Химические рекорды. Интересные факты о вселенной

Говорят, что для каждого типа вещества существует «наиболее экстремальный» вариант. Конечно, мы все слышали истории о магнитах, достаточно сильных, чтобы изнутри травмировать детей, и кислотах, которые пройдут через ваши руки за считанные секунды, но существуют даже более «экстремальные» их варианты.

Самая чёрная материя, известная человеку
Что произойдёт, если наложить друг на друга края углеродных нанотрубок и чередовать слои из них? Получится материал, который поглощает 99.9% света, который попадает на него. Микроскопическая поверхность материала является неровной и шероховатой, которая преломляет свет и при этом является плохой отражающей поверхностью. После этого попробуйте использовать углеродные нанотрубки в качестве суперпроводников в определенном порядке, что делает их прекрасными поглотителями света, и у вас получится настоящая чёрная буря. Учёные всерьёз озадачены потенциальными вариантами применения этого вещества, так как, фактически, свет не «теряется», то вещество могло бы использоваться для улучшения оптических устройств, например, телескопов и даже использоваться для солнечных батарей, работающих почти со 100% эффективностью.

Самое горючее вещество
Множество вещей горит с поразительной скоростью, например, стирофом, напалм и это только начало. Но что, если бы было вещество, которое могло бы охватить огнём землю? С одной стороны это провокационный вопрос, но он был задан как отправная точка. Трифторид хлора имеет сомнительную славу как ужасно горючее вещество, при том, что нацисты полагали, что это вещество слишком опасно для работы. Когда люди, которые обсуждают геноцид, считают, что целью их жизни является не использовать что-либо, потому что это слишком смертельно, это поддерживает осторожное обращение с этими веществами. Говорят, что однажды пролилась тонна вещества и начался пожар, и выгорело 30,5 см бетона и метр песка с гравием, пока всё не утихло. К сожалению, нацисты оказались правы.

Самое ядовитое вещество
Скажите, что бы вы меньше всего хотели, что могло бы попасть на ваше лицо? Это вполне мог быть самый смертоносный яд, который по праву займёт 3 место среди основных экстремальных веществ. Такой яд, действительно отличается от того, что прожигает бетон, и от самой сильной кислоты в мире (которую скоро изобретут). Хотя и не совсем так, но вы все, без сомнений, слышали от медицинского сообщества о ботоксе, и благодаря ему прославился самый смертоносный яд. Ботокс использует ботулотоксин, порождаемый бактерией «клостридиум ботулинум», и она очень смертоносна, и её количества, равного крупинке соли, достаточно, чтобы убить человека весом в 200 фунтов (90,72 кг; прим. mixednews). На самом деле, учёные рассчитали, что достаточно распылить всего 4 кг этого вещества, чтобы убить всех людей на земле. Наверное, орёл бы поступил гораздо гуманнее с гремучей змеёй, чем этот яд с человеком.

Самое горячее вещество
Существует очень мало вещей в мире, известных человеку как нечто более горячее, чем внутренняя поверхность недавно разогретого в микроволновке Hot Pocket, но это вещество, кажется, побьёт и этот рекорд. Созданное столкновением атомов золота при почти световой скорости, вещество называют кварк-глюонным «супом», и оно достигает сумасшедших 4 триллионов градусов Цельсия, что почти в 250 000 раз горячее вещества внутри Солнца. Величина энергии, испускаемой при столкновении, была бы достаточной, чтобы расплавить протоны и нейтроны, что само по себе имеет такие особенности, о которых вы даже и не подозревали. Учёные говорят, что это вещество могло бы нам дать представление о том, на что было похоже рождение нашей Вселенной, поэтому стоит с пониманием отнестись к тому, что крошечные сверхновые не создаются ради забавы. Тем не менее, действительно хорошие новости состоят в том, что «суп» занимал одну триллионную сантиметра и длился в течение триллионной одной триллионной секунды.

Самая едкая кислота
Кислота - это ужасное вещество, одного из самых страшных монстров в кино наделили кислотной кровью, чтобы сделать его ещё более ужасным, чем просто машина для убийства («Чужой»), поэтому внутри нас укоренилось, что воздействие кислотой - это очень плохо. Если бы «чужих» наполнили фторидно-сурьмяной кислотой, то они бы не только провалились глубоко через пол, но и пары, испускаемые от их мёртвых тел убили бы всё вокруг них. Эта кислота в 21019 раз более сильная, чем серная кислота и может просочиться через стекло. И она может взорваться, если добавить воды. И во время её реакции выделяются ядовитые испарения, которые могут убить любого в помещении.

Самая взрывоопасная взрывчатка
На самом деле, это место делят в настоящий момент два компонента: октоген и гептанитрокубан. Гептанитрокубан главным образом существует в лабораториях, и аналогичен октогену, но имеет более плотную структуру кристаллов, что несёт в себе бо?льший потенциал разрушения. Октоген, с другой стороны, существует в достаточно больши?х количествах, что может угрожать физическому существованию. Он используется в твёрдом топливе для ракет, и даже для детонаторов ядерного оружия. И последнее является самым ужасным, так как несмотря на то, с какой лёгкостью это происходит в кино, начало расщепления/термоядерной реакции, которая приводит к ярким светящимся ядерным облакам, похожим на гриб, не является простой задачей, но октоген прекрасно с ней справляется.

Самое радиоактивное вещество
Говоря о радиации, стоит упомянуть о том, что светящиеся зелёные стержни «плутония», показанные в «Симпсонах» - это всего лишь выдумка. Если что-либо является радиоактивным, это вовсе не означает, что оно светится. Стоит об этом упомянуть, так как «полоний-210» настолько радиоактивен, что он светится голубым. Бывшего советского шпиона, Александра Литвиненко ввели в заблуждение, когда ему добавили в еду этого вещества, и вскоре после этого он умер от рака. Это не та вещь, с который вы захотите пошутить, свечение вызывается воздухом вокруг вещества, на который воздействует радиация, и, в самом деле, объекты вокруг могут нагреваться. Когда мы говорим «радиация», мы думаем, например, о ядерном реакторе либо взрыве, где действительно происходит реакция деления. Это только выделение ионизированных частиц, а не вышедшее из-под контроля расщепление атомов.

Самое тяжёлое вещество
Если вы думали, что самое тяжёлое вещество на Земле - это алмазы, это была хорошая, но неточная догадка. Это технически созданный алмазный наностержень. Это фактически совокупность из алмазов нано-масштаба, с наименьшей степенью сжатия и самое тяжёлое вещество, известное человеку. На самом деле его не существует, но что было бы весьма кстати, так как это означает, что когда-нибудь мы могли бы покрыть наши машины этим материалом и просто избавиться от нее, когда произойдёт столкновение с поездом (нереальное событие). Это вещество изобрели в Германии в 2005 году и, возможно, его будут использовать в той же самой степени, как и промышленные алмазы, исключая то обстоятельство, что новое вещество более устойчивое к износу, чем обычные алмазы.

Самое магнитное вещество
Если бы индуктор являлся небольшим чёрным куском, то это было бы то самое вещество. Вещество, разработанное в 2010 году из железа и азота, обладает магнитными способностями, которые на 18% больше, чем предыдущий «рекордсмен», и является настолько мощным, что заставил учёных пересмотреть, как работает магнетизм. Человек, который открыл это вещество, дистанцировался со своими изучениями, чтобы никто из других учёных не смог бы воспроизвести его работу, так как сообщалось, что аналогичное соединение разрабатывалось в Японии в прошлом в 1996 г., но другие физики не смогли его вопроизвести, поэтому официально это вещество не приняли. Непонятно, должны ли японские физики пообещать сделать «Сепуку» при этих обстоятельствах. Если это вещество можно будет воспроизвести, это может означать новый век эффективной электроники и магнитных двигателей, возможно, усиленные по мощности на порядок.

Наиболее сильная сверхтекучесть
Сверхтекучесть является состоянием вещества (подобно твёрдому либо газообразному), которое имеет место при экстремально низких температурах, имеет высокую термопроводимость (каждая унция этого вещества должна иметь точно такую же температуру) и никакой вязкости. Гелий-2 является наиболее характерным представителем. Чашка «гелия-2» самопроизвольно поднимется и выльется из контейнера. «Гелий-2» также просочится через другие твёрдые материалы, так как полное отсутствие силы трения позволяет течь ему через другие невидимые отверстия, через которые не мог бы вытечь обычный гелий (или вода для данного случая). «Гелий-2» не приходит в нужное состояние при числе 1, как будто у него есть способность действовать по своему усмотрению, хотя это также наиболее эффективный термопроводник на Земле, в несколько сотен раз лучше меди. Теплота перемещается настолько быстро через «гелий-2», что она скорее передвигается волнами, подобно звуку (известному на самом деле как «второй звук»), чем рассеивается, при этом она просто перемещается от одной молекулы к другой. Между прочим, силы, управляющие возможностью «гелия-2» ползать по стене, названы «третьим звуком». У вас вряд ли будет что-либо более экстремальное, чем вещество, которое потребовало определение 2 новых типов звука.

Драгоценные металлы на протяжении веков пленили умы людей, которые готовы выложить огромные суммы за изделия из них,но металл, о котором идёт речь, не используют в ювелирном производстве. Осмий - это самое тяжёлое вещество на Земле, которое относится к редкоземельным драгоценным металлам. Благодаря высокой плотности, это вещество имеет большой вес. Является ли осмий самым тяжёлым веществом (среди известных) не только на планете Земля, но и в космосе?

Это вещество - блестящий металл серо-голубого цвета. Несмотря на то, что он является представителем рода благородных металлов, изготовить из него ювелирные украшения не предоставляется возможным, так как он очень твёрдый и при том хрупкий. Из-за этих качеств осмий тяжело поддается механической обработке, к этому ещё нужно добавить его солидный вес. Если взвесить кубик, сделанный из осмия (длина стороны 8 см) и сравнить его с весом 10-литрового ведра, наполненного водой, то первый окажется тяжелее второго на 1,5 кг.

Самое тяжёлое вещество на Земле было открыто в начале 18 века, благодаря проведению химических опытов с платиновой рудой путём растворения последней в царской водке (смесь азотной и соляной кислот). Поскольку осмий не растворяется в кислотах и щелочах, плавится при температуре чуть выше 3000°С, кипит - при 5012°С, не изменяет своей структуры при давлении,равном 770 ГПа, то его с уверенностью можно считать самым сильным веществом на Земле.

В чистом виде месторождений осмия в природе не существует, обычно он встречается в соединениях с другими химическими веществами. Его содержание в земной коре мизерно, а добыча - трудоемкая. Эти факторы сказывают огромное влияние на стоимости осмия, его цена поражает воображение, ведь он намного дороже золота.

Из-за своей дороговизны это вещество не используется широко в промышленных целях, а только в тех случаях, когда его применение обусловлено максимальной пользой. Благодаря комбинации осмия с другими металлами повышается износостойкость последних, их долговечность и сопротивляемость к механическим воздействиям (трению и коррозии металлов). Такие сплавы используют в ракетостроении, военной и авиа промышленности. Сплав осмия и платины используют в медицине для изготовления хирургических инструментов и имплантов. Его использование оправдано в производстве высокочувствительных приборов, часовых механизмов и компасов.

Интересен тот факт, что учёные находят осмий наряду с другими драгоценными металлами в химическом составе железных метеоритов, упавших на землю. Означает ли это, что данный элемент является самым тяжёлым веществом на Земле и в космосе?

Утверждать это трудно. Дело в том, что условия космического пространства очень сильно отличаются от земных, сила гравитации между объектами очень велика, что в свою очередь приводит к значительному увеличению плотности некоторых космических объектов. Один из примеров - звезды, состоящие из нейтронов. По земным меркам - это огромный вес в одном кубическом миллиметре. И это только крупицы познания, которыми обладает человечество.

Самым дорогим и тяжёлым веществом на земле является осмий-187, на мировом рынке его продаёт только Казахстан, но этому изотопу ещё не найдено применение в промышленности.

Добыча осмия - очень трудоемкий процесс, и до получения его в потребительском виде проходит не менее девяти месяцев. В связи с этим, годовая добыча осмия в мире составляет всего около 600 кг (это очень мало по сравнению с добычей золота, которое исчисляется в тысячах тонн ежегодно).

Название самого сильного вещества "осмий" переводится, как "запах", но сам металл ни чем не пахнет, однако запах появляется в процессе окисления осмия, и он достаточно неприятный.

Итак, по тяжести и плотности на Земле нет равных осмию, так же этот металл описывается, как самый редкий, самый дорогостоящий, самый стойкий, самый блестящий, а еще специалисты утверждают, что оксид осмия обладает очень сильной токсичностью.

Осмий на сегодня определён как самое тяжёлое вещество на планете. Всего один кубический сантиметр этого вещества весит 22.6 грамма. Он был открыт в 1804 году английским химиком Смитсоном Теннантом, при растворении золота в После в пробирке остался осадок. Это произошло из-за особенности осмия, он нерастворим в щелочах и кислотах.

Самый тяжёлый элемент на планете

Представляет собой голубовато-белый металлический порошок. В природе встречается в виде семи изотопов, шесть из них стабильны и один неустойчив. По плотности немного превосходит иридий, который имеет плотность 22,4 грамма на кубический сантиметр. Из обнаруженных на сегодня материалов, самое тяжёлое вещество в мире - это осмий.

Он относится к группе таких как лантан, иттрий, скандий и других лантаноидов.

Дороже золота и алмазов

Добывается его очень мало, порядка десяти тысяч килограмм в год. Даже в наиболее большом источнике осмия, Джезказганском месторождении, содержится порядка трёх десятимиллионных долей. Биржевая стоимость редкого металла в мире достигает порядка 200 тысяч долларов за один грамм. При этом максимальная чистота элемента в процессе очистки около семидесяти процентов.

Хотя в российских лабораториях удалось получить чистоту 90,4 процента, но количество металла не превышало нескольких миллиграмм.

Плотность материи за пределами планеты Земля

Осмий, бесспорно, является лидером самых тяжёлых элементов нашей планеты. Но если мы обратим свой взор в космос, то нашему вниманию откроется множество веществ более тяжёлых, чем наш «король» тяжёлых элементов.

Дело в том, что во Вселенной существуют условия несколько другие, чем на Земле. Гравитация ряда настолько велика, что вещество неимоверно уплотняется.

Если рассмотреть структуру атома, то обнаружится, что расстояния в межатомном мире чем-то напоминают видимый нами космос. Где планеты, звезды и прочие находятся на достаточно большой дистанции. Остальное же занимает пустота. Именно такую структуру имеют атомы, и при сильной гравитации эта дистанция достаточно сильно уменьшается. Вплоть до «вдавливания» одних элементарных частиц в другие.

Нейтронные звезды - сверхплотные объекты космоса

В поисках за пределами нашей Земли мы сможем обнаружить самое тяжёлое вещество в космосе на нейтронных звёздах.

Это достаточно уникальные космические обитатели, один из возможных типов эволюции звёзд. Диаметр таких объектов составляет от 10 до 200 километров, при массе равной нашему Солнцу или в 2-3 раза больше.

Это космическое тело в основном состоит из нейтронной сердцевины, которая состоит из текучих нейтронов. Хотя по некоторым предположениям учёных она должна находиться в твёрдом состоянии, достоверной информации на сегодня не существует. Однако известно, что именно нейтронные звезды, достигая своего передела сжатия, впоследствии превращаются в с колоссальным выбросом энергии, порядка 10 43 -10 45 джоулей.

Плотность такой звезды сравнима, к примеру, с весом горы Эверест, помещённой в спичечный коробок. Это сотни миллиардов тонн в одном кубическом миллиметре. К примеру, чтобы стало более понятно, насколько велика плотность вещества, возьмём нашу планету с её массой 5,9×1024 кг и «превратим» в нейтронную звезду.

В результате, чтобы сравнялась с плотностью нейтронной звезды, её нужно уменьшить до размеров обычного яблока, диаметром 7-10 сантиметров. Плотность уникальных звёздных объектов увеличивается с перемещением к центру.

Слои и плотность вещества

Наружный слой звезды представлен собой в виде магнитосферы. Непосредственно под ней плотность вещества уже достигает порядка одной тонны на сантиметр кубический. Учитывая наши знания о Земле, на данный момент, это самое тяжёлое вещество из обнаруженных элементов. Но не спешите с выводами.

Продолжим наши исследования уникальных звёзд. Их называют также пульсарами, из-за высокой скорости вращения вокруг своей оси. Этот показатель у различных объектов колеблется от нескольких десятков до сотен оборотов в секунду.

Проследуем далее в изучении сверхплотных космических тел. Затем следует слой, который имеет характеристики металла, но, скорее всего, он похож по поведению и структуре. Кристаллы намного меньше, чем мы видим в кристаллической решётке Земных веществ. Чтобы выстроить линию из кристаллов в 1 сантиметр, понадобится выложить более 10 миллиардов элементов. Плотность в этом слое в один миллион раз выше, чем в наружном. Это не самое тяжёлое вещество звезды. Далее следует слой, богатый нейтронами, плотность которого в тысячу раз превышает предыдущий.

Ядро нейтронной звезды и его плотность

Ниже находится ядро, именно здесь плотность достигает своего максимума - в два раза выше, чем вышележащий слой. Вещество ядра небесного тела состоит из всех известных физике элементарных частиц. На этом мы достигли конца путешествия к ядру звезды в поисках самого тяжёлого вещества в космосе.

Миссия в поисках уникальных по плотности веществ во Вселенной, казалось бы, завершена. Но космос полон загадок и неоткрытых явлений, звёзд, фактов и закономерностей.

Чёрные дыры во Вселенной

Следует обратить внимание, на то, что сегодня уже открыто. Это чёрные дыры. Возможно, именно эти загадочные объекты могут быть претендентами на то, что самое тяжёлое вещество во Вселенной - их составляющая. Обратите внимание, что гравитация чёрных дыр настолько велика, что свет не может её покинуть.

По предположениям учёных, вещество, затянутое в область пространства времени, уплотняется настолько, что пространства между элементарными частицами не остаётся.

К сожалению, за горизонтом событий (так называется граница, где свет и любой объект, под действием сил гравитации, не может покинуть чёрную дыру) следуют наши догадки и косвенные предположения, основанные на выбросах потоков частиц.

Ряд учёных предполагают, что за горизонтом событий смешиваются пространство и время. Существует мнение, что они могут являться «проходом» в другую Вселенную. Возможно, это соответствует истине, хотя вполне возможно, что за этими пределами открывается другое пространство с совершенно новыми законами. Область, где время поменяется «местом» с пространством. Местонахождение будущего и прошлого определяется всего лишь выбором следования. Подобно нашему выбору идти направо или налево.

Потенциально допустимо, что во Вселенной существуют цивилизации, которые освоили путешествия во времени через чёрные дыры. Возможно, в будущем люди с планеты Земля откроют тайну путешествий сквозь время.

Среди диковинок, скрытых в глубинах вселенной, вероятно, навсегда сохранит одно из значительных мест небольшая звёздочка близ Сириуса. Эта звезда состоит из вещества, в 60 000 раз более тяжёлого, нежели вода! Когда мы берём в руки стакан ртути, нас удивляет его грузность: он весит около 3 кг. Но что сказали бы мы о стакане вещества, весящем 12 т и требующем для перевозки железнодорожной платформы? Это кажется абсурдом, а между тем таково одно из открытий новейшей астрономии.

Открытие это имеет длинную и в высшей степени поучительную историю. Уже давно было замечено, что блистательный Сириус совершает своё собственное движение среди звёзд не по прямой линии, как большинство других звёзд, а по странному извилистому пути. Чтобы объяснить эти особенности его движения, известный астроном Бессель предположил, что Сириуса сопровождает спутник, своим притяжением «возмущающий» его движение. Это было в 1844 г. — за два года до того, как был открыт Нептун «на кончике пера». А в 1862 г., уже после смерти Бесселя, догадка его получила полное подтверждение, так как заподозренный спутник Сириуса был усмотрен в телескоп.

Спутник Сириуса — так называемый «Сириус В» — обращается около главной звезды в 49 лет на расстоянии, в 20 раз большем, чем Земля вокруг Солнца (т. е. примерно на расстоянии Урана). Это — слабая звёздочка восьмой-девятой величины, но масса её весьма внушительна, почти 0,8 массы нашего Солнца. На расстоянии Сириуса наше Солнце должно было бы светить звездой 1,8-й величины; поэтому если бы спутник Сириуса вмел поверхность, уменьшенную по сравнению с солнечной в соответствии с отношением масс этих светил, то при той же температуре он должен был бы сиять, как звезда примерно второй величины, а не восьмой-девятой. Столь слабую яркость астрономы первоначально объясняли низкой температурой на поверхности этой звезды; её рассматривали как остывающее солнце, покрывающееся уже твёрдой корой.

Но такое допущение оказалось ошибочным. Удалось установить, что скромный спутник Сириуса — вовсе не угасающая звезда, а напротив, принадлежит к звёздам с высокой поверхностной температурой, гораздо более высокой, чем у нашего Солнца. Это совершенно меняет дело. Слабую яркость приходится, следовательно, приписать только малой величине поверхности этой звезды. Вычислено, что она посылает в 360 раз меньше света, чем Солнце; значит, поверхность её должна быть по крайней мере в 360 раз меньше солнечной, а радиус в j/360, т. е. в 19 раз, меньше солнечного. Отсюда заключаем, что объём спутника Сириуса должен составлять менее чем 6800-ю долю объёма Солнца, между тем как масса его составляет почти 0,8 массы дневного светила. Уже это одно говорит о большой уплотнённости вещества этой звезды. Более точный расчёт даёт для диаметра планеты всего 40 000 км, а следовательно, для плотности — то чудовищное число, которое мы привели в начале раздела: в 60 000 раз больше плотности воды.

«Навострите уши, физики: замышляется вторжение в вашу область», — приходят на память слова Кеплера, сказанные им, правда, по другому поводу. Действительно, ничего подобного не мог представить себе до сих пор ни один физик. В обычных условиях столь значительное уплотнение совершенно немыслимо, так как промежутки между нормальными атомами в твёрдых телах слишком малы, чтобы допустимо было сколько-нибудь заметное сжатие их вещества. Иначе обстоит дело в случае «изувеченных» атомов, утративших те электроны, которые кружились вокруг ядер. Потеря электронов уменьшает поперечник атома в несколько тысяч раз, почти не уменьшая его веса; обнажённое ядро меньше нормального атома примерно во столько раз, во сколько муха меньше крупного здания. Сдвигаемые чудовищным давлением, господствующим в недрах звёздного шара, эти уменьшенные атомы-ядра могут сблизиться в тысячи раз теснее, чем нормальные атомы, и создать вещество той неслыханной плотности, какая обнаружена на спутнике Сириуса.

После сказанного не будет казаться невероятным открытие звезды, средняя плотность вещества которой ещё в 500 раз больше, чем у вещества упомянутой ранее звезды Сириус В. Мы говорим о небольшой звёздочке 13-й величины в созвездии Кассиопеи, открытой в конце 1935 г. Будучи по объёму не больше Марса и в восемь раз меньше земного шара, звезда эта обладает массой, почти втрое превышающей массу нашего Солнца (точнее, в 2,8 раза). В обычных единицах средняя плотность её вещества выражается числом 36 000 000 г/см3. Это означает, что 1 см3 такого вещества весил бы на Земле 36 т. Вещество это, следовательно, плотнее золота почти в 2 миллиона раз.

Немного лет назад учёные, конечно, считали бы немыслимым существование вещества в миллионы раз плотнее платины. Бездны мироздания скрывают, вероятно, ещё немало подобных диковинок природы.

Человек всегда стремился отыскать материалы, которые не оставляют никаких шансов своим конкурентам. Издревле учёные искали самые твердые материалы в мире , самые лёгкие и самые тяжелые. Жажда открытий привела к открытию идеального газа и идеально чёрного тела. Представляем вам самые удивительные вещества в мире.

1. Самое черное вещество

Самое чёрное вещество в мире называется Vantablack и состоит из совокупности углеродных нанотрубок (см. углерод и его аллотропные модификации). Проще говоря, материал состоит из бесчисленного множества «волосков», попав в которые, свет отскакивает от одной трубки к другой. Таким образом поглощается около 99,965% светового потока и лишь ничтожная часть отражается обратно наружу.
Открытие Vantablack открывает широкие перспективы применения этого материала в астрономии, электронике и оптике.

2. Самое горючее вещество

Трифторид хлора является самым горючим веществом из когда-либо известных человечеству. Является сильнейшим окислителем и реагирует практически со всеми химическими элементами. Трифторид хлора способен прожечь бетон и легко воспламеняет стекло! Применение трифторида хлора практически невозможно из-за его феноменальной воспламеняемости и невозможности обеспечить безопасность использования.

3. Самое ядовитое вещество

Самый сильный яд — это ботулотоксин. Мы знаем его под названием ботокс, именно так он называется в косметологии, где нашел свое основное применение. Ботулотоксин — это химическое вещество, которое выделяют бактерии Clostridium botulinum. Помимо того, что ботулотоксин — самое ядовитое вещество, так он ещё и обладает самой большой молекулярной массой среди белков. О феноменальной ядовитости вещества говорит тот факт, что достаточно всего 0,00002 мг мин/л ботулотоксина, чтобы на полдня сделать зону поражения смертельно опасной для человека.

4. Самое горячее вещество

Это, так называемый, кварк-глюонная плазма. Вещество было создано с помощью столкновением атомов золота при почти световой скорости. Кварк-глюонная плазма имеет температуру 4 триллиона градусов Цельсия. Для сравнения, этот показатель выше температуры Солнца в 250 000 раз! К сожалению, время жизни вещества ограничено триллионной одной триллионной секунды.

5. Самая едкая кислота

В этой номинации чемпионом становится фторидно-сурьмяная кислота H. Фторидно-сурьмяная кислота в 2×10 16 (двести квинтиллионов) раз более едкая, чем серная кислота. Это очень активное вещество, которое может взорваться при добавлении небольшого количества воды. Испарения этой кислоты смертельно ядовиты.

6. Самое взрывоопасное вещество

Самое взрывоопасное вещество — гептанитрокубан. Он очень дорогой и применяется лишь для научных исследований. А вот чуть менее взрывоопасный октоген успешно применяется в военном деле и в геологии при бурении скважин.

7. Самое радиоактивное вещество

«Полоний-210» — изотоп полония, который не существует в природе, а изготавливается человеком. Используется для создания миниатюрных, но в тоже время, очень мощных источников энергии. Имеет очень короткий период полураспада и поэтому способен вызывать тяжелейшую лучевую болезнь.

8. Самое тяжёлое вещество

Это, конечно же, фуллерит. Его твердость почти в 2 раза выше, чем у натуральных алмазов. Подробнее о фуллерите можно прочитать в нашей статье Самые твердые материалы в мире .

9. Самый сильный магнит

Самый сильный магнит в мире состоит из железа и азота . В настоящее время, широкой общественности недоступны детали об этом веществе, однако уже сейчас известно, что новый супер-магнит на 18% мощнее самых сильных магнитов применяющихся сейчас — неодимовых. Неодимовые магниты изготавливаются из неодима, железа и бора.

10. Самое текучее вещество

Сверхтекучий Гелий II почти не имеет вязкости при температурах близких к абсолютному нулю. Этим свойством обусловлено его уникальное свойство просачиваться и выливаться из сосуда, изготовленного из любого твёрдого материала. Гелий II имеет перспективы использования в качестве идеального термопроводника, в котором не рассеивается тепло.



Читайте также: