Действието за намиране на стойността на логаритъм се нарича. Логаритмични изрази. примери! Всяко число \(a\) може да бъде представено като логаритъм с основа \(b\): \(a=\log_(b)(b(a))\)

В съотношение

може да се постави задачата да се намери някое от трите числа от другите две дадени. Ако са дадени a и след това N, те се намират чрез степенуване. Ако N и след това a са дадени чрез вземане на корен от степен x (или повдигане на степен). Сега разгледайте случая, когато при дадени a и N трябва да намерим x.

Нека числото N е положително: числото a е положително и не е равно на единица: .

Определение. Логаритъмът на числото N при основа a е степента, до която a трябва да се повдигне, за да се получи числото N; логаритъм се обозначава с

По този начин в равенство (26.1) показателят се намира като логаритъм от N при основа а. Публикации

имат същото значение. Равенството (26.1) понякога се нарича основната идентичност на теорията на логаритмите; в действителност той изразява дефиницията на понятието логаритъм. от това определениеОсновата на логаритъма a винаги е положителна и различна от единица; логаритмичното число N е положително. Отрицателните числа и нулата нямат логаритми. Може да се докаже, че всяко число с дадена основа има точно определен логаритъм. Следователно равенството включва . Обърнете внимание, че условието е съществено тук; в противен случай заключението не би било оправдано, тъй като равенството е вярно за всякакви стойности на x и y.

Пример 1. Намерете

Решение. За да получите число, трябва да повдигнете основата 2 на степен Следователно.

Можете да правите бележки при решаването на такива примери в следната форма:

Пример 2. Намерете .

Решение. Имаме

В примери 1 и 2 лесно намерихме желания логаритъм, като представихме логаритмичното число като степен на основата с рационален показател. IN общ случай, например за и т.н., това не може да се направи, тъй като логаритъма има ирационална стойност. Нека обърнем внимание на един въпрос, свързан с това твърдение. В параграф 12 дадохме концепцията за възможността за определяне на всеки реална степендадено положително число. Това беше необходимо за въвеждането на логаритми, които, най-общо казано, могат да бъдат ирационални числа.

Нека разгледаме някои свойства на логаритмите.

Свойство 1. Ако числото и основата са равни, то логаритъма равно на едно, и, обратно, ако логаритъма е равен на едно, тогава числото и основата са равни.

Доказателство. Нека По дефиницията на логаритъм имаме и откъде

Обратно, нека Тогава по дефиниция

Свойство 2. Логаритъмът от единица към всяка основа е равен на нула.

Доказателство. По дефиниция на логаритъм (нулевата степен на всяка положителна основа е равна на единица, виж (10.1)). Оттук

Q.E.D.

Обратното твърдение също е вярно: ако , тогава N = 1. Наистина имаме .

Преди да формулираме следващото свойство на логаритмите, нека се съгласим да кажем, че две числа a и b лежат от една и съща страна на третото число c, ако и двете са по-големи от c или по-малки от c. Ако едно от тези числа е по-голямо от c, а другото е по-малко от c, тогава ще кажем, че те лежат на различни страниот селото

Свойство 3. Ако числото и основата лежат от една и съща страна на единица, тогава логаритъма е положителен; Ако числото и основата лежат на противоположните страни на едно, тогава логаритъма е отрицателен.

Доказателството за свойство 3 се основава на факта, че степента на a е по-голяма от едно, ако основата е по-голяма от едно и показателят е положителен или основата е по-малък от едно и показателят е отрицателен. Степента е по-малка от единица, ако основата е по-голяма от единица и степента е отрицателна или основата е по-малка от единица и степента е положителна.

Има четири случая за разглеждане:

Ще се ограничим до анализа на първия от тях, останалите читателят ще разгледа сам.

Нека тогава в равенството степента не може да бъде нито отрицателна, нито равна на нула, следователно е положителна, т.е. както се изисква да се докаже.

Пример 3. Открийте кои от логаритмите по-долу са положителни и кои са отрицателни:

Решение, а) тъй като числото 15 и основата 12 са разположени от една и съща страна на едно;

б) тъй като 1000 и 2 са разположени от едната страна на единицата; в този случай не е важно основата да е по-голяма от логаритмичното число;

в) тъй като 3.1 и 0.8 лежат на противоположните страни на единица;

G) ; защо

г) ; защо

Следните свойства 4-6 често се наричат ​​правила за логаритмиране: те позволяват, като се знаят логаритмите на някои числа, да се намерят логаритмите на техния продукт, коефициент и степен на всяко от тях.

Свойство 4 (правило за произведение логаритъм). Логаритъм от произведението на няколко положителни числа спрямо дадена основа равно на суматалогаритми на тези числа при една и съща основа.

Доказателство. Нека дадените числа са положителни.

За логаритъма на тяхното произведение записваме равенството (26.1), което определя логаритъма:

От тук ще намерим

Сравнявайки показателите на първия и последния израз, получаваме необходимото равенство:

Имайте предвид, че условието е съществено; логаритъм от произведението на две отрицателни числаима смисъл, но в този случай получаваме

Като цяло, ако продуктът на няколко фактора е положителен, тогава неговият логаритъм е равен на сумата от логаритмите на абсолютните стойности на тези фактори.

Свойство 5 (правило за логаритмиране на частни). Логаритъмът на частно от положителни числа е равен на разликата между логаритмите на делителя и делителя, взети към една и съща основа. Доказателство. Постоянно намираме

Q.E.D.

Свойство 6 (правило за степенен логаритъм). Логаритъмът на степента на всяко положително число е равен на логаритъма на това число, умножен по степента.

Доказателство. Нека напишем отново основната идентичност (26.1) за числото:

Q.E.D.

Последица. Логаритъмът на корен от положително число е равен на логаритъма на радикала, разделен на експонентата на корена:

Валидността на това следствие може да бъде доказана, като си представите как и използвате свойство 6.

Пример 4. Вземете логаритъм при основа a:

а) (приема се, че всички стойности b, c, d, e са положителни);

б) (приема се, че ).

Решение, а) Удобно е да отидете този изразна дробни степени:

Въз основа на равенства (26.5)-(26.7), сега можем да запишем:

Забелязваме, че върху логаритмите на числата се извършват по-прости операции, отколкото върху самите числа: при умножаване на числа техните логаритми се добавят, при деление се изваждат и т.н.

Ето защо логаритмите се използват в изчислителната практика (вижте параграф 29).

Обратното действие на логаритъма се нарича потенциране, а именно: потенцирането е действието, чрез което самото число се намира от даден логаритъм от число. По същество потенцирането не е никакво специално действие: то се свежда до повишаване на основа на степен (равна на логаритъм от число). Терминът "потенциране" може да се счита за синоним на термина "потенциране".

При потенциране трябва да се използват правилата, обратни на правилата за логаритмиране: заменете сбора от логаритми с логаритъм от произведението, разликата от логаритми с логаритъм от частното и т.н. По-специално, ако има фактор отпред на знака на логаритъма, тогава по време на потенцирането трябва да се прехвърли в експонентните степени под знака на логаритъма.

Пример 5. Намерете N, ако е известно, че

Решение. Във връзка с току-що изложеното правило за потенциране, ще прехвърлим факторите 2/3 и 1/3, стоящи пред знаците на логаритмите от дясната страна на това равенство, в експоненти под знаците на тези логаритми; получаваме

Сега заместваме разликата на логаритмите с логаритъма на частното:

за да получим последната дроб в тази верига от равенства, ние освободихме предишната дроб от ирационалност в знаменателя (клауза 25).

Свойство 7. Ако основата е по-голяма от единица, тогава по-голям бройима по-голям логаритъм (а по-малкото число има по-малък), ако основата е по-малка от единица, тогава по-голямото число има по-малък логаритъм (а по-малкото число има по-голям).

Това свойство е формулирано и като правило за вземане на логаритми на неравенства, двете страни на които са положителни:

Когато вземаме логаритъм на неравенства към основата, по-голямо от едно, знакът на неравенството се запазва и когато вземете логаритъм при основа, по-малка от едно, знакът на неравенството се променя на противоположния (вижте също параграф 80).

Доказателството се основава на свойства 5 и 3. Разгледайте случая, когато Ако , тогава и, като логаритмираме, получаваме

(a и N/M лежат от една и съща страна на единица). Оттук

Следва случай а, читателят ще го разбере сам.

Логаритъм с основа ае функция на y (x) = log a x, обратна на експоненциалната функция с основа a: x (y) = a y.

Десетичен логаритъме логаритъмът към основата на число 10 : log x ≡ log 10 x.

Натурален логаритъм е логаритъм при основата на e: ln x ≡ log e x.

2,718281828459045... ;
.

Графиката на логаритъма се получава от графиката на експоненциалната функция огледален образспрямо правата линия y = x. Отляво има графики на функцията y(x) = log a x за четири стойностилогаритмични основи 2 : a = 8 : a = 1/2 , a = 1/8 и а = 1 . 0 < a < 1 Графиката показва, че когато a >

логаритъма нараства монотонно. С увеличаването на x растежът се забавя значително. При

логаритъма намалява монотонно.

Свойства на логаритъма

Област, набор от стойности, нарастване, намаляване 0 < x < + ∞ 0 < x < + ∞
Логаритъмът е монотонна функция, така че няма екстремуми. Основните свойства на логаритъма са представени в таблицата. - ∞ < y < + ∞ - ∞ < y < + ∞
Област на дефиниция Диапазон от стойности Монотонен
монотонно нараства 0 монотонно намалява 1 монотонно намалява 1
Нули, y = 0 x = x =
+ ∞ - ∞
- ∞ + ∞

Пресечни точки с ординатната ос, x =


не Частни ценностиИзвиква се логаритъм при основа 10

десетичен логаритъм и се обозначава по следния начин:Логаритъм към основа д:

наречен

натурален логаритъм

Основни формули за логаритми

Свойства на логаритъма, произтичащи от дефиницията на обратната функция:

Основното свойство на логаритмите и последствията от негоФормула за заместване на основата

Логаритъме математическа операция, обратна на логаритъма. По време на потенцирането дадена основа се повишава до степента на изразяване, върху която се извършва потенцирането. В този случай сумите на членовете се трансформират в произведения на фактори.

Доказателство на основни формули за логаритми

Формулите, свързани с логаритмите, следват от формули за експоненциални функции и от дефиницията на обратна функция.

Разгледайте свойството на експоненциалната функция
.
Тогава
.
Нека приложим свойството на експоненциалната функция
:
.

Нека докажем формулата за заместване на основата.
;
.
Ако приемем c = b, имаме:

Обратна функция

Обратното на логаритъма при основа а е експоненциална функцияс показател а.

Ако , тогава

Ако , тогава

Производна на логаритъм

Производна на логаритъма на модул x:
.
Производна от n-ти ред:
.
Извеждане на формули >>>

За да се намери производната на логаритъм, тя трябва да бъде намалена до основата и се обозначава по следния начин:.
;
.

Интеграл

Интегралът на логаритъма се изчислява чрез интегриране по части: .
така че

Изрази с комплексни числа

Разгледайте функцията за комплексно число z:
.
Да изразим комплексно число zчрез модул rи аргумент φ :
.
Тогава, използвайки свойствата на логаритъма, имаме:
.
или

Въпреки това аргументът φ не е еднозначно дефиниран. Ако поставите
, където n е цяло число,
тогава ще бъде едно и също число за различни п.

Следователно логаритъмът, като функция на комплексна променлива, не е еднозначна функция.

Разширение на степенни редове

Когато се извършва разширяването:

Използвана литература:
И.Н. Бронщайн, К.А. Семендяев, Наръчник по математика за инженери и студенти, “Лан”, 2009 г.

Следва от определението му. И така, логаритъма на числото bвъз основа на Асе дефинира като степенна степен, до която трябва да се повдигне число аза да получите номера b(логаритъм съществува само за положителни числа).

От тази формулировка следва, че изчислението x=log a b, е еквивалентно на решаването на уравнението a x =b.например, log 2 8 = 3защото 8 = 2 3 . Формулировката на логаритъма дава възможност да се обоснове, че ако b=a c, след това логаритъма на числото bвъз основа на аравни с. Също така е ясно, че темата за логаритмите е тясно свързана с темата за степените на числото.

С логаритми, както с всички числа, можете да направите операции събиране, изважданеи трансформирайте по всякакъв възможен начин. Но поради факта, че логаритмите не са съвсем обикновени числа, тук се прилагат техните собствени специални правила, които се наричат основни свойства.

Събиране и изваждане на логаритми.

Нека вземем два логаритма с еднакви основи: лог a xи log a y. Тогава е възможно да се извършват операции събиране и изваждане:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

дневник a(х 1 . х 2 . х 3 ... x k) = лог a x 1 + лог a x 2 + лог a x 3 + ... + log a x k.

от теорема за коефициент на логаритъмМоже да се получи още едно свойство на логаритъма. Общоизвестно е, че лог а 1= 0, следователно

дневник а 1 /b= дневник а 1 - дневник а б= - дневник а б.

Това означава, че има равенство:

log a 1 / b = - log a b.

Логаритми на две реципрочни числапо същата причина ще се различават един от друг само по знак. Така че:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

основни свойства.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

идентични основания

Log6 4 + log6 9.

Сега нека усложним малко задачата.

Примери за решаване на логаритми

Ами ако основата или аргументът на логаритъм е степен? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x >

Задача. Намерете значението на израза:

Преход към нова основа

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

Задача. Намерете значението на израза:

Вижте също:


Основни свойства на логаритъма

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Показателят е 2,718281828…. За да запомните показателя, можете да изучите правилото: показателят е равен на 2,7 и два пъти годината на раждане на Лев Николаевич Толстой.

Основни свойства на логаритмите

Познавайки това правило, вие ще знаете и точна стойностизложители и датата на раждане на Лев Толстой.


Примери за логаритми

Логаритмични изрази

Пример 1.
А). x=10ac^2 (a>0,c>0).

Използвайки свойства 3.5, изчисляваме

2.

3.

4. Къде .



Пример 2. Намерете x if


Пример 3. Нека е дадена стойността на логаритмите

Изчислете log(x), ако




Основни свойства на логаритмите

Логаритмите, като всички числа, могат да се събират, изваждат и трансформират по всякакъв начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Определено трябва да знаете тези правила - без тях не може да се реши нито една сериозна логаритмична задача. Освен това има много малко от тях - можете да научите всичко за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с еднакви основи: logax и logay. След това те могат да се събират и изваждат и:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

И така, сумата от логаритми е равна на логаритъма от произведението, а разликата е равна на логаритъма от частното. Моля, обърнете внимание: ключовият момент тук е идентични основания. Ако причините са други, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичен израз, дори когато отделните му части не се вземат предвид (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

Тъй като логаритмите имат еднакви основи, ние използваме формулата за сумата:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Задача. Намерете стойността на израза: log2 48 − log2 3.

Базите са еднакви, използваме формулата за разликата:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Намерете стойността на израза: log3 135 − log3 5.

Отново основите са същите, така че имаме:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от „лоши“ логаритми, които не се изчисляват отделно. Но след трансформациите се получават напълно нормални числа. Много са изградени върху този факт тестове. Да, изрази, подобни на тестове, се предлагат напълно сериозно (понякога почти без промени) на Единния държавен изпит.

Извличане на показателя от логаритъма

Лесно се вижда, че последното правило следва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x > 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно , т.е. Можете да въведете числата преди знака за логаритъм в самия логаритъм. Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log7 496.

Нека се отървем от степента в аргумента, използвайки първата формула:
log7 496 = 6 log7 49 = 6 2 = 12

Задача. Намерете значението на израза:

Обърнете внимание, че знаменателят съдържа логаритъм, чиято основа и аргумент са точни степени: 16 = 24; 49 = 72. Имаме:

Мисля, че последният пример изисква известно пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя.

Логаритмични формули. Логаритми примерни решения.

Представихме основата и аргумента на логаритъма, който стои там под формата на степени и извадихме показателите - получихме "триетажна" дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят съдържат едно и също число: log2 7. Тъй като log2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката четворката може да се прехвърли в числителя, което и беше направено. Резултатът беше отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако причините са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова основа идват на помощ. Нека ги формулираме под формата на теорема:

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

По-специално, ако зададем c = x, получаваме:

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но в този случай целият израз се „обръща“, т.е. логаритъма се появява в знаменателя.

Тези формули рядко се срещат в обикновени числови изрази. Възможно е да се оцени колко са удобни само като се реши логаритмични уравненияи неравенства.

Има обаче проблеми, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека да разгледаме няколко от тях:

Задача. Намерете стойността на израза: log5 16 log2 25.

Обърнете внимание, че аргументите на двата логаритма съдържат точни степени. Нека извадим индикаторите: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Сега нека "обърнем" втория логаритъм:

Тъй като произведението не се променя при пренареждане на множителите, ние спокойно умножихме четири и две и след това се заехме с логаритми.

Задача. Намерете стойността на израза: log9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека запишем това и да се отървем от индикаторите:

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

Основно логаритмично тъждество

Често в процеса на решаване е необходимо да се представи число като логаритъм на дадена основа. В този случай ще ни помогнат следните формули:

В първия случай числото n става експонента в аргумента. Числото n може да бъде абсолютно всичко, защото е само логаритъм.

Втората формула всъщност е перифразирана дефиниция. Така се казва: .

Всъщност, какво се случва, ако числото b се повдигне на такава степен, че числото b на тази степен дава числото a? Точно така: резултатът е същото число a. Прочетете внимателно този параграф отново - много хора се забиват в него.

Подобно на формулите за преход към нова база, основната логаритмично тъждествопонякога това е единственото възможно решение.

Задача. Намерете значението на израза:

Имайте предвид, че log25 64 = log5 8 - просто взе квадрат от основата и аргумента на логаритъма. Като вземем предвид правилата за умножение на степени с една и съща основа, получаваме:

Ако някой не знае, това беше истинска задача от Единния държавен изпит :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които трудно могат да бъдат наречени свойства - по-скоро те са следствия от дефиницията на логаритъма. Те постоянно се появяват в проблеми и, изненадващо, създават проблеми дори за „напреднали“ ученици.

  1. logaa = 1 е. Запомнете веднъж завинаги: логаритъмът при всяка основа а на самата тази основа е равен на едно.
  2. log 1 = 0 е. Основата a може да бъде всякаква, но ако аргументът съдържа единица, логаритъма е равен на нула! Тъй като a0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.

Вижте също:

Логаритъмът от b при основа а означава израза. Да се ​​изчисли логаритъм означава да се намери степен x (), при която равенството е изпълнено

Основни свойства на логаритъма

Необходимо е да се знаят горните свойства, тъй като почти всички задачи и примери, свързани с логаритми, се решават на тяхна основа. Останалите екзотични свойства могат да бъдат извлечени чрез математически манипулации с тези формули

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Когато изчислявате формулата за сбора и разликата на логаритмите (3.4), срещате доста често. Останалите са малко сложни, но в редица задачи са незаменими за опростяване на сложни изрази и изчисляване на техните стойности.

Често срещани случаи на логаритми

Някои от най-често срещаните логаритми са тези, при които основата е равна на десет, експоненциална или две.
Логаритъмът по основа десет обикновено се нарича десетичен логаритъм и се означава просто с lg(x).

От записа става ясно, че основното не е написано в записа. например

Натурален логаритъм е логаритъм, чиято основа е показател (обозначен с ln(x)).

Показателят е 2,718281828…. За да запомните показателя, можете да изучите правилото: показателят е равен на 2,7 и два пъти годината на раждане на Лев Николаевич Толстой. Познавайки това правило, вие ще знаете както точната стойност на експонента, така и датата на раждане на Лев Толстой.

И друг важен логаритъм при основа две е означен с

Производната на логаритъма на функция е равна на единица, разделена на променливата

Интегралният или противопроизводният логаритъм се определя от връзката

Даденият материал е достатъчен за решаване на широк клас задачи, свързани с логаритми и логаритми. За да ви помогна да разберете материала, ще дам само няколко общи примера от училищна програмаи университети.

Примери за логаритми

Логаритмични изрази

Пример 1.
А). x=10ac^2 (a>0,c>0).

Използвайки свойства 3.5, изчисляваме

2.
По свойството разлика на логаритмите имаме

3.
Използвайки свойства 3.5 намираме

4. Къде .

Привидно сложен израз се опростява, за да се формира с помощта на редица правила

Намиране на логаритмични стойности

Пример 2. Намерете x if

Решение. За изчисление прилагаме към последния термин 5 и 13 свойства

Записваме го и скърбим

Тъй като основите са равни, приравняваме изразите

Логаритми. Входно ниво.

Нека е дадена стойността на логаритмите

Изчислете log(x), ако

Решение: Нека вземем логаритъм на променливата, за да запишем логаритъма чрез сумата от нейните членове


Това е само началото на нашето запознаване с логаритмите и техните свойства. Практикувайте изчисления, обогатете практическите си умения - скоро ще имате нужда от знанията, които придобивате, за решаване на логаритмични уравнения. След като изучихме основните методи за решаване на такива уравнения, ние ще разширим знанията ви за още не по-малко важна тема- логаритмични неравенства...

Основни свойства на логаритмите

Логаритмите, като всички числа, могат да се събират, изваждат и трансформират по всякакъв начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Определено трябва да знаете тези правила - без тях не може да се реши нито една сериозна логаритмична задача. Освен това има много малко от тях - можете да научите всичко за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с еднакви основи: logax и logay. След това те могат да се събират и изваждат и:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

И така, сумата от логаритми е равна на логаритъма от произведението, а разликата е равна на логаритъма от частното. Моля, обърнете внимание: ключовият момент тук е идентични основания. Ако причините са други, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичен израз, дори когато отделните му части не се вземат предвид (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

Задача. Намерете стойността на израза: log6 4 + log6 9.

Тъй като логаритмите имат еднакви основи, ние използваме формулата за сумата:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Задача. Намерете стойността на израза: log2 48 − log2 3.

Базите са еднакви, използваме формулата за разликата:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Задача. Намерете стойността на израза: log3 135 − log3 5.

Отново основите са същите, така че имаме:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от „лоши“ логаритми, които не се изчисляват отделно. Но след трансформациите се получават напълно нормални числа. Много тестове се основават на този факт. Да, изрази, подобни на тестове, се предлагат напълно сериозно (понякога почти без промени) на Единния държавен изпит.

Извличане на показателя от логаритъма

Сега нека усложним малко задачата. Ами ако основата или аргументът на логаритъм е степен? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Лесно се вижда, че последното правило следва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: a > 0, a ≠ 1, x > 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно , т.е. Можете да въведете числата преди знака за логаритъм в самия логаритъм.

Как се решават логаритми

Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log7 496.

Нека се отървем от степента в аргумента, използвайки първата формула:
log7 496 = 6 log7 49 = 6 2 = 12

Задача. Намерете значението на израза:

Обърнете внимание, че знаменателят съдържа логаритъм, чиято основа и аргумент са точни степени: 16 = 24; 49 = 72. Имаме:

Мисля, че последният пример изисква известно пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя. Представихме основата и аргумента на логаритъма, който стои там под формата на степени и извадихме показателите - получихме "триетажна" дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят съдържат едно и също число: log2 7. Тъй като log2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката четворката може да се прехвърли в числителя, което и беше направено. Резултатът беше отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако причините са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова основа идват на помощ. Нека ги формулираме под формата на теорема:

Нека е даден логаритъм logax. Тогава за всяко число c, такова че c > 0 и c ≠ 1, равенството е вярно:

По-специално, ако зададем c = x, получаваме:

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но в този случай целият израз се „обръща“, т.е. логаритъма се появява в знаменателя.

Тези формули рядко се срещат в обикновени числови изрази. Възможно е да се оцени колко са удобни само при решаване на логаритмични уравнения и неравенства.

Има обаче проблеми, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека да разгледаме няколко от тях:

Задача. Намерете стойността на израза: log5 16 log2 25.

Обърнете внимание, че аргументите на двата логаритма съдържат точни степени. Нека извадим индикаторите: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Сега нека "обърнем" втория логаритъм:

Тъй като произведението не се променя при пренареждане на множителите, ние спокойно умножихме четири и две и след това се заехме с логаритми.

Задача. Намерете стойността на израза: log9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека запишем това и да се отървем от индикаторите:

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

Основно логаритмично тъждество

Често в процеса на решаване е необходимо да се представи число като логаритъм на дадена основа. В този случай ще ни помогнат следните формули:

В първия случай числото n става експонента в аргумента. Числото n може да бъде абсолютно всичко, защото е само логаритъм.

Втората формула всъщност е перифразирана дефиниция. Така се казва: .

Всъщност, какво се случва, ако числото b се повдигне на такава степен, че числото b на тази степен дава числото a? Точно така: резултатът е същото число a. Прочетете внимателно този параграф отново - много хора се забиват в него.

Подобно на формулите за преминаване към нова база, основното логаритмично тъждество понякога е единственото възможно решение.

Задача. Намерете значението на израза:

Имайте предвид, че log25 64 = log5 8 - просто взе квадрат от основата и аргумента на логаритъма. Като вземем предвид правилата за умножение на степени с една и съща основа, получаваме:

Ако някой не знае, това беше истинска задача от Единния държавен изпит :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които трудно могат да бъдат наречени свойства - по-скоро те са следствия от дефиницията на логаритъма. Те постоянно се появяват в проблеми и, изненадващо, създават проблеми дори за „напреднали“ ученици.

  1. logaa = 1 е. Запомнете веднъж завинаги: логаритъмът при всяка основа а на самата тази основа е равен на едно.
  2. log 1 = 0 е. Основата a може да бъде всякаква, но ако аргументът съдържа единица, логаритъма е равен на нула! Тъй като a0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.

Един от елементите на алгебрата на примитивното ниво е логаритъмът. Името идва от гръцки езикот думата „число“ или „степен“ и означава степента, на която трябва да се повдигне числото в основата, за да се намери крайното число.

Видове логаритми

  • log a b – логаритъм на числото b по основа a (a > 0, a ≠ 1, b > 0);
  • дневник b – десетичен логаритъм(логаритъм при основа 10, a = 10);
  • ln b – натурален логаритъм (логаритъм при основа e, a = e).

Как се решават логаритми?

Логаритъмът от b при основа a е показател, който изисква b да бъде повдигнато при основа a. Полученият резултат се произнася по следния начин: „логаритъм от b към основа a“. Решение логаритмични задачие, че трябва да определите дадена степен чрез числа, като използвате посочените числа. Има някои основни правила за определяне или решаване на логаритъма, както и за преобразуване на самата нотация. С тяхна помощ се решават логаритмични уравнения, намират се производни, решават се интеграли и се извършват много други операции. По принцип решението на самия логаритъм е неговата опростена нотация. По-долу са основните формули и свойства:

За всяко a ; а > 0; a ≠ 1 и за всяко x ; y > 0.

  • a log a b = b – основно логаритмично тъждество
  • log a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x, за k ≠ 0
  • log a x = log a c x c
  • log a x = log b x/ log b a – формула за преместване към нова база
  • log a x = 1/log x a


Как се решават логаритми - инструкции стъпка по стъпка за решаване

  • Първо, запишете необходимото уравнение.

Моля, обърнете внимание: ако основният логаритъм е 10, тогава записът се съкращава, което води до десетичен логаритъм. Ако си струва естествено число e, след това го записваме, редуцирайки го до натурален логаритъм. Това означава, че резултатът от всички логаритми е степента, на която се повишава основното число, за да се получи числото b.


Директно решението се крие в изчисляването на тази степен. Преди да решите израз с логаритъм, той трябва да бъде опростен според правилото, тоест с помощта на формули. Можете да намерите основните идентичности, като се върнете малко назад в статията.

Когато събирате и изваждате логаритми с две различни числа, но с еднакви основи, заменете с един логаритъм с произведението или деленето съответно на числата b и c. В този случай можете да приложите формулата за преместване в друга база (вижте по-горе).

Ако използвате изрази за опростяване на логаритъм, трябва да имате предвид някои ограничения. А това е: основата на логаритъма а е само положително число, но не е равно на единица. Числото b, подобно на a, трябва да е по-голямо от нула.

Има случаи, в които, като опростите израз, няма да можете да изчислите логаритъма числено. Случва се такъв израз да няма смисъл, защото много степени са ирационални числа. При това условие оставете степента на числото като логаритъм.





Прочетете също: