge logaritamski izrazi moguće ako ispravno koristite njihova svojstva. Brzo ih upoznajmo.

Kada rješavamo logaritamske jednadžbe, moramo odrediti koju vrstu logaritma imamo: primjer izraza može sadržavati prirodni logaritam ili decimalni.

Evo primjera ln100, ln1026. Njihovo se rješenje svodi na to da trebaju odrediti potenciju kojoj će baza 10 biti jednaka 100, odnosno 1026. Za rješenja prirodni logaritmi trebate primijeniti logaritamske identitete ili njihova svojstva. Pogledajmo rješenje na primjerima logaritamski problemi različiti tipovi.

Kako koristiti logaritamske formule: s primjerima i rješenjima

Dakle, pogledajmo primjere korištenja osnovnih teorema o logaritmima.

  1. Svojstvo logaritma umnoška može se koristiti u zadacima gdje je potrebno proširivanje veliki značaj brojeve b na jednostavnije faktore. Na primjer, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Odgovor je 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - kao što vidite, koristeći četvrto svojstvo potencije logaritma uspjeli smo riješiti naizgled složen i nerješiv izraz. Samo trebate faktorizirati bazu, a zatim uzeti vrijednosti eksponenta iz znaka logaritma.

Zadaci s jedinstvenog državnog ispita

Logaritmi se često nalaze u prijemni ispiti, posebno puno logaritamskih problema na Jedinstvenom državnom ispitu ( Državni ispit za sve maturante). Obično su ti zadaci prisutni ne samo u dijelu A (najlakši ispitni dio ispit), ali i u dijelu C (najsloženiji i najobimniji zadaci). Ispit zahtijeva točno i savršeno poznavanje teme “Prirodni logaritmi”.

Primjeri i rješenja problema preuzeti su sa službenih Mogućnosti jedinstvenog državnog ispita. Pogledajmo kako se takvi zadaci rješavaju.

Zadani je log 2 (2x-1) = 4. Rješenje:
prepišimo izraz, malo ga pojednostavimo log 2 (2x-1) = 2 2, po definiciji logaritma dobivamo da je 2x-1 = 2 4, dakle 2x = 17; x = 8,5.

  • Najbolje je svesti sve logaritme na istu bazu kako rješenje ne bi bilo glomazno i ​​zbunjujuće.
  • Svi izrazi pod znakom logaritma označeni su kao pozitivni, stoga, kada se eksponent izraza koji je pod znakom logaritma i kao njegova baza izuzme kao množitelj, izraz koji ostaje ispod logaritma mora biti pozitivan.

Danas ćemo razgovarati o logaritamske formule a mi ćemo dati indikativne primjeri rješenja.

Oni sami podrazumijevaju obrasce rješenja prema osnovnim svojstvima logaritama. Prije primjene logaritamskih formula za rješavanje, podsjetimo vas na sva svojstva:

Sada ćemo na temelju ovih formula (svojstava) pokazati primjeri rješavanja logaritama.

Primjeri rješavanja logaritama na temelju formula.

Logaritam pozitivan broj b na bazi a (označen s log a b) je eksponent na koji se a mora podići da bi se dobilo b, s b > 0, a > 0 i 1.

Prema definiciji, log a b = x, što je ekvivalentno s a x = b, dakle log a a x = x.

Logaritmi, primjeri:

log 2 8 = 3, jer 2 3 = 8

log 7 49 = 2, jer 7 2 = 49

log 5 1/5 = -1, jer 5 -1 = 1/5

Decimalni logaritam- ovo je obični logaritam čija je baza 10. Označava se kao lg.

log 10 100 = 2, jer 10 2 = 100

Prirodni logaritam- također obični logaritam, logaritam, ali s bazom e (e = 2,71828... - iracionalan broj). Označava se kao ln.

Formule ili svojstva logaritama poželjno je zapamtiti jer će nam kasnije trebati pri rješavanju logaritama, logaritamskih jednadžbi i nejednadžbi. Prođimo ponovno kroz svaku formulu s primjerima.

  • Osnovni logaritamski identitet
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritam umnoška jednak zbroju logaritmi
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Logaritam kvocijenta jednak je razlici logaritama
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Svojstva potencije logaritamskog broja i baze logaritma

    Eksponent logaritamskog broja log a b m = mlog a b

    Eksponent baze logaritma log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    ako je m = n, dobivamo log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Prijelaz na novi temelj
    log a b = log c b/log c a,

    ako je c = b, dobivamo log b b = 1

    tada je log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Kao što vidite, formule za logaritme nisu tako komplicirane kao što se čine. Sada, nakon što smo pogledali primjere rješavanja logaritama, možemo prijeći na logaritamske jednadžbe. Detaljnije ćemo pogledati primjere rješavanja logaritamskih jednadžbi u članku: "". Ne propustite!

Ako još uvijek imate pitanja o rješenju, napišite ih u komentarima na članak.

Napomena: odlučili smo dobiti drugu klasu obrazovanja i studirati u inozemstvu kao opciju.



Pročitajte također: