Кинетическая энергия вращения. Кинетическая энергия при вращательном движении. Момент инерции Полная энергия вращательного движения

Кинетическая энергия вращающегося тела равна сумме кинетических энергий всех частиц тела:

Масса какой-либо частицы, ее линейная (окружная) скорость, пропорциональная расстоянию данной частицы от оси вращения. Подставляя в это выражение и вынося за знак суммы общую для всех частиц угловую скорость о, находим:

Эту формулу для кинетической энергии вращающегося тела можно привести к виду, аналогичному выражению кинетической энергии поступательного движения, если ввести величину так называемого момента инерции тела. Моментом инерции материальной точки называют произведение массы точки на квадрат расстояния ее от оси вращения. Момент инерции тела есть сумма моментов инерции всех материальных точек тела:

Итак, кинетическая энергия вращающегося тела определяется такой формулой:

Формула (2) отличается от формулы, определяющей кинетическую энергию тела при поступательном движении, тем, что вместо массы тела здесь входит момент инерции I и вместо скорости групповая скорость

Большой кинетической энергией вращающегося маховика пользуются в технике, чтобы сохранить равномерность хода машины при внезапно меняющейся нагрузке. Вначале, чтобы привести маховик с большим моментом инерции во вращение, от машины требуется затрата значительной работы, но зато при внезапном включении большой нагрузки машина не останавливается и производит работу за счет запаса кинетической энергии маховика.

Особенно массивные маховые колеса применяют в прокатных станах, приводимых в действие электромотором. Вот описание одного из таких колес: «Колесо имеет в диаметре 3,5 м и весит При нормальной скорости 600 об/мин запас кинетической энергии колеса таков, что в момент проката колесо дает стану мощность в 20 000 л. с. Трение в подшипниках сведено до минимума сказкой под давлением, и во избежание вредного действия центробежных сил инерции колесо уравновешено так, что груз в помещенный на окружности колеса, выводит его из состояния покоя».

Приведем (без выполнения вычислений) значения моментов инерции некоторых тел (предполагается, что каждое из этих тел имеет одинаковую во всех своих участках плотность).

Момент инерции тонкого кольца относительно оси, проходящей через его центр и перпендикулярной к его плоскости (рис. 55):

Момент инерции круглого диска (или цилиндра) относительно оси, проходящей через его центр и перпендикулярной к его плоскости (полярный момент инерции диска; рис. 56):

Момент инерции тонкого круглого диска относительно оси, совпадающей с его диаметром (экваториальный момент инерции диска; рис. 57):

Момент инерции шара относительно оси, проходящей через центр шара:

Момент инерции тонкого сферического слоя радиуса относительно оси, проходящей через центр:

Момент инерции толстого сферического слоя (полого шара, имеющего радиус внешней поверхности и радиус полости ) относительно оси, проходящей через центр:

Вычисление моментов инерции тел производится при помощи интегрального исчисления. Чтобы дать представление о ходе подобных расчетов, найдем момент инерции стержня относительно перпендикулярной к нему оси (рис. 58). Пусть есть сечение стержня, плотность. Выделим элементарно малую часть стержня, имеющую длину и находящуюся на расстоянии х от оси вращения. Тогда ее масса Так как она находится на расстоянии х от оси вращения, то ее момент инерции Интегрируем в пределах от нуля до I:

Момент инерции прямоугольного параллелепипеда относительно оси симметрии (рис. 59)

Момент инерции кольцевого тора (рис. 60)

Рассмотрим, как связана энергия вращения катящегося (без скольжения) по плоскости тела с энергией поступательного движения этого тела,

Энергия поступательного движения катящегося тела равна , где масса тела и скорость поступательного движения. Пусть означает угловую скорость вращения катящегося тела и радиус тела. Легко сообразить, что скорость поступательного движения тела, катящегося без скольжения, равна окружной скорости тела в точках соприкосновения тела с плоскостью (за время когда тело совершает один оборот, центр тяжести тела перемещается на расстояние следовательно,

Таким образом,

Энергия вращения

следовательно,

Подставляя сюда указанные выше значения моментов инерции, находим, что:

а) энергия вращательного движения катящегося обруча равна энергии его поступательного движения;

б) энергия вращения катящегося однородного диска равна половине энергии поступательного движения;

в) энергия вращения катящегося однородного шара составляет энергии поступательного движения.

Зависимость момента инерции от положения оси вращения. Пусть стержень (рис. 61) с центром тяжести в точке С вращается с угловой скоростью (о вокруг оси О, перпендикулярной к плоскости чертежа. Положим, что в течение некоторого промежутка времени он переместился из положения А В в причем центр тяжести описал дугу Это перемещение стержня можно рассматривать так, как если бы стержень сначала поступательно (т. е. оставаясь себе параллельным) переместился в положение и затем повернулся вокруг С в положение Обозначим (расстояние центра тяжести от оси вращения) через а, а угол через При движении стержня из положения А В в положение перемещение каждой его частицы одинаково с перемещением центра тяжести, т. е. оно равно или Чтобы получить действительное движение стержня, мы можем предположить, что оба указанных движения совершаются одновременно. В соответствии с этим кинетическую энергию стержня, вращающегося с угловой скоростью вокруг оси, проходящей через О, можно разложить на две части.

Рассмотрим абсолютно твердое тело, вращающееся относительно неподвижной оси. Мысленно разобьем это тело на бесконечно малые кусочки с бесконечно малыми размерами и массами m v т., т 3 , ..., находящиеся на расстояниях R v R 0 , R 3 ,... от оси. Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его малых частей:

- момент инерции твердого тела относительно данной оси 00,. Из сопоставления формул кинетической энергии поступательного и вращательного движений очевидно, что момент инерции во вращательном движении является аналогом массы в поступательном движении. Формула (4.14) удобна для расчета момента инерции систем, состоящих из отдельных материальных точек. Для расчета момента инерции сплошных тел, воспользовавшись определением интеграла, можно преобразовать ее к виду

Несложно заметить, что момент инерции зависит от выбора оси и меняется при ее параллельном переносе и повороте. Найдем значения моментов инерции для некоторых однородных тел.

Из формулы (4.14) очевидно, что момент инерции материальной точки равен

где т - масса точки; R - расстояние до оси вращения.

Несложно вычислить момент инерции и для полого тонкостенного цилиндра (или частного случая цилиндра с малой высотой - тонкого кольца) радиуса R относительно оси симметрии. Расстояние до оси вращения всех точек для такого тела одинаково, равно радиусу и может быть вынесено из- под знака суммы (4.14):

Рис. 4.5

Сплошной цилиндр (или частный случай цилиндра с малой высотой - диск) радиуса R для расчета момента инерции относительно оси симметрии требует вычисления интеграла (4.15). Заранее можно понять, что масса в этом случае в среднем сосредоточена несколько ближе к оси, чем в случае полого цилиндра, и формула будет похожа на (4.17), но в ней появится коэффициент, меньший единицы. Найдем этот коэффициент. Пусть сплошной цилиндр имеет плотность р и высоту А. Разобьем его на полые цилиндры (тонкие цилиндрические поверхности) толщиной dr (рис. 4.5 показывает проекцию, перпендикулярную оси симметрии). Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину: dV = 2nrhdr, масса: dm = 2nphrdr, а момент инерции в соответствии с формулой (4.17): dj =

= r 2 dm = 2лр/?г Wr. Полный момент инерции сплошного цилиндра получается интегрированием (суммированием) моментов инерции полых цилиндров:

Аналогично ищется момент инерции тонкого стержня длины L и массы т, если ось вращения перпендикулярна стержню и проходит через его середину. Разобьем такой

С учетом того что масса сплошного цилиндра связана с плотностью формулой т = nR 2 hp, имеем окончательно момент инерции сплошного цилиндра:

Рис. 4.6

стержень в соответствии с рис. 4.6 на кусочки толщиной dl. Масса такого кусочка равна dm = mdl/L, а момент инерции в соответствии с формулой (4.6): dj = l 2 dm = l 2 mdl/L. Полный момент инерции тонкого стержня получается интегрированием (суммированием) моментов инерции кусочков:

Взятие элементарного интеграла дает момент инерции тонкого стержня длины L и массы т

Рис. 4.7

Несколько сложней берется интеграл при поиске момента инерции однородного шара радиуса R и массы /77 относительно оси симметрии. Пусть сплошной шар имеет плотность р. Разобьем его в соответствии с рис. 4.7 на полые тонкие цилиндры толщиной dr, ось симметрии которых совпадает с осью вращения шара. Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину:

где высота цилиндра h найдена с использованием теоремы Пифагора:

Тогда несложно найти массу полого цилиндра:

а также момент инерции в соответствии с формулой (4.15):

Полный момент инерции сплошного шара получается интегрированием (суммированием) моментов инерции полых цилиндров:


С учетом того что масса сплошного шара связана с плотностью форму- 4 .

лой т = -npR A y имеем окончательно момент инерции относительно оси

симметрии однородного шара радиуса R массы т:

1. Рассмотрим вращение тела вокруг неподвижной оси Z. Разобьем все тело на множество элементарных масс m i . Линейная скорость элементарной массы m i – v i = w·R i , где R i – расстояние массы m i от оси вращения. Следовательно, кинетическая энергия i -ой элементарной массы будет равна . Полная кинетическая энергия тела: , здесь – момент инерции тела относительно оси вращения.

Таким образом, кинетическая энергия тела, вращающегося относительно неподвижной оси равна:

2. Пусть теперь тело вращается относительно некоторой оси, а сама ось перемещается поступательно, оставаясь параллельной самой себе.

НАПРИМЕР: Катящийся без скольжения шар совершает вращательное движение, а центр тяжести его, через который проходит ось вращения (точка «О») перемещается поступательно (рис.4.17).

Скорость i -той элементарной массы тела равна , где – скорость некоторой точки «О» тела; – радиус-вектор, определяющий положение элементарной массы по отношению к точке «О».

Кинетическая энергия элементарной массы равна:

ЗАМЕЧАНИЕ: векторное произведение совпадает по направлению с вектором и имеет модуль, равный (рис.4.18).

Учтя это замечание, можно записать, что , где – расстояние массы от оси вращения. Во втором слагаемом сделаем циклическую перестановку сомножителей, после этого получим

Чтобы получить полную кинетическую энергию тела, просуммируем это выражение по всем элементарным массам, вынося постоянные множители за знак суммы. Получим

Сумма элементарных масс есть масса тела «m». Выражение равно произведению массы тела на радиус-вектор центра инерции тела (по определению центра инерции). Наконец, – момент инерции тела относительно оси, проходящей через точку «О». Поэтому можно записать

.

Если в качестве точки «O» взять центр инерции тела «С», радиус-вектор будет равен нулю и второе слагаемое исчезнет. Тогда, обозначив через – скорость центра инерции, а через – момент инерции тела относительно оси, проходящей через точку «С», получим:

(4.6)

Таким образом, кинетическая энергия тела при плоском движении слагается из энергии поступательного движения со скоростью, равной скорости центра инерции, и энергии вращения вокруг оси, проходящей через центр инерции тела.

Работа внешних сил при вращательном движении твердого тела.

Найдем работу, которую совершают силы при вращении тела вокруг неподвижной оси Z.

Пусть на массу действуют внутренняя сила и внешняя сила (результирующая сила лежит в плоскости, перпендикулярной оси вращения) (рис. 4.19). Эти силы совершают за время dt работу:

Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей, находим:

где , – соответственно, моменты внутренней и внешней сил относительно точки «О».

Просуммировав по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt :

Сумма моментов внутренних сил равна нулю. Тогда, обозначив суммарный момент внешних сил через , придем к выражению:

.

Известно, что скалярным произведением двух векторов называется скаляр, равный произведению модуля одного из перемножаемых векторов на проекцию второго на направление первого, учтя, что , (направления оси Z и совпадают), получим

,

но w·dt =d j, т.е. угол, на который поворачивается тело за время dt . Поэтому

.

Знак работы зависит от знака M z , т.е. от знака проекции вектора на направление вектора .

Итак, при вращении тела внутренние силы работы не совершают, а работа внешних сил определяется формулой .

Работа за конечный промежуток времени находится путем интегрирования

.

Если проекция результирующего момента внешних сил на направление остается постоянной, то ее можно вынести за знак интеграла:

, т.е. .

Т.е. работа внешней силы при вращательном движении тела равна произведению проекции момента внешней силы на направление и угол поворота.

С другой стороны работа внешней силы, действующей на тело идет на приращение кинетической энергии тела (или равна изменению кинетической энергии вращающегося тела). Покажем это:

;

Следовательно,

. (4.7)

Самостоятельно:

Упругие силы;

Закон Гука.

ЛЕКЦИЯ 7

Гидродинамика

Линии и трубки тока.

Гидродинамика изучает движение жидкостей, однако ее законы примени- мы и к движению газов. При стационарном течении жидкости скорость ее частиц в каждой точке пространства есть величина, независимая от времени и являющаяся функцией координат. При стационарном течении траектории частиц жидкости образуют линию тока. Совокупность линий тока образует трубку тока (рис. 5.1). Будем считать жидкость несжимаемой, тогда объем жидкости, протекающей через сечения S 1 и S 2 , будет одинаков. За секунду через эти сечения пройдет объем жидкости, равный

, (5.1)

где и - скорости жидкости в сечениях S 1 и S 2 , а вектора и определяются как и , где и - нормали к сечениям S 1 и S 2 . Уравнение (5.1) называют уравнением неразрывности струи. Из него следует, что скорость жидкости обратно пропорциональна сечению трубки тока.

Уравнение Бернулли.

Будем рассматривать идеальную несжимаемую жидкость, в которой внутреннее трение (вязкость) отсутствует. Выделим в стационарно текущей жидкости тонкую трубку тока (рис. 5.2) с сечениями S 1 и S 2 , перпендикулярными к линиям тока. В сечении 1 за малое время t частицы сместятся на расстояние l 1 , а в сечении 2 - на расстояние l 2 . Через оба сечения за время t пройдут одинаковые малые объемы жидкости V = V 1 = V 2 и перенесут массу жидкости m=rV , где r - плотность жидкости. В целом изменение механической энергии всей жидкости в трубке тока между сечениями S 1 и S 2 , произошедшее за время t , можно заменить изменением энергии объема V , произошедшим при его перемещении от сечения 1 до сечения 2 . При таком движении изменится кинетическая и потенциальная энергия этого объема, и полное изменение его энергии

, (5.2)

где v 1 и v 2 - скорости частичек жидкости в сечениях S 1 и S 2 соответственно; g - ускорение земного притяжения; h 1 и h 2 - высоты центра сечений.

В идеальной жидкости потери на трение отсутствуют, поэтому приращение энергии DE должно быть равно работе, совершаемой силами давления над выделенным объемом. При отсутствии сил трения эта работа:

Приравнивая правые части равенств (5.2) и (5.3) и перенося члены с одинаковыми индексами в одну часть равенства, получим

. (5.4)

Сечения трубки S 1 и S 2 были взяты произвольно, поэтому можно утверждать, что в любом сечении трубки тока справедливо выражение

. (5.5)

Уравнение (5.5) называется уравнением Бернулли. Для горизонтальной линии тока h = const , и равенство (5.4) приобретает вид

r /2 + p 1 = r· /2 + p 2 , (5.6)

т.е. давление оказывается меньшим в тех точках, где скорость больше.

Силы внутреннего трения.

Реальной жидкости присуща вязкость, которая проявляется в том, что любое движение жидкости и газа самопроизвольно прекращается при отсутствии причин, вызвавших его. Рассмотрим опыт, в котором слой жидкости расположен над неподвижной поверхностью, а сверху его перемещается со скоростью , плавающая на ней пластина с поверхностью S (рис. 5.3). Опыт показывает, что для перемещения пластины с постоянной скоростью необходимо действовать на нее с силой . Так как пластина не получает ускорения, значит, действие этой силы уравновешивается другой, равной ей по величине и противоположно направленной силой, которая является силой трения . Ньютон показал, что сила трения

, (5.7)

где d - толщина слоя жидкости, h - коэффициент вязкости или коэффициент трения жидкости, знак минус учитывает различное направление векторов F тр и v o . Если исследовать скорость частиц жидкости в разных местах слоя, то оказывается, что она изменяется по линейному закону (рис. 5.3):

v(z) = = (v 0 /d)·z.

Дифференцируя это равенство, получим dv/dz = v 0 /d . С учетом этого

формула (5.7) примет вид

F тр =- h(dv/dz)S , (5.8)

где h - коэффициент динамической вязкости . Величина dv/dz называется градиентом скорости. Она показывает, как быстро изменяется скорость в направлении оси z . При dv/dz = const градиент скорости численно равен изменению скорости v при изменении z на единицу. Положим численно в формуле (5.8) dv/dz = -1 и S = 1, получим h = F . Отсюда следует физический смысл h : коэффициент вязкости численно равен силе, которая действует на слой жидкости единичной площади при градиенте скорости, равном единице. Единица вязкости в СИ называется паскаль-секундой (обозначается Па с). В системе СГС единицей вязкости является 1 пуаз (П), причем 1 Па с = 10П.

> Вращательная кинетическая энергия: работа, энергия и мощность

Изучите кинетическую энергию вращательного движения – формулы. Читайте о моменте инерции, механической работе, поступательном и вращательном движении.

Обуславливается вращением тела.

Задача обучения

  • Выразить вращательную кинетическую энергию, основываясь на угловой скорости и моменте инерции, а также связать ее с полной кинетической энергией.

Основные пункты

  • Вращательная кинетическая энергия выражается как E вращения = 0.5 Iω 2 (где ω – момент инерции вокруг оси вращения).
  • Механическая работа – W = τθ.
  • Мгновенная мощность углового ускоряющего тела – P = τω.
  • Просматривается тесная связь между результатом для вращательной энергии и удерживаемой линейным движением.

Термины

  • Инертность – свойство тела сопротивляться любому изменению своего равномерного движения.
  • Вращательный момент – вращательный эффект силы, измеряемый в ньютонах на метр.
  • Угловая скорость – векторная величина, характеризующая тело в круговом движении. Величина приравнивается к скорости частички, а направление расположено перпендикулярно плоскости.

Вращательная кинетическая энергия – кинетическая энергия, созданная вращением тела и выступающая частью полной кинетической энергии. Если мы захотим разобрать конкретный случай, то понадобится формула E вращения = 0.5 Iω 2 (I – момент инерции вокруг оси вращения, ω – угловая скорость).

Во время вращения применяется механическая работа, отображающая момент (τ), умноженный на угол поворота (θ): W = τθ.

Мгновенная мощность углового ускоряющегося объекта: P = τω.

Просматривается тесная связь между результатом для вращательной энергии и удерживаемой линейным (поступательным) движением: E поступательное = 0.5 mv 2 .

Во вращающейся системе момент инерции напоминает массу, а угловая скорость выступает линейной.

Давайте посмотрим на кинетическую энергию нашей планеты. Земля совершает один осевой оборот за 23.93 часов при угловой скорости 7.29 х 10 -5 . Момент инерции – 8.04 х 10 37 кг · м 2 . Поэтому вращательная кинетическая энергия – 2.148 × 10 29 Дж.

Вращение Земли выступает ярчайшим примером вращательной кинетической энергии

Кинетическую энергию вращательного движения также можно вычислить при помощи приливной силы. Дополнительное трение от двух масштабных приливных волн создает энергию, замедляющую угловую скорость планеты. Угловой момент сохраняется, поэтому процесс передает момент импульса орбитальному лунному перемещению, увеличивая удаленность от Земли и орбитальный период.

Количество вращательной кинематики
Угловое ускорение
Вращательная кинематика
Динамика
Вращательная кинетическая энергия
Сохранение углового момента
Векторная природа вращательной кинематики
Решение проблем
Линейные и вращательные величины
Сохранение энергии


Читайте также: